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INVERSE AMBIGUOUS FUNCTIONS AND
AUTOMORPHISMS ON FINITE GROUPS

Imke Toborg

Abstract. If G is a finite group, then a bijective function f : G Ñ G is
inverse ambiguous if and only if fpxq�1 � f�1pxq for all x P G. We give a
precise description when a finite group admits an inverse ambiguous function
and when a finite group admits an inverse ambiguous automorphism.

1. Introduction

Suppose pG, �q is a finite group and f : GÑ G is a bijective function and
let x P G. Then fpxq�1 denotes the inverse of the image of x under f while
f�1pxq denotes the pre-image of x under f . In general fpxq�1 and f�1pxq are
different elements.

Inspired from students being confused by this similar notation, several
authors investigated functions f : K Ñ K such that f�1pxq � fpxq�1 for all
x P K where K is equal to p0,8q � R,R, or C (see for example [2] and
[3]). Furthermore in [4] functions f : RÑ R satisfying the functional equation
fpfpxqq � �x for all x P R have been investigated. Recently, David J. Schmitz
introduced in [7] the notion of an inverse ambiguous function of a group G.
This is a bijective function f : G Ñ G that is a solution of the functional
equation f�1pxq � fpxq�1 for all x P G. He analysed the question whether
a group admits an inverse ambiguous function and answered it for several
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abelian groups. Moreover he gave a criteria for the existence of an inverse
ambiguous function of a finite group in terms of the number of elements
of order at least 3. This criteria was used by him together with Katherine
Gallagher in [8] to answer the question whether a symmetric or alternating
group or GLp2, qq for an arbitrary prime power q admits an inverse ambiguous
function. In their introduction they refer to an article by Marcel Herzog [5]
from which some of their conclusions may also be derived.

In this paper we study finite groups in general. We use the work of Her-
zog in Section 2 to show that the existence of an inverse ambiguous function
of a finite group pG, �q depends on the order of G as well as the structure
or number of Sylow 2-subgroups of G. We are also interested in inverse am-
biguous automorphisms. These are inverse ambiguous functions that are also
homomorphisms. Non-abelian groups do not admit inverse ambiguous auto-
morphisms. In Section 3 we give a precise characterisation of finite abelian
p-groups admitting an inverse ambiguous automorphism for odd primes. Fi-
nally in Section 4 we investigate finite abelian 2-groups and characterise those
that admit an inverse ambiguous automorphism. This theorem together with
the results of Section 3 lead to a characterisation of finite groups admitting
inverse ambiguous automorphism.

All groups are written multiplicatively and we use standard group-theoretic
notation (see for example [6]). In particular 1 denotes the neutral element of
a group G as well as its trivial subgroup generated by the neutral element.

2. Inverse ambiguous functions

Definition 2.1. Let G be a group and f : GÑ G be a bijective function.
Then f is an inverse ambiguous function if and only if

fpxq�1 � f�1pxq for all x P G.

If further f is an automorphism, then f is an inverse ambiguous automor-
phism.

Lemma 2.2. Let G be a finite group such that |G| is a multiple of 4. Then
the following statements are equivalent.
(a) There is an inverse ambiguous function f : GÑ G.
(b) We have |tx P G | opxq ¥ 3u| � 0 mod 4.
(c) We have |tx P G | opxq � 2u| � p�1q mod 4.
(d) A Sylow 2-subgroup of G is neither cyclic, a quaternion group, a non-

abelian dihedral group nor semi-dihedral.
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(e) A Sylow 2-subgroup of G is not a dihedral group of order 8 and contains
a normal subgroup which is elementary abelian of order 4.

(f) The group G has an elementary abelian subgroup of order 4 that either is
a Sylow 2-subgroup of G or not a Sylow 2-subgroup of its centraliser.

Proof. By Theorem 4.1 of [7] we see that (a) and (b) are equivalent.
From G � t1u 9Ytx P G | opxq ¥ 3u 9Ytx P G | opxq � 2u and from |G| �

0 mod 4 we moreover obtain that (b) and (c) are equivalent.
Furthermore the equivalence of (c) and (d) follows from Theorem 3 of [5].
Lemma 1.4 of [1] shows that (d) implies (e).
We now assume that (e) is true and let S be a Sylow 2-subgroup of G.

