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n-TH ROOT SELECTIONS IN FIELDS

Paweł Gładki

Dedicated to Prof. Andrzej Sładek on the occasion of his retirement

Abstract. In this work we generalize the results of [9] to the higher level case:
we define n-th root selections in fields of characteristic 6= 2, that is subgroups
of the multiplicative group of a field whose existence is equivalent to the ex-
istence of a partial inverse of the x 7→ xn function, provide necessary and
sufficient conditions for such a subgroup to exist, study their existence under
field extensions, and give some structural results describing the behaviour of
maximal n-th root selection fields.

1. Introduction

During the last talk before his (formal) retirement at the Algebra and
Number Theory Seminar of the Institute of Mathematics of the University of
Silesia, a dear friend and a colleague of mine, Prof. Andrzej Sładek, presented
results of Waterhouse [9], who defined root selections in fields and investigated
some of their properties. Roughly speaking, root selections are partial inverses
of the square function, whose existence is equivalent to the existence of certain
subgroups of the multiplicative group of a field, which, in turn, can be viewed
as somewhat weaker versions of positive cones of orderings in fields. Following
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Waterhouse, Prof. Sładek encouraged us to generalize these results to the
higher level case, and in this paper we do the assigned homework.

In Section 2 we formally define n-th root selections in a field F as partial
inverses of the x 7→ xn function and show that their existence is equivalent
to the existence of a multiplicative subgroup R of F ∗ = F \ {0} such that for
every element a ∈ F ∗ there exists a unique element r ∈ R and a unique n-th
root of unity ω such that a = ωr. In other words, we study subgroups R of
F ∗ such that

F ∗ = R · µn(F ) and R ∩ µn(F ) = {1},

where µn(F ) denotes the group of n-th roots of unity of F . As every finite
subgroup of F ∗ is a group of roots of unity, this is a more general case of
a special situation concerned with studying subgroups R of F ∗ with a finite
factor group F ∗/R which admit a complement, that is a subgroup S of F ∗
such that

F ∗ = R · S and R ∩ S = {1}.

In Section 3 we study extensions of n-th root selections, and prove that
a n-th root selection R of a field F can be extended to a n-th root selection
of a field extension E ⊃ F regardless of the parity of the degree of this field
extension. This naturally leads to the notion of a maximal n-th root selection,
which is somewhat analogous to the one of a real closure of a field. Maximal
selections are further studied in Section 3, where some of their basic properties
are investigated, and equivalent conditions for a root selection to be maximal
are given. The case of n = 2p is especially interesting.

2. Existence of n-th root selections

Throughout the paper assume F is a field and denote, for any subset
A ⊂ F , by A∗ the set A \ {0}. Also, denote by µn(F ) the group of n-th roots
of unity of F .

Intuitively, we want to define n-th root selections as homomorphisms that
assign to n-th powers of a field F some elements of the multiplicative group
of F . The existence of these homomorphisms is equivalent to the existence of
certain subgroups of F ∗, as shown in the following lemma:

Lemma 2.1. A multiplicative homomorphism φ from the group F ∗n of n-
th powers of F to F ∗ such that φ(cn) = ωc, for some ω ∈ µn(F ), exists if
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and only if there exists a multiplicative subgroup R of F ∗ such that for every
element a ∈ F ∗ there exist a unique element r ∈ R and a unique element
ω ∈ µn(F ) such that a = ωr.

Proof. (⇒) Assume that there exists φ as desired. Let R = Imφ. Then,
automatically, R is a subgroup of F ∗. Fix a ∈ F ∗. Say µn(F ) = {ω1, . . . , ωn}.
Then, clearly, for some k ∈ {1, . . . , n}, R 3 φ(an) = ωka, and hence F ∗ =
ω1R ∪ ω2R ∪ . . . ∪ ωnR. Suppose that, for some r1, r2 ∈ R and some k1, k2 ∈
{1, . . . , n}, ωk1r1 = ωk2r2. Say ωl = ωk1/ωk2 . Then ωl ∈ R, say ωl = φ(cn),
for some c ∈ F ∗. On the other hand φ(cn) = ωkc, for some k ∈ {1, . . . , n}, so
that c = ωl/ωk ∈ µn(F ) and cn = 1. Since φ is a homomorphism, φ(1) = 1.
In particular, ωl = 1, so that ωk1 = ωk2 , which leads to also r1 = r2.

