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A NOTE ON MULTIPLICATIVE (GENERALIZED)
(α, β)-DERIVATIONS IN PRIME RINGS

Nadeem ur Rehman, Radwan M. Al-omary,
Najat Mohammed Muthana

Abstract. Let R be a prime ring with center Z(R). A map G : R→ R is called
a multiplicative (generalized) (α, β)-derivation if G(xy) = G(x)α(y)+β(x)g(y)
is fulfilled for all x, y ∈ R, where g : R→ R is any map (not necessarily deriva-
tion) and α, β : R → R are automorphisms. Suppose that G and H are two
multiplicative (generalized) (α, β)-derivations associated with the mappings g
and h, respectively, on R and α, β are automorphisms of R. The main objec-
tive of the present paper is to investigate the following algebraic identities:
(i) G(xy) + α(xy) = 0, (ii) G(xy) + α(yx) = 0, (iii) G(xy) + G(x)G(y) = 0,
(iv) G(xy) = α(y) ◦ H(x) and (v) G(xy) = [α(y), H(x)] for all x, y in an
appropriate subset of R.

1. Introduction

Throughout the present paper, R will denote an associative ring with
centre Z(R) and α, β will denote automorphisms on R. For given x, y ∈
R, the symbols [x, y] and x ◦ y denote the commutator xy − yx and anti-
commutator xy + yx, respectively. For any pair x, y ∈ R we shall write
[x, y]α,β = xα(y) − β(y)x. Given an integer n ≥ 2, a ring R is said to be
n-torsion free, if for x ∈ R, nx = 0 implies x = 0. Recall that a ring R is
prime if for a, b ∈ R, aRb = (0) implies either a = 0 or b = 0 and is semiprime
if for a ∈ R, aRa = (0) implies a = 0. An additive map δ from R to R
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is called a derivation of R if δ(xy) = δ(x)y + xδ(y) holds for all x, y ∈ R.
Let F : R → R be a map associated with another map δ : R → R such that
F (xy) = F (x)y + xδ(y) holds for all x, y ∈ R. If F is additive and δ is a
derivation of R, then F is said to be a generalized derivation of R – a concept
introduced by Brešar ([4]). In [9], Hvala gave the algebraic study of gener-
alized derivations of prime rings. We note that if R has the property that
Rx = (0) implies x = 0 and ψ : R → R is any function, and χ : R → R is
any additive map such that χ(xy) = ψ(x)y + xψ(y) for all x, y ∈ R, then χ
is uniquely determined by ψ and ψ must be a derivation by [4, Remark 1].
Obviously, every derivation is a generalized derivation of R. Thus, generalized
derivations cover both the concept of derivations and left multiplier maps.
Following [5], a multiplicative derivation of R is a map G : R → R which
satisfies G(xy) = G(x)y + xG(y) for all x, y ∈ R. Of course these maps need
not be additive. To the best of our knowledge, the concept of multiplicative
derivations appears for the first time in the work of Daif ([5]) and it was mo-
tivated by the work of Martindale ([10]). Further, the complete description
of those maps was given by Goldmann and Šemrl in [8]. Such maps do in-
deed exist in the literature (viz. [5] and [8] where further references can be
found). Daif and Tammam El-Sayiad ([6]) extended multiplicative generalized
derivations as follows: a map G : R→ R is called a multiplicative generalized
derivation if there exists a derivation g such that G(xy) = G(x)y + xg(y)
for all x, y ∈ R. In this definition, if we consider that g is any map that is
not necessarily a derivation or additive, then G is said to be multiplicative
(generalized)-derivation which was introduced by Dhara and Ali ([7]). Thus,
a map G : R → R (not necessarily additive) is said to be a multiplicative
(generalized)-derivation if G(xy) = G(x)y + xg(y) holds for all x, y ∈ R,
where g is any map (not necessarily a derivation or an additive map). Hence,
the concept of a multiplicative (generalized)-derivation covers the concept of
a multiplicative derivation. Moreover, multiplicative (generalized)-derivation
with g = 0 covers the notion of multiplicative centralizers (not necessarily
additive). The examples of multiplicative (generalized)-derivations are multi-
plicative derivations and multiplicative centralizers. Let S be a nonempty sub-
set of R. A mapping f : R→ R is called centralizing on S if [f(x), x] ∈ Z(R)
for all x ∈ S and is called commuting on S if [f(x), x] = 0 for all x ∈ S. In
this direction, Posner ([11]) was the first who investigate commutativity of
the ring. More precisely, he proved that: If R is a prime ring with a nonzero
derivation δ on R such that δ is centralizing on R, then R is commutative.

