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ISOMORPHISM THEOREMS FOR COALGEBRAS

Jean-Paul Mavoungou

Abstract. Let F be an endofunctor of a category C. We prove isomorphism
theorems for F -coalgebras under condition that the underlying category C is
exact; that is, regular with exact sequences. Also, F is not assumed to preserve
pullbacks.

1. Introduction

The isomorphism theorems are three well known results in universal alge-
bra. They belong to the folklore now. The situation in the coalgebra theory in
contrast, is quite different. Given a Set-endofunctor which preserves (weak)
pullbacks, the three isomorphism theorems for coalgebras hold due to Rut-
ten [6]. An important observation is that the category Set has exact sequences;
this means that every equivalence relation in Set is the kernel pair of its co-
equalizer. Further, for the category Set the first isomorphism theorem holds;
that is, every image is isomorphic to a kernel pair factor. The reason is that
Set has (regular epi)-mono factorizations. Consequently, the first isomorphism
theorem for coalgebras holds for given any Set-endofunctor (see [3]). But this
result depends on the axiom of choice. For instance, the axiom of choice is
needed to show that every mono splits in the category Set.

In an arbitrary category, the presence of the axiom of choice is not al-
ways guaranteed. This note does not consider that hypothesis. In addition,
the preservation of (weak) pullbacks is a very restrictive condition. Assuming
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such property, we get that every congruence relation is a bisimulation equiva-
lence. In general though, a congruence relation needs not to be a bisimulation
(see [1]).

The aim of this paper is to prove isomorphism theorems for coalgebras of
an endofunctor, given an appropriate assumptions on the underlying category.
Especially that the underlying category is exact, which means regular with
exact sequences.

Let F be an endofunctor of an arbitrary category C. We prove the three
isomorphism theorems for F -coalgebras, provided that the category C is ex-
act. For the first and second isomorphism theorems we need the additional
condition that F preserves monos. However, we need that F preserves pull-
backs along monos for the third isomorphism theorem. As might be expected,
congruences in this case are not the same as bisimulation equivalences. This
is a weaker hypothesis than requiring F to preserve (weak) pullbacks.

2. Some basics

We recall the categorical concepts that will be most commonly used.

2.1. Pullbacks and their preservation

The pullback of morphisms f : A → C and g : B → C also called the
pullback of g along f , is a commutative diagram

P
p1 //

p2 ��

A
f��

B g
// C

with the following property: if u : D → A and v : D → B are morphisms with
f◦u = g◦v, then there is exactly one morphism w : D → P with u = p1◦w and
v = p2 ◦w. If the uniqueness requirement for w is dropped, we call (P, p1, p2)
a weak pullback. Further, if f and g are monos, the pullback of f and g is
called the intersection of f and g. The kernel pair of f denoted by ker(f), is
the pullback of f and itself.

A functor F is said to preserve (weak) pullbacks, if it transforms ev-
ery (weak) pullback into a (weak) pullback; i.e., for every (weak) pullback
(P, p1, p2) of f and g we get (FP, Fp1, Fp2) is the (weak) pullback of Ff and
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Fg. However, if at least one of f and g is a mono, we say that F preserves pull-
backs along monos. Every functor F which preserves pullbacks along monos,
also preserves monos (see [5]).

2.2. Relations

In a category with binary products, a binary relation from A to B is
a subobject of A × B. This is represented by a mono m : R � A × B or
equivalently, by a pair of arrows

A

R

r1 88

r2 &&
B

with the property that the induced arrow 〈r1, r2〉 : R → A × B is a mono. A
relation from A to A is called a relation on A.