Then S contains an elementary abelian normal subgroup A which has order 4.
We suppose for a contradiction that S � A and CSpAq � A. From S � NSpAq
we get that NSpAq{CSpAq is isomorphic to a non-trivial 2-subgroup of AutpAq
by 3.1.9 of [6]. Since AutpAq has order 6 by 2.1.8 (b) of [6], we conclude that
S{A � NSpAq{CSpAq has order 2 and so |S| � 8. From CSpAq � S we see
that S is non-abelian. There are exactly two non-abelian groups of order 8,
the quaternion group of order 8 which contains a unique element of order 2
and the dihedral group of order 8 (see for example 3.2.2 of [9]). This is a
contradiction. So we have S � NSpAq � CSpAq or A � CSpAq. This implies
that A � S or that A ¬ CSpAq. In the second case A is not a Sylow 2-subgroup
of CGpAq. Thus (f) is true in both cases.

We finally assume (f). Then there is an elementary abelian subgroup A
of order 4 of G that is either a Sylow 2-subgroup of G or not a Sylow 2-
subgroup of its centraliser. In the first case (d) is true. So let S be a Sylow
2-subgroup of G such that CSpAq is a Sylow 2-subgroup of CGpAq. Suppose
that A � S. Then we have A ¤ CSpAq ¤ S and hence S is neither cyclic nor
a quaternion group, as it contains at least two elements of order 2 by 5.3.7
of [6]. We suppose for a contradiction that S is dihedral or semi-dihedral.
In both cases ZpSq is cyclic and S contains a cyclic normal subgroup xcy of
index 2 (see for example the remark below 5.3.2 of [6]). Hence there is some
a P AzZpSq and furthermore 5.3.2 of [6] yields that ca � c�1 or ca � c�1�2n

where opcq � 2n�1. This implies that |Cxcypaq| � 2. From a P CSpaqzxcy we
deduce that xcy ¬ xcyCSpaq ¤ S. This implies that S � xcyCSpaq. Now 1.1.6
of [6] shows that

|CSpaq| �
|S||CSpaq X xcy|

|xcy|
� |S : xcy| � |Cxcypaq| � 4.

This implies the contradiction A � CSpaq. We conclude that (d) holds. �

Theorem 2.3. Let G be a finite group. Then G admits an inverse am-
biguous function if and only if one of the following holds:
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(a) |G| � 1 mod 4,
(b) 4 - |G| and there is some z P G of order 2 such that |G : CGpzq| � 1 mod 4,
(c) 4

�
� |G| and G has one of the properties in Lemma 2.2.

Proof. We first notice from Theorem 4.1 of [7] that G admits an inverse
ambiguous function f : GÑ G if and only if |tx P G | opxq ¥ 3u| � 0 mod 4.

Let G have odd order. Then we have tx P G | opxq ¥ 3u � Gzt1u and so
we see with regard to (a) that the theorem holds in this case.

If |G| is a multiple of 4, then Lemma 2.2 shows that the assertion is true.
It remains the case |G| � 2 mod 4. Then |G| is even and so there is an

element z in G of order 2. Then xzy is a Sylow 2-subgroup of G and so Sylow’s
theorem (see for example 3.2.3 (b) of [6]) implies that zG :� tg�1zg | g P Gu
is the set of all elements of order 2 of G. From 3.1.5 of [6] we moreover see
that |zG| � |G : CGpzq|.

It follows that tx P G | opxq ¥ 3u 9YzG � Gzt1u and hence

|tx P G | opxq ¥ 3u| � |G : CGpzq| � 2� 1 mod 4.

Summarising we obtain in this last case that G admits an inverse ambiguous
function if and only if |G : CGpzq| � 1 mod 4. �

3. Inverse ambiguous automorphisms

Lemma 3.1. Let G be a finite group and f : G Ñ G be an automorphism
of G. Then f is inverse ambiguous if and only if the composition f �f inverts
every x P G.

Proof. Let x be an element of G. Then we have

fpxq�1 � f�1pxq ô fpfpx�1qq � xô pf � fqpx�1q � x.