(⇐) Assume that there exists R as desired. Then, for a fixed cn ∈ F ∗n,
there exist a unique element r ∈ R and a unique ω ∈ µn(F ) such that ωc = r.
The assignment φ(cn) := r declares a well-defined function that satisfies the
desired condition and it remains to check that it is a homomorphism: this
is, indeed, the case, for if cn1 , cn2 ∈ F ∗n and ω1, ω2 ∈ µn(F ), r1, r2 ∈ R are
the unique integers and elements of R such that ω1c1 = r1 and ω2c2 = r2,
then ω1ω2c1c2 = r1r2, which, by the uniqueness, yields φ(cn1 cn2 ) = r1r2 =
φ(cn1 )φ(c

n
2 ). �

We are now in a position to formally define n-th root selections:

Definition 2.2. A multiplicative subgroup R of F ∗ such that for every
element a ∈ F ∗ there exist a unique element r ∈ R and a unique ω ∈ µn(F )
such that a = ωr shall be called a n-th root selection for F . Moreover, if
|µn(F )| = n, then such a subgroupR shall be called an exact n-th root selection
for F .

Remark 2.3.
1. A multiplicative subgroup R of F ∗ is a n-th root selection for F if and only

if

F ∗ = R · µn(F ) and R ∩ µn(F ) = {1};

indeed, by definition, that R is a n-th root selection is just equivalent to
F ∗ being the direct product of R and µn(F ).

2. If |µn(F )| = k, then n-th root selections are at the same time k-th root
selections; this is clear, as then µn(F ) = µk(F ): order of every element ω
of µn(F ) is divisible by k, so that ω ∈ µk(F ), and since ωn = 1, also k | n,
so that every k-th root of unity is necessarily a n-th root of unity.
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Example 2.4. Consider the field R. Here µ2(R) = {1,−1}, and the group
R = R+ = {a ∈ R | a > 0} is a 2-nd root selection for R, as R∗ = R · µ2(R)
and R ∩ µ2(R) = {1}. At the same time it is also a 4-th root selection for R,
which is, however, not exact, as |µ4(R)| = 2.

On the other hand, for the field of Gaussian rationalsQ(i), where i =
√
−1,

one has µ4(Q(i)) = {1,−1, i,−i}, which coincides with the group of units of
the ring of Gaussian integers. As this ring is a unique factorization domain,
it follows that Q(i)∗ = R · µ4(Q(i)) and R ∩ µ4(Q(i)) = {1}, where R is the
subgroup of Q(i)∗ generated by the element (1 + i) and Gaussian primes of
the form a + bi with a odd and positive, and b even. R is thus a 4-th root
selection, which is exact.

The first issue to consider is the existence of n-th root selections. First
of all, we shall note that we can restrict our considerations to the case when
n is a power of a prime number, which reflects the usual handling of taking
n-th roots for composite n’s – we will, however, continue to provide arguments
without this additional assumption, at least when it will not lead to too much
extra work:

Proposition 2.5. Let n = r · s with gcd(r, s) = 1. A n-th root selection
for F (containing a subset T ⊂ F ∗) exists if and only if both r-th and s-th
root selections exist for F (containing a subset T ⊂ F ∗).

Proof. Note that µn(F ) = µr(F ) · µs(F ).
(⇒) Assume there exists a multiplicative subgroup R of F ∗ (containing

a subset T ⊂ F ∗) such that F ∗ = R · µn(F ) and R ∩ µn(F ) = {1}. Then
F ∗ = R · µr(F ) · µs(F ) and we shall show that (R · µr(F )) ∩ µs(F ) = {1}.
But this is clear: if ω ∈ (R · µr(F )) ∩ µs(F ), say ω = a · ω′ with a ∈ R and
ω′ ∈ µr(F ), then ω, ω′ ∈ µn(F ) and hence ω

ω′ = a ∈ R∩µn(F ), so that ω
ω′ = 1

and µs(F ) 3 ω = ω′ ∈ µr(F ): as gcd(r, s) = 1, this yields ω = 1. Similarly,
(R · µs(F )) ∩ µr(F ) = {1}.