Binary relations are ordered (as subobjects of A×A) and can be composed.
The relational composition is defined by applying pullbacks as follows: for a
given binary relation R (represented by r1 : R → A and r2 : R → B) in a
finitely complete category with (regular epi)-mono factorizations, form the
pullback of r1 and r2

R×A R
t1 //

t2 ��

R
r1 //

r2��

A

R r1
//

r2 ��

A

A

Factorize 〈r1 ◦ t1, r2 ◦ t2〉 : R ×A R → A × A as a regular epi followed by a
mono, then the latter represents the composite R◦R. R is said to be transitive
if R ◦ R is smaller than R. The relation R is called reflexive if the diagonal
map 〈1A, 1A〉 : A → A × A factors through it and symmetric if there is an
arrow τ : R → R such that r1 ◦ τ = r2 and r2 ◦ τ = r1. We say that R is an
equivalence relation if it is reflexive, symmetric and transitive.
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2.3. Exact sequences

In a finitely complete category C with coequalizers, the diagram

R
r1 //
r2
// A

e // B

is called an exact sequence if R is the kernel pair of e and e is the coequalizer
of the parallel pair (r1, r2). We say that the category C has exact sequences
if every equivalence relation R in C is the kernel pair of its coequalizer. The
categories Set of sets and mappings, Ab of abelian groups and their homomor-
phisms, and Top of topological spaces and continuous mappings, have exact
sequences.

A category C will be called regular if every finite diagram has a limit,
if every parallel pair of morphisms has a coequalizer and if regular epis are
stable under pullbacks. In a regular category, every morphism can be written
as f = m ◦ e where m is a mono and e a regular epi (see [2]). Thereafter,
regular epis in a regular category are closed under composition. A regular
category with exact sequences is called exact. Any topos is an exact category
(see [4]).

3. Coalgebras

In the following, unless otherwise stated,
• C is a category;
• F denotes an endofunctor of C.

An F -coalgebra or a coalgebra of type F is a pair (A, a) consisting of an
object A in C together with a C-morphism a : A → FA. A is called the car-
rier or the underlying object and a the coalgebra structure of (A, a). Given
F -coalgebras (A, a) and (B, b), the arrow f : A → B in C is called an F -
homomorphism, if it makes the following diagram commute:

A
a //

f ��

FA
Ff��

B
b
// FB

This definition turns the class of coalgebras of type F and their homomor-
phisms into a category denoted CF .
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A subcoalgebra of an F -coalgebra (A, a) is an object S in C together with
a coalgebra structure s : S → FS so that (S, s) is a subobject of (A, a).

In the special case where the endofunctor F preserves monos, a subcoal-
gebra of (A, a) is a subobject S of A equipped with a coalgebra structure
s : S → FS making the canonical arrow S � A an F -homomorphism.

By a bisimulation between F -coalgebras (A, a) and (B, b) we mean a binary
relation R from A to B equipped with a coalgebra structure r : R→ FR turn-
ing both projections r1 : A→ FA and r2 : R→ FB into F -homomorphisms:

A oo
r1

a

��

R
r2 //

r

��

B

b
��

FA oo
Fr1

FR
Fr2
//FB

A bisimulation on (A, a) is a bisimulation between (A, a) and (A, a). Any
bisimulation on (A, a) which is an equivalence relation is called a bisimulation
equivalence.

Let (A, a) and (B, b) be F -coalgebras. A binary relation K from A to B
is a precongruence if for every cospan (A

i→ Z
j← B),

A i
  

A
a //FA Fi

$$
if K

==

!!
Z commutes then so does K

==

!!
FZ

B j

>>

B
b
//FB Fj

::

A congruence relation is a precongruence which is an equivalence relation.
Every bisimulation equivalence is a congruence relation (see [7]). But the

converse holds provided that F preserves weak pullbacks and C has exact
sequences.

4. Isomorphism theorems

Here, we prove the isomorphism theorems for coalgebras with any type of
functor given. The underlying category needs not satisfy the axiom of choice.

Definition 4.1. The image of a morphism f : A → C is a mono
m : im(f) � C through which f factors: there exists a morphism e : A →
im(f) such that f = m ◦ e, and which is minimal in the sense that, for any
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object B with a morphism e′ : A→ B and a mono m′ : B � C such that f =
m′ ◦ e′, there exists a unique morphism u : im(f)→ B such that m = m′ ◦ u.

