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ON A NEW ONE PARAMETER GENERALIZATION
OF PELL NUMBERS

DoroTa BROD

Abstract. In this paper we present a new one parameter generalization of
the classical Pell numbers. We investigate the generalized Binet’s formula, the
generating function and some identities for r-Pell numbers. Moreover, we give
a graph interpretation of these numbers.

1. Introduction

The Pell sequence { P, } is one of the special cases of sequences {a,, } which
are defined recurrently as a linear combination of the preceding k terms

(11) Up = blan—l + b2an—2 + -+ bkan—k for n > ]{,
where k > 2, b; are integers, ¢ = 1,2,...,k and ag,aq,...,ap_1 are given
numbers.
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By recurrence (1.1)) for £ = 2 we get (among others) the well-known re-
currences:

F,=F, 1+F,2, Fy=0, F;=1 (Fibonacci numbers),
L,=L, 1+ Ly, Ly=2 L;=1 (Lucasnumbers),
Ip =Jp—1+2Jp—2, Jo=0, Jy =1 (Jacobsthal numbers),
P,=2P, 1+ P,_2, Ph=0, P,=1 (Pell numbers).
The first ten terms of the Pell sequence are 0, 1, 2, 5,12, 29, 70, 169, 408, 985.
The n-th Pell number is explicitly given by the Binet-type formula

(1+v2)" —(1—V2)"
2v/2

Moreover, the Pell numbers are defined by the following formula

P, = for n > 0.

[25H]

n
Pu= <2k + 1>2k‘

k=0

? (1) ] . It is known that
P, P, 2 11"
S

Hence we get the well-known formula (Cassini’s identity) P,41P,_1 — P2 =
(—=1)™. Another interesting properties of the Pell numbers are given in [4].

In the literature there are some generalizations of the Pell numbers. We
recall some of them. In [5] the authors introduced p-Pell numbers P,(n) defined
by the following relation: P,(n) = 2P,(n—1)+ P,(n—p—1) forp=0,1,2...
and n > p+ 2 with P,(1) = a1, Py(2) = a2, ..., Po(p+ 1) = ap41, where
ai,as,...,ap41 are integers, real or complex numbers. Another generalization
of the Pell numbers is given in [I], [2]: the k-Pell numbers { Py ,,} are defined
recurrently by Py 411 = 2P, + kPg p—1 for k> 1 and n > 1 with P, =0,
P, =1

In [6] there was presented k-distance Pell sequence defined as follows:
Py(n) = 2P;(n — 1) + Py(n — k) for n > k with Px(0) = 0, Px(n) = 2"~}
forn=1,2,...,k—1. Another interesting generalizations of the Pell numbers
can be found in [9].

In this paper we introduce a new one parameter generalization of Pell
numbers.

The matrix generator of the sequence {P,} is [
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2. The r-Pell numbers and some basic properties

Let n > 0, r > 1 be integers. Define r-Pell sequence {P(r,n)} by the
following recurrence relation

(2.1) P(r,n) =2"P(r,n — 1)+ 2""'P(r,n —2) for n > 2

with initial conditions P(r,0) = 2, P(r,1) = 1 4 271,
It is easily seen that P(1,n) = P,42. By (2.1)) we obtain

0) =

P(r,

P(r, 1)—1+2T+1
P(r,2) =21 2. 47,
P(r,3)=2"14+3-4"4+2-8",
(

r,d) = 3 4" 4+4-8"42-16".

o)

Now we present the Binet’s formula, which allows us to express the -
Pell numbers in function of the roots r; and ry of the following characteristic
equation, associated with the recurrence relation (2.1

(2.2) r? - 2"z -2t =0.
Then
(2 3) . T + /47’ + 2r+1 . T _ /47‘ + 27‘—',—1
. 1= ) 2 = .
2 2

PROPOSITION 2.1 (Binet’s formula). Let n >0, r > 1 be integers. Then
(2.4) P(r,n) = Cir + Cary,
where r1, ro are given by (2.3) and

2N +1 2 +1

Cr=ld—— Cy=1— ot
1 ‘/47‘_|_27'+1 2 1/47‘_|_27'+1
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PRrROOF. The general term of the sequence {P(r,n)} may be expressed in
the following form

P(r,n) = Cyri 4+ Cory

for some coefficients C; and Cs. Using initial conditions of the recurrence
(2.1), we obtain the following system of two linear equations

Ci+Cy =2,
017“1 + 027"2 =1 + 2T+1.
Hence
2"+ 1 2" +1
Ci=14—= and (Cy=1— —,
1 \/4r _|_2r+1 2 \/4r _|_2r+1
which ends the proof. O

Since r1 and ry are the roots of equation ([2.2), we have

(25) ry+rg=2",
(26) T — T2 =V 4r + 2r+1’
(2.7) rirg = =271

Moreover, by simple calculations, we get

1
4r + or+1 ’

(29) 017"2 + CQT’l = —1.