This implies the assertion. �

Theorem 3.2. Let G be a finite group admitting an inverse ambiguous
automorphism f . Then G is abelian. Furthermore, f has order 4 or G is an
elementary abelian 2-group.

Proof. From Lemma 3.1 we see that f � f inverts G. Thus G is abelian
(see for example Exercise 4 of 1.3 in [6]).
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Furthermore we see that f4 � pf � fq � pf � fq is the identity on G. So
the order of f divides 4. If f does not have order 4, then f � f is the identity
on G. In this case we conclude that x�1 � pf � fqpxq � x for all x P G.
In particular every element of Gzt1u has order 2 and so G is an elementary
abelian 2-group. �

Lemma 3.3. Let G be a finite group admitting an inverse ambiguous au-
tomorphism and let x P G. Then xxy X xfpxqy and xx, fpxqy are f -invariant.
In particular both groups admit an inverse ambiguous automorphism.

Proof. We apply Lemma 3.1. It yields fpxfpxqyq � xpf�fqpxqy � xx�1y �
xxy. So we get that fpxxy X xfpxqyq � xfpxqy X xxy. As G is abelian by
Theorem 3.2, we further see xx, fpxqy � xxyxfpxqy � xfpxqyxxy and hence
fpxx, fpxqyq � fpxxyxfpxqyq � xfpxqyxxy � xx, fpxqy. �

Lemma 3.4. Let G be a finite group admitting an inverse ambiguous au-
tomorphism f and let A ¤ G be f -invariant. Then f̄ : G{A Ñ G{A defined
via f̄pAgq :� Afpgq is an inverse ambiguous automorphism of G{A.

Proof. By Lemma 3.2 the group G is abelian and so A is a normal
subgroup of G. Since f is an automorphism of the finite group G, elementary
arguments show that f̄ is an automorphism of G{A. Finally we see from
Lemma 3.1 that for all g P G we have pf̄ � f̄qpAgq � Afpfpgqq � Ag�1 �
pAgq�1. Thus f̄ is inverse ambiguous by Lemma 3.1. �

Lemma 3.5. Let G and H be finite groups and let f1 : GÑ G and f2 : H Ñ
H be inverse ambiguous automorphisms. Then f : G�H Ñ G�H defined via
fpx, yq :� pf1pxq, f2pyqq for all x P G and all y P H is an inverse ambiguous
automorphism.

Proof. We first remark that f is an automorphism from G�H. Further-
more for all x P G and y P H Lemma 3.1 yields that f2px, yq � pf21 pxq, f

2
2 pyqq �

px�1, y�1q. Thus f is inverse ambiguous by Lemma 3.1. �

Lemma 3.6. Let G be a non-trivial cyclic p-group for some prime p. Then
G admits an inverse ambiguous automorphism if and only if p � 1 mod 4 or
|G| � 2.

Proof. Let n be such that |G| � pn. From 2.2.5 of [6] we obtain that
AutpGq is a direct product of a group of order pn�1 and a cyclic group of
order p� 1.

Suppose first that p � 3 mod 4. Then G does not admit an automor-
phism of order 4. Thus Theorem 3.2 implies that G does not have an inverse
ambiguous automorphism in this case.
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If p � 1 mod 4, then G admits exactly one automorphism of order 4, say f .
It further admits a unique automorphism of order 2, namely f�f . In particular
f � f inverts the elements of G and so the assertion follows from Lemma 3.1.

It remains the case p � 2. If |G| � 2, then the identity is inverse ambiguous.
If |G| ¥ 22, then there does not exist an inverse ambiguous function on G by
Lemma 2.2 (paq ô pdq). �

Theorem 3.7. Let G be a non-trivial abelian p-group for some prime p
such that p � 1 mod 4. Then G admits an inverse ambiguous automorphism.

Proof. Let first G be cyclic. Then Lemma 3.6 provides the statement.
Let now G be non-cyclic. Since G is abelian, we see that G is a direct

product of cyclic groups. Thus Lemma 3.5 and the cyclic case imply the as-
sertion. �

Lemma 3.8. Let G � xay � xby be an abelian group. If opaq � opbq, then
f : G Ñ G is defined via fpaibjq :� a�jbi is an inverse ambiguous automor-
phism.