(⇐) Assume there exist groups R1 and R2 (containing a subset T ⊂ F ∗)
such that F ∗ = R1 · µs(F )=R2 · µr(F ) and R1 ∩ µs(F ) = R2 ∩ µr(F ) = {1}.
Thus, for every a ∈ F ∗ there are unique sa ∈ R1 and ω ∈ µs(F ) such that
a = saω, and for this choice of sa ∈ R1 there are unique ta ∈ R2 and ω′ ∈
µr(F ) such that sa = taω

′. That R = {ta | a ∈ F ∗} is a group (containing
T ⊂ F ∗) is apparent, so we have shown that F ∗ = R · µr(F ) · µs(F ) and
R · µr(F ) ∩ µs(F ) = {1}, which finishes the proof. �

In order to establish criteria for the existence of n-th root selections, we
shall start with a slightly more general result:
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Theorem 2.6. Let T ⊂ F ∗ be a set of nonzero elements of F . Then there
exists a n-th root selection for F containing T if and only if the subgroup
F ∗n[T ] < F ∗ generated by T and the group of all n-th powers intersects with
µn(F ) trivially.

Proof. (⇒) Assume that there exists a n-th root selection for F contain-
ing T , call it R. Observe that F ∗n ⊂ R: indeed, for a fixed cn ∈ F ∗n, there
exist r ∈ R and ω ∈ µn(F ) such that c = ωr, hence cn = ωnrn = rn ∈ R.
Therefore F ∗n[T ] ⊂ R. By Remark 2.3.1 F ∗n[T ] ∩ µn(F ) = {1}.

(⇐) Assume that µn(F ) ∩ F ∗n[T ] = {1}. Say n = 2kl with 2 - l. By
Proposition 2.5 it suffices to show that there exist both 2k-th root selec-
tion containing T and l-th root selection containing T . Firstly, observe that
µ2k(F )∩F ∗2

k

[T ] = {1} and µl(F )∩F ∗l[T ] = {1}: indeed, suppose that there
exists 1 6= ω ∈ µ2k(F ) with ω ∈ F ∗2

k

[T ], say ω = a2
k

t1 . . . tm, t1, . . . , tm ∈ T
– then ωl = a2

kltl1 . . . t
l
m ∈ F ∗n[T ] and (ωl)2

kl = 1l
2

, but ωl 6= 1, as the order
of ω is a power of 2 and 2 - l, which yields a contradiction. Similar argument
shows that µl(F ) ∩ F ∗l[T ] = {1}.

Let S = {S | S < F ∗, F ∗2
k

[T ] ⊂ S, µ2k(F ) ∩ S = {1}}. Union of any
chain C of elements of S is again an element of S, so, by Zorn’s Lemma, let
R be a maximal element of S. We shall show that R is the desired 2k-th root
selection.

Firstly, we claim that, for an element b ∈ F ∗, if b2 ∈ R, then either b ∈ R
or −b ∈ R. Indeed, assume that b /∈ R. Then R ∪ bR is easily seen to be a
group containing F ∗2

k

[T ] which, by maximality of R, intersects with µ2k(F )

at some ω 6= 1. Hence ω = br, for some r ∈ R, and if 2k
′
is the order of ω

in µ2k(F ), then −1 = ω2k
′−1

= b2
k′−1

r2
k′−1

: if k′ > 1 this leads to −1 ∈ R,
which yields a contradiction, and if k′ = 1 we get −1 = br, so that −b ∈ R.

By design µ2k(F )∩R = {1} and it suffices to show that F ∗ = µ2k(F ) ·R.
Suppose, a contrario, that there is an element a ∈ F ∗ such that, for all
ω ∈ µ2k(F ), aω /∈ R. Let ω0 be a generator of the cyclic group µ2k(F ) and
let ord(ω0) = 2k

′
, k′ ∈ {1, . . . , k}. By the above claim, as ω2k

′

0 = 1 ∈ R,
necessarily −ω2k

′−1

0 ∈ R. On the other hand (aω0)
2k ∈ R, so that either

(aω0)
2k−1 ∈ R or −(aω0)

2k−1 ∈ R. If the latter is the case, then

R 3 (−ω2k
′−1

0 )(−(aω0)
2k−1

) = ω2k−12k
′−k

0 (aω0)
2k−1

= (aω2k
′−k+1

0 )2
k−1

.

At any rate, (aω)2
k−1 ∈ R, for some ω ∈ µ2k(F ). Repeating the argument k

times we eventually arrive at aω ∈ R, for some ω ∈ µ2k(F ), which yields a
contradiction. This shows that F admits a 2k-th root selection containing T .