(2.8) C1Cy =

3. Some identities for the sequence {P(r,n)}

In this section we present some properties and identities for the r-Pell
numbers. They generalize known results for classical Pell numbers.
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THEOREM 3.1. Let r be a positive integer. Then

lim P(r,n+1) 27447 42rt+l
1 = .
n—oo  P(r,n) 2

PROOF. Using Proposition 2.1 we have

oy Lt 1) . Oy 4 Corp - Ciri+ Cars (%)
lim ——— = lim —

n=oo  P(r,n) nsoo O™ 4+ Cory  nooo Cp + Co(22)n

. lim (72)7 — ¢
Since nlﬁn;()(ﬁ) 0, we ge

. P(r,n+1) 2" 4 /4T 4 271
lm ———= =r; = .
n—oo  P(r,n) 2

THEOREM 3.2 (Cassini’s identity). Let n,r be positive integers. Then
(3.1) P(r,n+1)P(r,n — 1) — P2(r,n) = (=1)"2r— D=1,
PROOF. By Binet’s formula we obtain
P(r,n+1)P(r,n — 1) — P%(r,n)
= (Cor{™ 4 Corf ™) (Crrf ™ + Cory™h) = (Crrf + Cary)?

T T
= Clcg(Tng)n(é + f - 2) = 0102(T17,2)n71(r1 — 7‘2)2,

where 71, ro are given by (2.3).

Using formulas (2.8]), (2.7) and (2.6), we have
P(r,n+1)P(r,n—1) — P*(r,n) = —(=2" )" = (_1)"2(?“—1)(71—1)_ 0

By formula (3.1]), considering » = 1 and taking into account that P(1,n) =
P, 12, we obtain Cassini’s identity for the classical Pell numbers.

COROLLARY 3.3. Forn > 1, P,y1P,_1 — P2=(-1)".

The next theorem presents a summation formula for the r-Pell numbers.
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THEOREM 3.4. Let n,r be positive integers. Then

~ Plrn)+277'P(r,n—1)—3
EP(T,Z) = 7. 27_1(_ . ) )

PRrOOF. Using formula (2.4), we have

n—1 n—1

> P(ri) =Y (Cir} + Carb) = C

=0 =0
. Ci+C5 — (017’2 + 027”1) — (017’? + 027’721) + 7’17”2(017’?71 + 027’72171)
1—(r1 +r2) +rire ’

1—7r7 1—-ry
+C
11—7’1 21—7’2

By Binet’s formula we get

nz:lp(r i) = C1+ Cy — (Cirg + Cory) — P(ryn) + riroP(r,n — 1)
=0 ’ 1- (Tl + TQ) —+ 7172 '
By (2.9), (2.7) and (2.5)) we obtain
n—1
P 27‘—1P —1) =
Z P(r,i) = (r,n) + 1(7’,77, ) 3' .
i=0 3-2r—1 -1

Using twice the recurrence (2.1]), we obtain the following result.
PROPOSITION 3.5. Let n,r be integers such that n > 4, r > 1. Then
P(r,n) = (8" +4")P(r,n —3) + (25771 + 227" P(r,n — 4).

THEOREM 3.6. The generating function of the sequence {P(r,n)} has the
following form

_ 24x
1= rp — 212

f()
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PROOF. Assuming that the generating function of the sequence {P(r,n)}
o0
has the form f(z) = >  P(r,n)x", we get
n=0

(1—2"2 =212 f(z) = (1 — 2"z — 2" 12?) i P(r,n)z"
n=0

[ee]

= Z P(r,n)z" —2" Z P(r,n)z" Tt — 271 Z P(r,n)z" >
n=0 n=0

o0

Z (r,n) —2"P(r,n —1) = 2" "' P(r,n — 2))z"

n=2

+ (P(r,0) + P(r,1)x) — 2" P(r,0)x

By recurrence (2.1) we have

(1—-2rz -2 1) f(x) =2+ (1 + 27t — 27 1)z,

Hence
(1—2"z —2""'ah) f(x) =2+ 2.
Thus
24z
flw) = 1—2ry —2r—1g2’
which ends the proof. O

4. A graph interpretation of the r-Pell numbers

In general we use the standard terminology and notation of graph theory,
see [3]. Let G be a simple, undirected, finite graph with vertex set V(G) and
edge set E(G). By P, C,,, n > 1, m > 3, we mean n-vertex path, m-vertex
cycle, respectively. A set S C V(@) is independent if no edge of G has both
its endpoints in S. Moreover, a subset of V' (G) containing only one vertex and
the empty set are independent sets of G. The total number of independent sets
of a graph G, including the empty set, is known as the Merrifield-Simmons
index. It is denoted by i(G) or NI(G). For a graph G with V(G) = 0 we put
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i(G) = 1. The Merrifield-Simmons index is an example of topological index,
which is of interest in combinatorial chemistry. This parameter was introduced
in 1982 by Prodinger and Tichy in [7]. It was called the Fibonacci number
of a graph. It has been proved that i(P,) = F,4+1, i(Cy) = L,. In recent
years, many researches have investigated this index, see for example [§]. We
will show that the r-Pell numbers can be used for counting independent sets
in special classes of graphs.