Proof. Let f : G Ñ G be the function defined via fpaq � b and fpbq �
a�1. Then f is an isomorphism of G and we have f2paq � a�1, f2pbq � b�1.
Thus Lemma 3.1 implies that f is an ambiguous isomorphism. �

Lemma 3.9. Let p be a prime such that p � 3 mod 4 and let G be an
abelian p-group of rank 2. If G admits an inverse ambiguous automorphism
f , then there is an element a P G such that G � xay � xfpaqy.

In particular, G admits an inverse ambiguous automorphism if and only
if G is isomorphic to a direct product of two cyclic groups of the same order.

Proof. Let G admit the inverse ambiguous automorphism f and let a P G
be of maximal order. Then we have |G| ¤ opaq2, as G is generated by two
elements. Furthermore we have opfpaqq � opaq, since f is an automorphism.
Lemma 3.3 and Lemma 3.6 imply that xay X xfpaqy � 1.

Altogether we have xay � xfpaqy ¤ G and

|xay � xfpaqy| � opaq � opfpaqq � opaq2 ¥ |G|.

This implies that G � xay � xfpaqy.
On the other hand if G � xay � xby with opaq � |xay| � |xby| � opbq, then

Lemma 3.8 provides an inverse ambiguous automorphism of G. �

Lemma 3.10. Let G be an abelian p-group for some prime p. Suppose
further that G admits an inverse ambiguous automorphism f . If a P G is an
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element of maximal order and such that xay X xfpaqy � 1, then xa, fpaqy has
rank 2 and a complement in G.

In particular if p � 3 mod 4, then there is a subgroup 1 � A of G of rank
2 such that fpAq � A and such that A has a complement in G.

Proof. Let a P G be of maximal order and such that xay X xfpaqy � 1.
Then A :� xa, fpaqy has rank 2 and opfpaqq � opaq is maximal as well. We
further deduce that xay has a complement in G, say B, by 2.1.2 of [6]. Hence
1.1.6 of [6] yields

|xay| � |B|

|xay �B|
� |xay XB| � 1

and the Dedekind identity (see for example 1.1.11 of [6]) gives A � xaypAXBq.
We conclude that |A| � |xay � xfpaqy| � opaq2 by 1.1.6 of [6]. Now, the same
lemma shows that

|AXB| �
|A| � |B|

|AB|
�
opaq2 � |B|

|G|
� opaq �

|xay| � |B|

|xay �B|
� opaq.

From pA X Bq X xay � A X pB X xayq � A X 1 � 1 and 1.2.6 of [6] it follows
that A X B � A X B{1 � pA X Bq{ppA X Bq X xayq � ppA X Bqxay{xayq �
A{xay � pxfpaqy � xayq{xay � xfpaqy{pxay X xfpaqyq � xfpaqy{1 � xfpaqy is
cyclic of maximal order.

Again we apply 2.1.2 of [6] to find a complement C of A X B in B. But
now C is a complement of A in G, as AC � xaypA X BqC � xayB � G and
A X C ¤ A X pB X Cq � pA X Bq X C � 1. Altogether the first statement is
true.

Let now p � 3 mod 4 and a P G have maximal order. Then the cyclic
group xay X xfpaqy admits an inverse ambiguous automorphism by Lemma
3.3. Hence Lemma 3.6 and our assumption that p � 3 mod 4 imply that
xay X xfpaqy � 1. Thus 1 � A � xa, fpaqy has rank 2 and a complement in
G by the previous investigation. As fpAq � A by Lemma 3.3, we obtain the
assertion. �

Theorem 3.11. Let G be a non-trivial abelian p-group for some prime p
such that p � 3 mod 4. Then G admits an inverse ambiguous automorphism
if and only if G � A1 � ...�An for some positive integer n and such that for
all i P t1, ..., nu the group Ai is the direct product of two cyclic groups of the
same order.

Proof. Let first n be a positive integer and G � A1 � ... � An be such
that for all i P t1, ..., nu the group Ai is the direct product of two cyclic
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groups of the same order. Then Lemma 3.9 shows that Ai admits an inverse
ambiguous automorphism. From Lemma 3.5 we deduce that G admits an
inverse ambiguous automorphism.