Proposition 4.2 (First isomorphism theorem). Suppose that the cate-
gory C is exact and the endofunctor F preserves monos. Then for every
F -homomorphism f : (A, a) → (B, b), there is an isomorphism A/ker(f) ∼=
im(f).

Proof. By hypothesis, the category C is regular, and therefore it has
(regular epi)-mono factorizations. Then every F -homomorphism f : (A, a)→
(B, b) can be decomposed in C as follows:

A
f //

e ##

B

im(f)
m

;;

with e a regular epi and m a mono. Also, f and e have the same kernel
pair. Since the category C has exact sequences, ker(f) is the kernel pair of
the coequalizer πker(f) : A → A/ker(f) of its projections. Hence im(f) is
isomorphic to A/ker(f). But, im(f) is equipped with a coalgebra structure
turning e and m into F -homomorphisms; this is because the endofunctor F
preserves monos. Consequently, the isomorphism A/ker(f) ∼= im(f) holds in
the category CF . �

Corollary 4.3. Under assumptions of Proposition 4.2, for any F -homo-
morphism f : (A, a)→ (B, b), ker(f) is a congruence relation on (A, a).

Proof. Let f : (A, a)→ (B, b) be an F -homomorphism. Then A/ker(f) is
equipped with a coalgebra structure turning πker(f) into an F -homomorphism.

Also, ker(f) is a precongruence. Indeed, given a cospan (A
i→ Z

j← A) such
that the following diagram commutes; u1 and u2 being the structural mor-
phisms of ker(f)

A
i
��

ker(f)

u1
::

u2 $$

Z

A
j

@@

By the universal property of coequalizers, there is a unique arrow
k : A/ker(f) → Z such that k ◦ πker(f) = i and k ◦ πker(f) = j. Thus,
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F (i) ◦ a ◦ u1 = F (j) ◦ a ◦ u2; this to say that the following diagram com-
mutes

A
a //FA

Fi
##

ker(f)

u1
::

u2 $$
FZ

A a
//FA Fj

;;

As in addition ker(f) is an equivalence relation, it is a congruence relation on
(A, a). �

Write A/K to denote the codomain of the coequalizer πK of projections
of an equivalence relation K on A.

Proposition 4.4 (Second isomorphism theorem). Assume the category C
is exact and the endofunctor F preserves monos. Let R and S be bisimulation
equivalences on (A, a) such that R is smaller than S. There is a canonical
arrow φ : A/R→ A/S such that φ ◦ πR = πS. Denote by S/R the kernel pair
of φ: it is an equivalence relation on A/R and induces an isomorphism

φ′ : (A/R)/(S/R)→ A/S

such that φ = φ′ ◦ πS/R.

Proof. The existence of the isomorphism φ′ arises from Proposition 4.2.
�

Lemma 4.5. Suppose that the category C is regular. Let (A, a) be an F -
coalgebra, (B, b) a subcoalgebra of (A, a) represented by the arrow m : B → A
and R a bisimulation equivalence on (A, a) with projections r1 and r2. Form
the pullback of r2 and m

R×A B u //

v
��

B
m
��

R r2
//A

The image BR of the composite morphism R×AB
v→ R

r1→ A is a subcoalgebra
of (A, a), provided that the endofunctor F preserves pullbacks along monos.
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Proof. The endofunctor F preserves monos since it preserves pullbacks
along monos. Hence m is a mono. For the same reason, R ×A B is equipped
with a coalgebra structure turning v into an F -homomorphism. So, the image
BR of the composite morphism R ×A B

v→ R
r1→ A is a subcoalgebra of

(A, a). �

Corollary 4.6. The assumptions as in Lemma 4.5 are used. So, B ×B
is a subobject of A×A. The intersection Q of R and B×B is a bisimulation
equivalence on (B, b) provided that the category C is exact.