Let z € V(G). By i,(G) (i—.(G), respectively) we denote the number of
independent sets S of G such that z € S (x € S, respectively). Hence we get
the basic rule for counting of independent sets of a graph G

(4.1) i(@) = i(G) +i_.(G).

Consider a graph H,, , (Figure 1), where n > 1, r > 1, Hy, = Kj y41.

H, ,:

)

U1

Up

Figure 1. A graph H, ,

THEOREM 4.1. Let n,r be integers such that n > 1, r > 1. Then
i(Hy, ) = P(r,n).

PrOOF. Let n > 3. Assume that vertices of H, , are numbered as in
Figure 1. Using formula (4.1)), we have

i(Hn,r> = an (Hn,r) + i—mn (Hn,'r)-

Let S be any independent set of H,, ,. Consider two cases.
Case 1. x,, € S. Then xy,—1,Yn,21,...,2 € S. Hence S = S" U {z,} U Z,
where S’ is any independent set of the graph

Hn,r \ {xn—lvyn)zlw . '727’7h17° . '7h7’}7

which is isomorphic to H,,_2 ., and Z is any subset of the set {h1, ho, ..., hy_1}.
Hence we get

i, (Hpy) = 27 i(Hno,r)-
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Case 2. z, ¢ S. Proving analogously as in Case 1, we have
e, (Hyy) = 27i(Hoo).
Consequently, for n > 3 we get
i(Hpy) = 2" i(Hpo1,0) + 2"1(Hn—2r).
Now we consider graphs H; , and Hs,. It is easy to check that i(H;,) =

1+ 27"t = P(r,1). Using the same method for the graph H,, as in Case 1,
we have

i(HZ,r) = i:cz (HQ,T) + ifscz (HQ,T)
=2" 42" (1+ 2" =2(4" +2") = P(r,2). O
COROLLARY 4.2. Forn>1
Z'(Hnyl) = P(l,n) = Pn+2.

The graph interpretation of r-Pell numbers can be used for proving some
identities.

THEOREM 4.3. (Convolution identity) Let m,m,r be integers such that
m>2,n>1,r>1. Then

P(r,m+n)=2"""P(r,m — 1)P(r,n) + 2" 2P(r,m — 2) P(r,n — 1).

PROOF. It is easy to check that the theorem is true for m =2 and n =1,
we have namely

Pr3)=2""1142"1)2 44.22"2 =971 1 3.4" +2.8".

Moreover, for m = 2 and n = 2 we obtain
P(r,4) =271 (14272t 4 2. 47) +22772(2 + 27F2)

3
:2-16T+4~8T+§~4r.
Assume now that m > 3, n > 2. Consider the graph H,,, ,. Assume that
vertices of the graph are numbered analogously as in Figure 1. By Theorem
we have i(Hy4n,r) = P(r,m + n). Assume that z,, is any vertex of the
graph Hy,, r, such that degz,, = r+ 3. Let S be any independent set of the
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graph H,, 1, . Denote by L(x;) the set of pendant vertices attached to the
vertex x;, 1 = 1,2,3,...,m + n. Consider two cases.

Case 1. z, € S. Then Zpy—1, Timt1, Ym, Ym—1 € S. Moreover, L(z,,) ¢ S.
Then S = S* U S** U Z; U Zy U{z,,}, where S* is an independent set of the

n+1 n+2

graph Hoynr \ U {Zmsn—i} \ U {Um+n—j} \ L(z;), which is isomorphic to
i=0 j=0

the graph H,,_2,, Z1, Z3 is any subset of the set L(xn,—1), L(Zp+1), resp.

m—+1
Moreover, S** is an independent set of the graph Hy, 0\ U {@:, v} \ L(2),
i=1

which is isomorphic to the graph H,,_; . Thus we obtain
io,, (Hmins) = (27 H2P(r,m — 2)P(r,n — 1).
Case 2. z,,, ¢ S. Using the same method as in Case 1, we have
iw, (Hpinr) = 2" P(r,m — 1)P(r,n).
Consequently,

i(Hmtn,r) = P(r,m+n)
= 2" 'P(r,m — 1)P(r,n) +2*"2P(r,m — 2)P(r,n — 1). O

Using the fact that P(0,n) = P,t2, we get known identity for classical
Pell numbers.

COROLLARY 4.4. Pyyn = PyPri1 + P—1 Py
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