Suppose now that G admits an inverse ambiguous automorphism. We
prove the structure assertion of G via induction on the rank r of G.

If r � 1, then G is cyclic and Lemma 3.6 yields a contradiction. For r � 2
we obtain the assertion from Lemma 3.9.

Let r ¥ 3. Then Lemma 3.10 provides an f -invariant subgroup A � 1 of
G of rank at most 2 and such that A has a complement, say B, in G.

By Lemma 3.4 the mapping f induces an inverse ambiguous automorphism
f̄ on G{A via f̄pAxq � Afpxq for all x P G, since A is f -invariant. In particular
B � G{A admits an inverse ambiguous automorphism. Induction yields that
B � A1� ...�An for some positive integer n and such that for all i P t1, ..., nu
the group Ai is the direct product of two cyclic groups of the same order.

We set An�1 :� A. As A has rank at most 2, Lemma 3.6 implies that An�1

has rank 2. Since A is f -invariant, Lemma 3.9 shows that An�1 � A is the
direct product of two cyclic groups of the same order.

Altogether we have G � B�A � A1�...�An�1 and for all i P t1, ..., n�1u
the group Ai is the direct product of two cyclic groups of the same order. �

4. Inverse ambiguous automorphisms on 2-groups

We now turn our attention to the remaining prime 2. The next lemma
shows that the structure of 2-groups of rank 2 admitting an inverse ambiguous
automorphism is more complicated to describe.

Lemma 4.1. Let G � xay � xby be an abelian 2-group. If opaq � 1
2opbq,

then f : G Ñ G defined via fpaibjq :� aj�ibj�2i is an inverse ambiguous
automorphism.

Proof. Notice that opab2q � opaq, opbq � opabq and G � xay � xby �
xab2y � xaby. So the function f : G Ñ G defined via fpaq � a�1b�2 and
fpbq � ab is an isomorphism. From f2paq � a�1, f2pbq � b�1 and Lemma 3.1
we see that f is an ambiguous isomorphism. �

Lemma 4.2. Let p be a prime and G be a non-trivial abelian p-group. If
G admits an inverse ambiguous automorphism f such that fpxq � x for all
elements x of order p, then G is an elementary abelian 2-group.



292 Imke Toborg

Proof. As G � 1, there is some element x P G of order p. The assumption
implies that xxy is f -invariant. Thus Lemma 3.1 shows that x�1 � fpfpxqq �
fpxq � x. We deduce that 2 � opxq � p.

Suppose for a contradiction that G has some element y of order 4. Then
we have fpyq2 � fpy2q � y2 P xyyXxfpyqy. This implies together with Lemma
3.3 and Lemma 3.6 that the cyclic group xyyX xfpyqy has order 2. With 1.1.6
of [6] we calculate that A :� xy, fpyqy has order

|xyy � xfpyqy| �
opyq � opfpyqq

|xyy X xfpyqy|
�

4 � 4

2
� 8.

Since A is not cyclic 2.1.2 of [6] provides some element b P A of order 2 such
that A � xyy�xby. Furthermore fpyq P Azxyy and hence there is some integer
i such that fpyq � yi � b. We conclude from Lemma 3.1:

y�1 � fpfpyqq � fpyqi � fpbq � pyi � bqi � b � yi
2

� bi�1.

This implies that bi�1 � 1 and i2 � �1 mod 4; a contradiction. We conclude
that x2 � 1 for all x P G and so G is an elementary abelian 2-group. �

Lemma 4.3. Let G be an abelian 2-group of rank 2. If G admits an in-
verse ambiguous automorphism f , then G is elementary abelian and f is
the identity, or there is an element a P G such that G � xa, fpaqy and
|G| P topaq2, 12opaq

2u.
In particular, G admits an inverse ambiguous automorphism if and only

if we have G � xay � xby with opbq P topaq, 12opaqu.

Proof. Let f be an inverse ambiguous automorphism of G. Similarly to
the proof of Lemma 3.9, we investigate an element a P G of maximal order.
Then, since G is generated by two elements and f is an automorphism, we
have |G| ¤ opaq2 and opfpaqq � opaq. Hence Lemma 3.3 and Lemma 3.6 yield
|xay X xfpaqy| ¤ 2.