Proof. Denote by a1 and a2 the structural morphisms of the product of A
and A. From universality of the product, there is a unique arrow m̄ : B×B →
A × A such that a1 ◦ m̄ = m ◦ b1 and a2 ◦ m̄ = m ◦ b2; b1 and b2 being the
structural morphisms of the product of B and B. Since m is a mono due to F
preserving pullbacks along monos, m̄ is a mono. Hence B ×B is a subobject
of A×A. Let the mono w : R� A×A represent R. The intersection Q of R
and B ×B is by definition the pullback

Q
t //

s
��

R
w
��

B ×B
m̄
//A×A

of m̄ and w. We claim that Q together with arrows qi = bi ◦ s : Q → B,
i = 1, 2; is a bisimulation equivalence on (B, b). First of all, Q is a binary
relation on B since monos are stable under pullbacks. According to the fact
that the endofunctor F preserves pullbacks along monos, Q is a bisimulation
on (B, b). Consider the diagonal map 〈1A, 1A〉 : A → A × A. By the fact
that R is a reflexive relation on A, there is an arrow hA : A → R such that
w◦hA = 〈1A, 1A〉. Given the diagonal map 〈1B, 1B〉 : B → B×B, we have that
ai◦w◦hA◦m = ai◦〈1A, 1A〉◦m = 1A◦m = m◦1B = m◦bi◦〈1B, 1B〉 = ai◦m̄◦
〈1B, 1B〉; i = 1, 2. The equality w ◦ (hA ◦m) = m̄ ◦ 〈1B, 1B〉 holds as the pair
(a1, a2) is a mono source. From universality of the pullback, there is a unique
factorization hB : B → Q such that t◦hB = hA ◦m and s◦hB = 〈1B, 1B〉. So,
the diagonal map 〈1B, 1B〉 factors through s, whence Q is reflexive. Since R is
a symmetric relation on A, there is a an arrow τ : R→ R such that r1 ◦τ = r2

and r2 ◦ τ = r1. Let σ : B×B → A×A be the arrow such that b1 ◦σ = b2 and
b2 ◦ σ = b1. Then a1 ◦w ◦ τ ◦ t = r1 ◦ τ ◦ t = r2 ◦ t = a2 ◦w ◦ t = a2 ◦ m̄ ◦ s =
m◦ b2 ◦s = m◦ b1 ◦σ ◦s = a1 ◦ m̄◦σ ◦s. Similarly, a2 ◦w ◦ τ ◦ t = a2 ◦ m̄◦σ ◦s.
Hence w ◦ τ ◦ t = m̄ ◦ σ ◦ s because the pair (a1, a2) is a mono source. As
a result, there is a unique arrow ρ : Q → Q such that t ◦ ρ = τ ◦ t and
s ◦ ρ = σ ◦ s. It follows that q1 ◦ ρ = b1 ◦ s ◦ ρ = b1 ◦ σ ◦ s = b2 ◦ s = q2 and
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q2 ◦ ρ = b2 ◦ s ◦ ρ = b2 ◦ σ ◦ s = b1 ◦ s = q1. This proves that Q is a symmetric
relation on B. Form the pullback of q1 and q2

Q×B Q
z1 //

z2
��

Q
q1 //

q2
��

B

Q q1
//

q2 ��

B

B

Then a1 ◦ w ◦ t ◦ z2 = a1 ◦ m̄ ◦ s ◦ z2 = m ◦ b1 ◦ s ◦ z2 = m ◦ q1 ◦ z2 =
m ◦ q2 ◦ z1 = m ◦ b2 ◦ s ◦ z1 = a2 ◦ m̄ ◦ s ◦ z1 = a2 ◦ w ◦ t ◦ z1. Let πR
be the coequalizer of r1 and r2. The equality πR ◦ r1 = πR ◦ r2 implies that
πR◦a1◦w◦t◦z1 = πR◦a2◦w◦t◦z1 = πR◦a1◦w◦t◦z2 = πR◦a2◦w◦t◦z2. Besides,
R is the kernel pair of πR, since the category C has exact sequences. There is
therefore a unique arrow ϕ : Q×B Q→ R such that a1 ◦w ◦ϕ = a1 ◦w ◦ t ◦ z1