For the proof of existence of an l-th root selection containing T , let now
S = {S | S < F ∗, F ∗l[T ] ⊂ S, µl(F ) ∩ S = {1}}. As before, let R be a
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maximal element of S, and it suffices to show that F ∗ = µl(F ) · R. Suppose
that for some a ∈ F ∗, aω /∈ R, for all possible ω ∈ µl(F ). As al ∈ R, the set
R∪ aR∪ a2R∪ . . .∪ al−1R is easily seen to be a group which, by maximality
of R, intersects with µl(F ) at some ω 6= 1. Say l′ ∈ {2, . . . , l − 1} is the least
integer such that al

′
ω ∈ R, for some ω ∈ µl(F ) \ {1}.

We claim that l′ | l. Indeed, if l = ql′ + r, for some q, r ∈ Z, 0 < r < l′,
then

R 3 (aω)l = (aω)ql
′+r = (al

′
ωωl

′−1)q(aω)r = (al
′
ω)qarω(l′−1)q+r,

so that arω(l′−1)q+r ∈ R. By the minimality of l′, this yields ω(l′−1)q+r = 1.
Therefore ar ∈ R and, consequently, al

′−rω ∈ R with l′ − r ∈ {1, . . . , l′ − 1}.
But l′− r 6= 1 by our assumptions, hence l′− r ∈ {2, . . . , l′− 1} contradicting
the minimality of l′.

Thus let l = l′q for some q ∈ {2, . . . , l − 1}. But then

R 3 (aω)l = (aω)l
′q = (al

′
ωωl

′−1)q = (al
′
ω)qω(l′−1)q,

so that ω(l′−1)q ∈ R and thus ω(l′−1)q = 1. As (l′ − 1)q = l′q − q < l this
implies (l′ − 1)q | l and, in particular, l′ − 1 | l. Since, at the same time, l′ | l,
this forces l to be even. But 2 - l – a contradiction. �

A necessary and sufficient condition for a n-th root selection to exist now
easily follows:

Corollary 2.7. A multiplicative homomorphism φ from the group F ∗n
of n-th powers of F to F ∗ such that φ(cn) = ωkc, for some k ∈ {1, . . . , n},
exists if and only if F ∗n intersects with µn(F ) trivially.

Proof. In Theorem 2.6 take T to be empty. �

Corollary 2.8. F admits a n-th root selection if and only if µn(F ) =
µn2(F ).

Proof. By Corollary 2.7 it suffices to observe that µn(F ) = µn2(F ) if and
only if µn(F ) ∩ F ∗n = {1}. This is indeed the case: suppose 1 6= ω ∈ µn(F )
and ω = an, for some a ∈ F ∗ – then a ∈ µn2(F ) but a /∈ µn(F ); conversely,
say a ∈ µn2(F ) and a /∈ µn(F ) – then 1 6= an ∈ µn(F ). �

Remark 2.9.
1. Corollary 2.8 shows, in particular, that no algebraically closed field admits

a n-th root selection.
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2. Proposition 2.5 combined with Corollary 2.8 provide a convenient criterion
to determine whether, for a given integer n and a field F , there exists a
n-th root selection: let n = pk11 p

k2
2 · . . . · pkmm be the prime decomposition

of n with k1, k2, . . . , km ∈ N and p1, p2, . . . , pm pairwise disjoint primes.
Then a n-th root selection for F exists if and only if:

µ
p
ki
i

(F ) = µ
p
2ki
i

(F ), for all i ∈ {1, . . . ,m}.

This is equivalent to the condition that, for some l1, l2, . . . , lm ∈ N with
l1 6 k1, l2 6 k2, . . . , lm 6 km:

F contains a plii -th primitive root of unity

and does not contain a pli+1
i -th primitive root of unity, i ∈ {1, . . . ,m}.

Moreover, if l1 = k1, l2 = k2, . . . , lm = km, then the n-th root selection
under consideration is exact. This is, more or less, clear; indeed, for the
implication (⇒) fix i ∈ {1, . . . ,m} and assume µ

p
ki
i

(F ) = µ
p
2ki
i

(F ). Let ω

be the generator of µ
p
ki
i

(F ). Then ω 6= 1, so that ord(ω) = plii , for some

li ∈ {1, . . . , ki}, and ω is a primitive plii -th root of unity. If there existed
pli+1
i roots of unity of degree pli+1

i , then any such root would be also a
p2kii -th root, and, consequently, pkii -th, and hence a plii -th root, which is
impossible, as there are only plii of them. Conversely, for the implication(⇐)

assume that, for i ∈ {1, . . . ,m}, F contains a plii -th primitive root of
unity and does not contain a pli+1