Thus xa, fpaqy ¤ G and

|xa, fpaqy| �
opaqopfpaqq

|xay X xfpaqy|
¥

1

2
opaq2

by 1.1.6 of [6].
If G � xa, fpaqy, then the first statement holds. Hence we may suppose

that G � xa, fpaqy. This is only possible in the case of |xay X xfpaqy| � 2 and
|G| � opaq2. Since a has maximal order 2.1.2 of [6] implies that xay has a
complement in G. Hence, there is some element b P G such that G � xay�xby
and our assumption implies that opbq � |G : xay| � opaq.
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Again, if G � xby� xfpbqy, then the first statement holds, as G � xb, fpbqy
and |G| � opaq2 � opbq2. Hence we may suppose that G � xb, fpbqy. Then, as
above, we have |xby X xfpbqy| � 2. In particular f fixes the element of order
2 in xby and f fixes the element of order 2 in xay. These elements of order 2
are different, as G � xay � xby. It follows from 2.1.9 of [6], that G has exactly
three elements of order 2. Hence we conclude that f fixes every element of
order 2. Then Lemma 4.2 implies that G is elementary abelian and f is the
identity.

Altogether we have shown that G � xa, fpaqy, or G � xb, fpbqy, or that G
is elementary abelian. This is the first statement.

In all cases G � xay � xcy with opcq P topaq, 12opaqy for some c P tfpaq, bu.
Let conversely G � xay � xby with opbq P topaq, 12opaqu. Then G admits an

inverse ambiguous automorphism by Lemma 3.8 or Lemma 4.1. �

The next lemma generalises Lemma 3.10.

Lemma 4.4. Let G be a non-trivial abelian 2-group admitting an inverse
ambiguous automorphism f . Then G contains an element a of maximal order
such that xa, fpaqy has a complement in G.

Proof. Suppose for a contradiction that the lemma is false. Then let G
be a counterexample of minimal order.

(I) For every g P G of maximal order the group xfpgqy X xgy has order 2.

Proof. Let g P G have maximal order. Then Lemma 3.10 and our assumption
that G is a counterexample imply that xfpgqy X xgy � 1. Since xfpgqy X xgy is
a cyclic and f -invariant 2-group by Lemma 3.3, we obtain the assertion from
Lemma 3.6.

(II) G is not elementary abelian.

Proof. Suppose for a contradiction that G is elementary abelian and let g P
Gz1. Then opgq � 2 and g has maximal order. Thus xgy has a complement in
G by 2.1.2 of [6]. From 1 � xgyXxfpgqy ¤ xgy � t1, gu it follows that fpgq � g
and so xg, fpgqy � xgy has a complement in G.

(III) If a P G has maximal order, then exactly one element of order 2 in
xa, fpaqy is fixed by f . This fixed element of order 2 is an element of
xay X xfpaqy.

Proof. From Lemma 3.3 we see that xa, fpaqy and xay X xfpaqy admit inverse
ambiguous automorphisms. In addition xay X xfpaqy has two elements by (I).
Therefore the element of order 2 in xay X xfpaqy is fixed.

On the other hand opaq ¥ 4 by (II). Hence Lemma 3.6 implies that xa, fpaqy
is not cyclic. Consequently xa, fpaqy has rank 2. From Lemma 4.2 it moreover
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follows that xa, fpaqy contains an element of order 2 that is not fixed by f .
We deduce that at least two elements of order 2 are permuted by f . Since
xa, fpaqy has exactly three elements of order 2 (see 2.1.9 of [6]), we see that
exactly one element of order 2 in xa, fpaqy is fixed by f .

(IV) G has rank at least 3.

Proof. If G was cyclic, then G had order 2 by Lemma 3.6 contradicting (II).
Suppose for a contradiction that G has rank 2. Then G contains exactly

three elements of order 2 by 2.1.9 of [6]. Further there are a, b P G such
that G � xay � xby. We choose notation such that opaq ¥ opbq and set A :�
xa, fpaqy � xayxfpaqy.