Further, regarding commutativity in prime rings, Ashraf and Rehman ([3]),
proved the following: let R be a prime ring and I a non-zero ideal of R.
Suppose that δ is a non-zero derivation on R. If one of the following holds:
(i) δ(xy) + xy ∈ Z(R); (ii) δ(xy) − xy ∈ Z(R) for all x, y ∈ I, then R must
be commutative. Further, Ashraf et al. ([2]) extended their work, replacing
the derivation δ with a generalized derivation F in a prime ring R. More
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precisely, they proved the following: Let R be a prime ring and I a non-zero
ideal of R. Suppose F is a generalized derivation associated with a nonzero
derivation δ on R. If one of the following holds: (i) F (xy) ± xy ∈ Z(R);
(ii) F (xy)± yx ∈ Z(R); (iii) F (x)F (y)± xy ∈ Z(R) for all x, y ∈ I, then R
is commutative. Recently, Albas ([1]) studied the above mentioned identities
in prime rings with central values.

Recently, Dhara and Ali ([7]) studied the following identities related to
multiplicative (generalized)-derivations on semiprime rings: (i) F (xy) ±xy =
0, (ii) F (xy) ± yx = 0, (iii) F (x)F (y) ± xy ∈ Z(R), (iv) F (x)F (y) ± yx ∈
Z(R) for all x, y in some suitable subset of a semiprime ring R.

In the present paper, we generalize the concept of a multiplicative (gen-
eralized)-derivation to a multiplicative (generalized)-(α, β)-derivation. A map-
ping G : R → R (not necessarily additive) is called a multiplicative (general-
ized)-(α, β)-derivation of R, if G(xy) = G(x)α(y) + β(x)g(y) for all x, y ∈ R,
where g : R → R is any map (not necessarily additive) and α, β : R → R are
automorphisms of R. One can find an example of a multiplicative generalized
derivation, which is neither a derivation nor a generalized derivation.

Example 1.1. Let

R =


 0 a b

0 0 c
0 0 0

 | a, b, c ∈ Z

 .

Let us define G, g, α, β : R→ R by

G

 0 a b
0 0 c
0 0 0

 =

 0 0 bc
0 0 0
0 0 0

 , g

 0 a b
0 0 c
0 0 0

 =

 0 0 a2

0 0 0
0 0 0

 ,

α

 0 a b
0 0 c
0 0 0

 =

 0 a −b
0 0 c
0 0 0

 , β

 0 a b
0 0 c
0 0 0

 =

 0 a 0
0 0 c
0 0 0

 .

Then it is straightforward to verify that G is not an additive map in R.
Hence,G is a multiplicative (generalized)-(α, β)-derivation associated with the
mapping g on R, but G is neither a generalized derivation nor a multiplicative
(generalized)-derivation of R.

In the present paper, our aim is to investigate some identities with mul-
tiplicative (generalized)-(α;β)-derivations on some suitable subsets in prime
rings.



A note on multiplicative (generalized) (α, β)-derivations in prime rings 269

2. Main Results

We begin our discussion with the following lemma.

Lemma 2.1. Let R be a prime ring and I be a nonzero left ideal of R.
Let α, β be automorphisms of R. If [x, y]α,β = 0 for all x, y ∈ I, then R is
commutative.