i -st primitive root of unity, for some
li 6 ki. Thus µplii

(F ) = µ
p
li+1

i

(F ). Observe, that then F does not con-

tain a pli+2
i -nd primitive root of unity, for if such a root ω existed, then

ωpi , ω2pi , . . . , ωp
li+1

i pi would form pli+1
i roots of unity of degree pli+1

i which,
as ord(ω) = pli+2

i , would be pairwise disjoint, which is impossible. Thus
µ
p
li+1

i

(F ) = µ
p
li+2

i

(F ), and, consequently, µ
p
li+1

i

(F ) = µ
p
2ki
i

(F ), which im-
plies µ

p
ki
i

(F ) = µ
p
2ki
i

(F ), and

ωp
li
i = ωp

`s
i = ω(p`i)

s

= ω(p`i)(p
`
i)

s−1

= (ωp
`
i )(p

`
i)

s−1

= 1.

Example 2.10. Consider the finite field F41 with 41 elements. As is well-
known, F41 contains a n-th primitive root of unity if and only if n | 41− 1 =
23 · 5. Thus F41 contains primitive roots of degree 2, 22 and 23 but not 2k,
k ≥ 4, and of degree 5 but not 5l, l ≥ 2. Therefore, by Remark 2.9.2, F41

contains 20 = 22 ·5-th root selection (which is not exact) and 40 = 23 ·5-th root
selection (which is exact), but does not contain 10 = 2 · 5-th root selection.
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Corollary 2.11. Let a ∈ F ∗ and assume that µn(F )∩ F ∗n = {1}. Then
there exists a n-th root selection R such that a ∈ R if and only if ωak /∈ F ∗n,
for ω ∈ µn(F ) \ {1}, k ∈ {1, . . . , n− 1}.

Proof. In Theorem 2.6 take T = {a}. Then µn(F )∩F ∗n[a] = {1} if and
only if ω 6= cnak, for c ∈ F ∗ and ω ∈ µn(F ) \ {1}, k ∈ {1, . . . , n − 1}, or,
equivalently, ωak /∈ F ∗n, for ω ∈ µn(F ) \ {1}, k ∈ {1, . . . , n− 1}. �

Corollary 2.12. Let a ∈ F ∗ and assume that µn(F )∩ F ∗n = {1}. Then
a belongs to all n-th root selections in F if and only if a ∈ F ∗n.

Remark 2.13.
1. We recall that an ordering of level n of a field F is a subset P ⊂ F such

that P + P ⊂ P , P ∗ is a subgroup of F ∗, −1 /∈ P and F ∗/P ∗ is a cyclic
group with |F ∗/P ∗| | n. If |F ∗/P ∗| = n, we say that P has the exact level
n. Orderings of higher level were first introduced in the case when n = 2p,
p ∈ N (see the classical monographs [1] and [5]), and soon generalized to
the case of an arbitrary n (see [2]), where, at least when n is even, a version
of the Artin-Schreier theory can be built. In particular, orderings of level n,
with n even, exist in a field F if and only if F is formally real , that is when
−1 is not a sum of squares in F . Clearly, for a formally real field F and for
any n there exists a n-th root selection: if n is even, then µn(F ) = {1,−1}
and an ordering of level 1 is an example of a n-th root selection, whereas
if n is odd, then µn(F ) = {1} and F ∗ is trivially a n-th root selection.

2. Orderings of exact level 2 are simply called orderings and can be thought
of as subsets P ⊂ F such that P + P ⊂ P and P ∗ is a subgroup of F ∗ of
index 2. Now, subsets P ⊂ F such that P ∗ is a subgroup of index 2 of F ∗
which fail to be orderings, i.e. such that the additive condition P +P ⊂ P
is not satisfied, are called half-orderings. Half-orderings were investigated
in [4], and the concept was first introduced in [8] in a geometrical context;
orderings and half-orderings are the easiest to understand examples of H-
orderings associated to a subgroup H of the W -group of a field, which,
in turn, is the Galois-theoretic analogue of the Witt ring that allows to
extend methods and techniques from formally real fields to general fields
of characteristic not 2 (see [7] for details). Readily, for a half-ordered field
F and for any n there exists a n-th root selection: as we only deal with the
multiplicative structure of F as far as root selections and half-orderings are
concerned, the argument is, more or less, the same as for orderings – if n
is even and µn(F ) ∩ F ∗n 6= {1}, then −1 ∈ F ∗2; thus, if P is a conceivable
half-ordering, −1 ∈ P , as P contains all squares of F (for a2 ∈ F ∗2, if
a ∈ P ∗ this is clear, and if a /∈ P ∗, then P ∗ = (aP ∗)2 = a2P ∗, so that
a2 ∈ P ∗ as well), but then P = F (for a ∈ F ∗, as a2 ∈ P ∗ and |F ∗/P ∗| = 2,
either a ∈ P ∗ or −a ∈ P ∗, and in the latter case a = (−1) · (−a) ∈ P ∗), so
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that P ∗ can not be a subgroup of F ∗ of index 2; for odd n, again, one uses
Proposition 2.5.