Then a is an element of maximal order in G. From this and 1.1.6 of [6] we
deduce that |G| � opaqopbq ¤ opaq2. In addition

|G| ¥
|xay| � |xfpaq|

|xay X xfpaqy|
�

1

2
opaq2

by (I). In particular A � G or |G : A| � 2. In the first case we obtain a
contradiction, since 1 is a complement of G in G. We conclude that

2 � |G : A| �
|G|

|A|
�

|xay � xby|

|xayxfpaqy|

�
opaq � opbq � |xay X xfpaqy|

opaq � opfpaqq
�

2 � opbq

opfpaqq
� 2 �

opbq

opfpaqq

by 1.1.6 of [6]. Hence opbq � opaq is maximal and so (III) yields that the
element of order 2 in xay X xfpaqy and the element of order 2 in xby X xfpbqy
are fixed. From G � xay � xby and 2.1.9 of [6] we see that at least two of the
three involutions in G are fixed by f . Consequently every element of order 2
in G is fixed by f . But now (II) contradicts Lemma 4.2.

(V) G contains at least two elements of order 2 that are fixed by f .

Proof. Suppose for a contradiction that G has exactly one element of order
2 fixed by f . Then we apply 9.1.1 (b) of [6] on V :� tg P G | g2 � 1u. Since
G is abelian, V is an elementary abelian subgroup of G that is f -invariant. In
particular we see that fpgq � fpgq�1 for all g P V . It follows that rg, f, f s �
rg�1fpgq, f s � gfpgq�1fpg�1qfpfpgqq � gfpgqfpgq�1g�1 � 1. In addition our
assumption implies that CV pfq :� tg P V | fpgq � gu has order 2. Thus 9.1.1
of [6] is applicable and Part (b) implies that |tg P G | g2 � 1u| ¤ 22 � 4. This
and 1.29 of [6] force G to have rank at most 2. This contradicts (IV).

Let now b P G have maximal order and set B � xb, fpbqy. Then (III) and
(V) provide some c P GzB such that c2 � 1 and fpcq � c. Let � : GÑ G{xcy
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be the natural homomorphism. Then Lemma 3.4 shows that Ḡ admits the
inverse ambiguous automorphism f̄ defined via f̄px̄q � fpxq.

Since G is a minimal counterexample and |Ḡ|   |G| we find some ā P Ḡ of
maximal order such that xā, f̄pāqy has a complement C̄ in Ḡ. Let C ¤ G be
the full pre-image of C̄ and choose a P G as a pre-image of ā.

(VI) opbq � opaq � opāq.

Proof. From c R B and 1.2.6 of [6] we obtain that B̄ � Bxcy{xcy � B{pB X
xcyq � B. In particular we get opb̄q � opbq. From opbq ¥ opaq ¥ opāq ¥ opb̄q �
opbq we finally see that opbq � opaq � opāq.

(VII) c R xfpaq, ay

Proof. Suppose for a contradiction that c P xfpaq, ay. Then (VI) and (III)
imply that c P xay X xfpaqy ¤ xay. But this implies the contradiction that
opāq � 1

2opaq.

We will finally show that C is a complement of xa, fpaqy �: A in G.
For this we first observe that Ā � xa, fpaqy � xā, fpaqy � xā, f̄pāqy. It

follows that Ḡ � Ā � C̄. As C is the full pre-image of C̄ in G, we get G � AC.
Moreover Ā X C̄ � 1 implies that A X C ¤ xcy and so A X C ¤ A X xcy � 1
by (VII). �

Theorem 4.5. Let G be a non-trivial abelian 2-group. Then G admits an
inverse ambiguous automorphism if and only if G � A1 � ...�An for some
positive integer n, where for all i P t1, ..., nu the group Ai is elementary
abelian, or of the form in Lemma 4.3.

Proof. Suppose first that G � A1 � ...� An for some positive integer n
and for all i P t1, ..., nu the group Ai is elementary abelian, or of the form in
Lemma 4.3. If Ai is an elementary abelian 2-group, then the identity is inverse
ambiguous. Otherwise Lemma 4.3 shows that Ai admits an inverse ambiguous
automorphism. From Lemma 3.5 we deduce that G :� A1 � ... � An admits
an inverse ambiguous automorphism.