Proof. We have

(2.1) [x, y]α,β = 0

for all x, y ∈ I. Replacing x by rx in (2.1), r ∈ R, we get

r[x, y]α,β + [r, β(y)]x = 0

for all x, y ∈ I and r ∈ R. Application of (2.1) yields that [r, β(y)]x = 0 for
all x, y ∈ I and r ∈ R, that is, [r, β(y)]RI = (0) for all y ∈ I and r ∈ R. Thus,
primeness of R forces that [r, β(y)] = 0 for all y ∈ I and r ∈ R. Now, replace
r by β(t), t ∈ R, in the above expression, we find that β([r, y]) = 0, since β is
automorphism, i.e., that [r, y] = 0. Again replacing y by sy for s ∈ R in the
last expression, we get [r, s]y = 0 that is, [r, s]RI = (0). Hence, primeness of
R gives that [r, s] = 0 for all r, s ∈ R, so that R is commutative. �

Theorem 2.1. Let R be a prime ring and I be a nonzero left ideal of
R. Suppose that G is a multiplicative (generalized)-(α, β)-derivation on R as-
sociated with the map g on R. If G(xy) + α(xy) = 0 for all x, y ∈ I, then
G(x) = −α(x) for all x ∈ I and β(I)g(I) = (0).

Proof. We have

(2.2) G(xy) + α(xy) = 0

for all x, y ∈ I. Replacing y by yz in (2.2), we get

(2.3) G(xy)α(z) + β(xy)g(z) + α(xy)α(z) = 0

for all x, y, z ∈ I. Using (2.2) in (2.3), we have

(2.4) β(x)β(y)g(z) = 0

for all x, y, z ∈ I. Replacing y by ry in (2.4), r ∈ R, we get β(x)β(r)β(y)g(z) =
0. Now replacing r by β−1(g(z)r) we find that β(x)g(z)Rβ(y)g(z) = (0) for all
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x, y, z ∈ I. Thus, by primeness of R, we get β(I)g(I) = (0). Thus, equation
(2.2) implies that G(x)α(y) + α(xy) = {G(x) + α(x)}α(y) = 0. Replacing
y by ry in the last expression and using primeness of R, we conclude that
G(x) = −α(x). Thereby the proof is completed. �

Theorem 2.2. Let R be a prime ring and I be a nonzero left ideal of R.
Suppose that G is a multiplicative (generalized)-(α, β)-derivation on R asso-
ciated with the map g on R. If G(xy) + α(yx) = 0 for all x, y ∈ I, then R is
commutative, β(I)g(I) = (0) and G(x) = −α(x) for all x ∈ I.

Proof. We have the identity

(2.5) G(xy) + α(yx) = 0

for all x, y ∈ I. Replacing x by x2 and y by xy, respectively, in (2.5) and
then subtracting one from another, we obtain α(yx2) = α(xyx) or [x, y]x = 0.
Replacing y by ry in the last expression, we have [x, r]yx = 0, where r ∈ R.
Since I is nonzero, so by primeness of R, we have [x, r] = 0. Substituting x
by sx in the last expression, we obtain [s, r]x = 0, where r, s ∈ R. Primeness
of R forces that R is commutative. Therefore G(xy) + α(yx) = 0 becomes
G(xy) +α(xy) = 0. Thus, in view of Theorem 2.1, we have G(x) = −α(x) for
all x ∈ I and β(I)g(I) = (0). This completes the proof. �

Theorem 2.3. Let R be a prime ring and I be a nonzero left ideal of R.
Suppose that G is a multiplicative (generalized)-(α, β)-derivation on R asso-
ciated with the map g on R. If G(xy) + G(x)G(y) = 0 for all x, y ∈ I, then
either α(I)[G(x), α(x)] = (0) or β(I)[G(x), β(x)] = (0) for all x ∈ I.

Proof. We have the identity

(2.6) G(xy) +G(x)G(y) = 0

for all x, y ∈ I. Replacing y by yz in (2.6), we obtain

(2.7) G(xy)α(z) + β(xy)g(z) +G(x)G(y)α(z) +G(x)β(y)g(z) = 0

for all x, y, z ∈ I. Using (2.6) in (2.7), we get

(2.8) β(xy)g(z) +G(x)β(y)g(z) = 0

for all x, y, z ∈ I. Replacing x by xw in (2.8), we have

(2.9) β(xwy)g(z) +G(x)α(w)β(y)g(z) + β(x)g(w)β(y)g(z) = 0
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for all x, y, z, w ∈ I. Again substituting y by wy in (2.8), we obtain