and a2 ◦w ◦ϕ = a2 ◦w ◦ t ◦ z2. Let ψ : Q×B Q→ B ×B be the unique arrow
such that b1 ◦ψ = q1 ◦ z1 and b2 ◦ψ = q2 ◦ z2. Then a1 ◦ m̄ ◦ψ = m ◦ b1 ◦ψ =
m ◦ q1 ◦ z1 = m ◦ b1 ◦ s ◦ z1 = a1 ◦ m̄ ◦ s ◦ z1 = a1 ◦w ◦ t ◦ z1 = a1 ◦w ◦ϕ. One
proves in the same way that a2 ◦ m̄ ◦ψ = a2 ◦w ◦ϕ. Thus, m̄ ◦ψ = w ◦ϕ due
to the fact that the pair (a1, a2) is a mono source. By the universal property
of pullbacks, there is a unique arrow j : Q×B Q→ Q such that s ◦ j = ψ and
t ◦ j = ϕ. Consider the following commutative diagram

Q×B Q //

j
��

Q ◦Q

γ
ww ��

Q s
//B ×B

There is a unique arrow γ : Q◦Q→ Q making both triangles commute. Hence
Q◦Q is a subobject of Q; that is, Q is a transitive relation on A. Consequently,
Q is an equivalence relation on A. �

There is a one-to-one correspondence between subcoalgebras of a regular
quotient of (A, a) and regular quotients of subcoalgebras of (A, a), as the third
isomorphism theorem states.

Proposition 4.7 (Third isomorphism theorem). Suppose that the cate-
gory C is exact and the endofunctor F preserves pullbacks along monos. Let
(A, a) be an F -coalgebra, (B, b) a subcoalgebra of (A, a) represented by a mono
m : B � A and R a bisimulation equivalence on (A, a) with projections r1

and r2. Denote by U the intersection R ∩ (BR ×BR). The following holds:

B/Q ∼= BR/U

Q comes from 4.6.
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Proof. Since the category C is exact, it has exact sequences. Then R is
the kernel pair of πR. Consider the composite morphism ε : B

m→ A
πR→ AR.

From universality of the pullback, there is a unique arrow g : ker(ε)→ R such
that r1 ◦g = a1 ◦w◦g = m◦p1 and r2 ◦g = a2 ◦w◦g = m◦p2; p1 and p2 being
the structural morphisms of ker(ε). Let p : ker(ε) → B × B be the unique
arrow such that b1 ◦ p = p1 and b2 ◦ p = p2. Then a1 ◦ m̄ ◦ p = m ◦ b1 ◦ p =
m ◦ p1 = a1 ◦w ◦ g and a2 ◦ m̄ ◦ p = m ◦ b2 ◦ p = m ◦ p2 = a2 ◦w ◦ g. It follows
that m̄ ◦ p = w ◦ g as the pair (a1, a2) is a mono source. Consequently, there
is a unique arrow ψ : ker(ε) → Q such that t ◦ ψ = g and s ◦ ψ = p. Also,
ε ◦ q1 = ε ◦ q2 as πR ◦ a1 ◦w ◦ t = πR ◦ a2 ◦w ◦ t because πR ◦ r1 = πR ◦ r2. For
this reason, there is a unique arrow ϕ : Q→ ker(ε) such that p1 ◦ ϕ = q1 and
p2 ◦ϕ = q2. It is straightforward to check that ϕ ◦ψ = 1ker(ε) and ψ ◦ϕ = 1Q;
this shows that ker(ε) and Q are isomorphic.