Conversely, suppose that G admits an inverse ambiguous automorphism.
We prove the structure assertion of G via induction on the rank r of G.

If r � 1, then G is cyclic. In this case Lemma 3.6 implies that G is ele-
mentary abelian of order 2 and hence the assertion is true.

If r � 2, then the second part of Lemma 4.3 implies the assertion.
Suppose that r ¥ 3. Then Lemma 4.4 provides an f -invariant subgroup

A � 1 of G of rank at most 2 and such that A has a complement, say B, in G.
By Lemma 3.4 the mapping f induces an inverse ambiguous automorphism

f̄ on G{A via f̄pAxq � Afpxq for all x P G, since A is f -invariant. In particular
B � G{A admits an inverse ambiguous automorphism. Induction yields that
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B � A1 � ...�An for some positive integer n and such that for all i P t1, ..., nu
the group Ai is elementary abelian, or of the form in Lemma 4.3.

We set An�1 :� A. If A is cyclic, then Lemma 3.6 implies that A � An�1

has order 2 and is hence elementary abelian. If A has rank 2, then we see from
Lemma 4.3 that A � An�1 has the desired structure, as A is f -invariant.

In both cases we have G � B � A � A1 � . . . � An�1 and for all
i P t1, . . . , n � 1u the group Ai is elementary abelian, or of the form in
Lemma 4.3. �

Theorem 4.6. Let G be a finite group, then G admits an inverse ambigu-
ous automorphism if and only if G � A1 � . . .�An for some positive integer n
and for every i P t1, . . . , nu one of the following holds:
(a) Ai is an abelian p-group for some prime p � 1 mod 4,
(b) Ai is a direct product of two cyclic groups of the same order,
(c) there is a positive integer r such that Ai is a direct product of two cyclic

groups of order 2r and 2r�1,
(d) Ai is an elementary abelian 2-group.

Proof. For every U ¤ G we denote by πpUq the set of all primes divid-
ing |U |.

Let first G admit an inverse ambiguous automorphism f . Then Lemma
3.2 forces G to be abelian. So 2.1.6 of [6] yields that G �

�
pPπpGqGp, where

for all p P πpGq we have Gp :� tx P G | opxq is a power of pu. Furthermore
2.1.5 of [6] implies that fpGpq � Gp for all p P πpGq. In particular for every
p P πpGq the group Gp admits an inverse ambiguous function.

We choose p P πpGq. If p � 1 mod 4, then Gp has the structure described
in (a). If p � 3 mod 4, then Theorem 3.11 yields that Gp � Appq1�...�Appqnp

for some positive integer np, where for all i P t1, ..., npu the group Appqi is
the direct product of two cyclic groups of the same order. In the last case,
if p � 2, then Theorem 4.5 gives that G2 � Ap2q1 � ...�Ap2qn2 for some
positive integer n2, where for all i P t1, ..., n2u the group Ap2qi is elementary
abelian, or of the form in Lemma 4.3. In particular Ap2qi has one of the
structures described in (b), (c), or (d).

Altogether we have

G �
¡

pPπpGq

Gp � G2 �
¡

pPπpGq
p�1 mod 4

Gp �
¡

pPπpGq
p�3 mod 4

Gp

� pAp2q1 � ...�Ap2qn2q �
¡

pPπpGq
p�1 mod 4

Gp �
¡

pPπpGq
p�3 mod 4

pAppq1 � ...�Appqnpq.

Hence, G has the desired structure.
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Let, conversely, n be a positive integer such that G � A1 � ...� An is an
abelian group and for every i P t1, ..., nu the group Ai has one of the structures
described in (a), (b), (c) or (d).

Let i P t1, ..., nu. If Ai is as in (a), then Theorem 3.7 shows that Ai admits
an inverse ambiguous automorphism. If Ai satisfies (b) or (c), then Lemma 3.8
or Lemma 4.1, respectively, provide an inverse ambiguous automorphism on
Ai. Finally if Ai is an elementary abelian 2-group, then the identity is inverse
ambiguous on Ai.

Consequently for each i P t1, ..., nu the group Ai admits an inverse am-
biguous automorphism. Thus Lemma 3.5 implies that G admits an inverse
ambiguous automorphism, too. �
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