(2.10) β(xwy)g(z) +G(x)β(w)β(y)g(z) = 0

for all x, y, z, w ∈ I. Subtracting (2.9) from (2.10), we

(2.11) {G(x)α(w) + β(x)g(w)−G(x)β(w)}β(y)g(z) = 0

for all x, y, z, w ∈ I. Replacing y by ry in (2.11), where r ∈ R, by primeness
of R, we have G(x)α(w)+β(x)g(w)−G(x)β(w) = G(xw)−G(x)β(w) = 0 or
β(y)g(z) = 0. From (2.6), we have

(2.12) G(xyz) = −G(xy)G(z) = −G(x)G(yz)

for all x, y, z ∈ I. Using G(xy) − G(x)β(y) = 0, equation (2.12) can be
written as G(x){β(y)G(z) − G(y)β(z)} = 0. Replacing x by xrw in the
last expression, where w ∈ I, r ∈ R and using primeness of R, we con-
clude that β(w)[G(z), β(z)] = 0. Now, the other case β(x)g(y) = 0 gives
G(xy) = G(x)α(y) for all x, y ∈ I, then proceeding in the same way as we
have done earlier for G(xy) = G(x)β(y), we obtain α(x)[G(y), α(y)] = 0.
Hence, we get the required result. �

Theorem 2.4. Let R be a prime ring and I be a nonzero left ideal of R.
Suppose that G and H are multiplicative (generalized)-(α, β)-derivations on R
associated with the maps g and h on R, respectively. If G(xy) = α(y) ◦H(x)
for all x, y ∈ I, then either R is commutative or α(I)[α(I), H(I)] = (0).

Proof. We have the identity

(2.13) G(xy) = α(y) ◦H(x)

for all x, y ∈ I. Replacing y by yz in (2.13), we obtain

(2.14) G(xy)α(z) + β(xy)g(z) = (α(y) ◦H(x))α(z) + α(y)[α(z), H(x)]

for all x, y, z ∈ I. Using (2.13) in (2.14), we get

(2.15) β(xy)g(z) = α(y)[α(z), H(x)]

for all x, y, z ∈ I. Replacing y by wy in (2.15), we have

(2.16) β(xwy)g(z) = α(wy)[α(z), H(x)]
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for all x, y, z, w ∈ I. Left multiply by α(w) to (2.15) and subtract it from
(2.16), we obtain

(2.17) {β(x)β(w)− α(w)β(x)}β(y)g(z) = 0

for all x, y, z, w ∈ I. Replacing y by ry in (2.17), where r ∈ R and using
primeness of R, we get either β(y)g(z) = 0 or β(x)β(w) − α(w)β(x) = 0.
If β(x)g(y) = 0 holds for all x, y ∈ I, then from (2.15), we have
α(I)[α(I), H(I)] = (0). For the other case

(2.18) β(x)β(y)− α(y)β(x) = 0

for all x, y ∈ I. Replacing y by ry in (2.18), where r ∈ R, we get

(2.19) β(x)β(ry)− α(ry)β(x) = 0.

Left multiply by α(r) to (2.18) and subtract it from (2.19), we have {β(x)β(r)−
α(r)β(x)}β(y) = 0. Since I is nonzero, so primeness of R forces to write
β(x)β(r)−α(r)β(x) = 0. We can rewrite the last expression as [β(x), r]β,α = 0
for all x ∈ I, r ∈ R. Application of Lemma 2.1 yields that R is commutative.
Thereby the proof is completed. �

Theorem 2.5. Let R be a prime ring and I be a nonzero left ideal of R.
Suppose that G and H are multiplicative (generalized)-(α, β)-derivations on R
associated with the maps g and h on R, respectively. If G(xy) = [α(y), H(x)]
for all x, y ∈ I, then either R is commutative or α(I)[α(I), G(I)] = (0).