We claim that im(ε) is isomorphic toBR/U . Indeed, let ε′ be the composite
morphism πR◦i, where i : BR � A is the subobject witness. Denote by s1 and
s2 the structural morphisms of the product of BR and itself. There is a unique
arrow h : ker(ε′)→ BR ×BR such that s1 ◦ h = t1 and s2 ◦ h = t2; t1 and t2
being the structural morphisms of ker(ε′). In addition, there is a unique arrow
i×i : BR×BR → A×A such that a1◦(i×i) = i◦s1 and a2◦(i×i) = i◦s2. Hence,
we have πR ◦(i◦ t1) = (πR ◦ i)◦ t1 = ε′ ◦ t1 = ε′ ◦ t2 = (πR ◦ i)◦ t2 = πR ◦(i◦ t2).
By the universal property of pullbacks, there is a unique arrow k : ker(ε′)→ R
such that a1 ◦ w ◦ k = i ◦ t1 = i ◦ (s1 ◦ h) = (i ◦ s1) ◦ h = (a1 ◦ (i × i)) ◦ h =
a1◦((i×i)◦h) and a2◦w◦k = i◦t2 = i◦(s2◦h) = (i◦s2)◦h = (a2◦(i×i))◦h =
a2 ◦ ((i× i)◦h). That is, w ◦k = (i× i)◦h as the pair (a1, a2) is a mono source

ker(ε′)

k

��

h

))
τ

��
U

σ

__

c //

d

��

BR ×BR

i×i
��

R w
// A×A

There is therefore a unique arrow σ : ker(ε′) → U such that c ◦ σ = h and
d ◦ σ = k; c and d being the structural morphisms of U . However, we have
also ε′ ◦ (s1 ◦ c) = (πR ◦ i) ◦ (s1 ◦ c) = πR ◦ (i ◦ s1) ◦ c = πR ◦ (a1 ◦ (i× i)) ◦ c =
(πR ◦ a1) ◦ ((i× i) ◦ c) = (πR ◦ a1) ◦ (w ◦ d) = πR ◦ (a1 ◦w) ◦ d = (πR ◦ r1) ◦ d =
(πR ◦ r2) ◦ d = πR ◦ (a2 ◦w) ◦ d = (πR ◦ a2) ◦ (w ◦ d) = (πR ◦ a2) ◦ ((i× i) ◦ c) =
πR ◦ (a2 ◦ (i× i))◦ c = πR ◦ (i◦s2)◦ c = (πR ◦ i)◦ (s2 ◦ c) = ε′ ◦ (s2 ◦ c). So there
is a unique arrow τ : U → ker(ε′) such that t1 ◦ τ = s ◦ c and t2 ◦ τ = s2 ◦ c or
equivalently, s1◦(h◦τ) = s1◦c and s2◦(h◦τ) = s2◦c; i.e., h◦τ = c because the
pair (s1, s2) is a mono source. This implies that c◦(σ◦τ) = (c◦σ)◦τ = h◦τ = c.
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But, c is a mono and monos are stable under pullbacks. Thus, σ ◦ τ = 1U .
Also, t1 ◦ (τ ◦ σ) = (t1 ◦ τ) ◦ σ = (s1 ◦ c) ◦ σ = s1 ◦ (c ◦ σ) = s1 ◦ h = t1 and
t2 ◦ (τ ◦ σ) = (t2 ◦ τ) ◦ σ = (s2 ◦ c) ◦ σ = s2 ◦ (c ◦ σ) = s2 ◦ h = t2. Then
τ ◦σ = 1ker(ε′) as the pair (t1, t2) is a mono source. Consequently, ker(ε′) and
U are isomorphic.

Besides, regular epis in the category C are stable under composition as it is
exact. Let e : R×AB → BR denote the regular epi such that r1◦v = i◦e. Then
im(ε′) is isomorphic to im(ε”), where ε” = πR ◦ r2 ◦ v; this follows from the
fact that ε” = πR◦r2◦v = πR◦r1◦v = πR◦i◦e = ε′◦e. Also, r2 is a retraction
because R is a reflexive relation. Thereafter, u is a retraction and retractions
are stable under pullbacks. Since ε” = πR◦r2◦v = πR◦r1◦v = πR◦m◦u = ε◦u,
one deduces that im(ε”) is isomorphic to im(ε). Under Proposition 4.2, the
isomorphism B/Q ∼= BR/U holds. �
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