Proof. We have the identity

(2.20) G(xy) = [α(y), H(x)]

for all x, y ∈ I. Replacing y by yz in (2.20), we obtain

(2.21) G(xy)α(z) + β(xy)g(z) = [α(y), H(x)]α(z) + α(y)[α(z), H(x)]

for all x, y, z ∈ I. Using (2.20) in (2.21), we get

(2.22) β(xy)g(z) = α(y)[α(z), H(x)]

for all x, y, z ∈ I. Note that the equation (2.22) is same as the equation (2.15)
in Theorem 2.4; then proceeding in the same way as in Theorem 2.4, we get
the required result. �
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3. Examples

In this section we construct some examples to show that the primeness
condition of the ring in our results are essential.

Example 3.1. Let

R =

{(
a b
0 c

)
| a, b, c ∈ Z

}
and I =

{(
0 b
0 c

)
| b, c ∈ Z

}
.

Let us define G, g, α, β : R→ R by

G

(
a b
0 c

)
=

(
0 −b
0 −c

)
, g

(
a b
0 c

)
=

(
0 −b
0 0

)
,

α

(
a b
0 c

)
=

(
a −b
0 c

)
, β

(
a b
0 c

)
=

(
a −b
0 c

)
.

It is easy to verify that I is a left ideal on R,G is a multiplicative (generalized)-
(α, β)-derivation associated with the map g, α and β are automorphisms on
R and G(xy) +G(x)G(y) = 0 for all x, y ∈ I. Since(

0 1
0 0

)
R

(
0 2
0 0

)
=

{(
0 0
0 0

)}
,

R is not a prime ring. We see that α(I)[G(x), α(x)] 6= (0) and
β(I)[G(x), β(x)] 6= 0 for all x ∈ I. Hence, the primeness hypothesis in Theo-
rem 2.3 is crucial.

Example 3.2. Let

R =

{(
a b
0 c

)
| a, b, c ∈ Z

}
and I =

{(
a b
0 0

)
| a, b ∈ Z

}
.

Let us define G, g, α, β,H, h : R→ R by

G

(
a b
0 c

)
=

(
0 b
0 −c

)
, g

(
a b
0 c

)
=

(
0 b
0 0

)
,

α

(
a b
0 c

)
=

(
a −b
0 c

)
, β

(
a b
0 c

)
=

(
a −b
0 c

)
,

H

(
a b
0 c

)
=

(
a 0
0 0

)
, h

(
a b
0 c

)
=

(
0 b
0 0

)
.
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It is easy to verify that I is a left ideal on R, G and H are multiplicative
(generalized)-(α, β)-derivations associated with the maps g and h, respec-
tively, α, β are automorphisms on R and G(xy) = [α(y), H(x)] fro all x, y ∈ I.
Since (

0 1
0 0

)
R

(
0 2
0 0

)
=

{(
0 0
0 0

)}
,

R is not a prime ring. We see thatR is not commutative and α(I)[α(I), G(I)] 6=
0. Hence, the primeness hypothesis in Theorem 2.5 is crucial.

Example 3.3. Let

R =

{(
a b
0 c

)
| a, b, c ∈ Z

}
and I =

{(
0 b
0 c

)
| b, c ∈ Z

}
.

Let us define G, g, α, β,H, h : R→ R by

G

(
a b
0 c

)
=

(
a −b
0 0

)
, g

(
a b
0 c

)
=

(
0 −2b
0 0

)
,

α

(
a b
0 c

)
=

(
a b
0 c

)
, β

(
a b
0 c

)
=

(
a −b
0 c

)
,

H

(
a b
0 c

)
=

(
0 −b
0 0

)
, h

(
a b
0 c

)
=

(
0 −b
0 0

)
.

It is easy to verify that I is a left ideal on R, G and H are multiplicative
(generalized)-(α, β)-derivations associated with the maps g and h, respec-
tively, α, β are automorphisms on R and G(xy) = α(y)◦H(x) for all x, y ∈ I.
Since (

0 1
0 0

)
R

(
0 2
0 0

)
=

{(
0 0
0 0

)}
,

R is not a prime ring. We see thatR is not commutative and α(I)[α(I), H(I)] 6=
{0}. Hence, the primeness hypothesis in Theorem 2.4 is crucial.
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