3. In view of the above, it seems that what appears to be a common de-
nominator for the theory of n-th root selections, the theory of orderings of
level n and the theory of half-orderings is that they all lead to the study
of subgroups H∗ < F ∗ such that F ∗/H∗ is cyclic. These subgroups (or,
more generally, subgroups of finite index of the multiplicative group of a
field) exhibit some interesting arithmetical properties and were studied by
a number of authors (see, for example, [3]).

3. Extensions of 2p-th root selections

In this Section we turn our attention to extensions of root selections.

Definition 3.1. Let E ⊃ F be a field extension, let R be a n-th root
selection for F . We say that R can be extended to a n-th root selection for E,
if there exists a n-th root selection S for E such that S ⊃ R.

Alternatively, an extension of a n-th root selection R can be viewed as an
extension of the homomorphism F ∗n → F ∗ that defines R as in Lemma 2.1:

Lemma 3.2. Let E ⊃ F be a field extension. Let R be a n-th root selection
for F and let S be a n-th root selection for E with S ⊃ R. Let φ : F ∗n → F ∗

be the homomorphism defined by R such that, for c ∈ F ∗, φ(cn) = ωc, for
some ω ∈ µn(F ), and let ψ : E∗n → E∗ be the homomorphism defined by S
such that, for χ ∈ E∗, ψ(χn) = ωχ, for some ω ∈ µn(E). Then ψ �F∗n= φ.

Proof. If, for a c ∈ F ∗, φ(cn) = ωc ∈ Imφ = R ⊂ S, ω ∈ µn(F ) ⊂ µn(E),
and ψ(cn) = ω′c ∈ Imψ = S, ω′ ∈ µn(E), with ω 6= ω′, then 1 6= ω

ω′ ∈ S,
contrary to Remark 2.3. �

Remark 3.3. It might, in principle, happen that when E ⊃ F is a field
extension, then E has more n-th roots of 1 than F , so that if S is a n-th root
selection for E and R = S ∩ F is a n-th root selection for F , then [E∗ : S] >
[F ∗ : R]. In what follows this will cause us, on occasions while considering
root selections in field extensions, to make an additional assumption that
|µn(F )| = n. Note that since |µn(F )| = n, either char(F ) = 0 or char(F ) = p,
p - n, so, in particular, char(F ) 6= 2.

The existence of n-th root selections in field extensions is handled by the
following result:
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Theorem 3.4. Let E ⊃ F be a field extension, let R be a n-th root selection
for F with n even. Moreover, let |µn(F )| = n.
(1) If (E : F ) is odd with gcd(n, (E : F )) = 1, then R can be extended to a

n-th root selection for E.
(2) If s ∈ R and M = F (

√
s) with (M : F ) = 2, then R can be extended to a

n-th root selection for M .

Proof. Assume (E : F ) is odd. By Theorem 2.6 it suffices to show that
µn(E) ∩ E∗n[R] = {1}. Suppose that for some 1 6= ω ∈ µn(E), for e ∈ E∗

and for r ∈ R one indeed has ω = enr. Clearly e /∈ F ∗. Moreover, F (e) ⊃ F
is a Kummer extension with (F (e) : F ) = m, m | n. But as F ( F (e) ⊂ E,
m | (E : F ), contrary to the assumption that gcd(n, (E : F )) = 1.

Assume s ∈ R and M = F (
√
s). By Remark 3.3, char(F ) 6= 2. Since

|µn(F )| = n, µn(F ) = µn(M). Fix r ∈ R and suppose that, for some ω ∈
µn(M) = µn(F ) and for a, b ∈ F one has r = ω (a+ b

√
s)
n with ω 6= 1. In

particular (a+ b
√
s)
n ∈ F , so that b 6= 0. But

(
a+ b

√
s
)n

=

n/2∑
i=0

(
n

2i

)
an−2ib2isi

+

n/2−1∑
j=0

(
n

2j + 1

)
an−(2j+1)b2j+1sj

√s,
forcing

(∑n/2−1
j=0

(
n

2j+1

)
an−(2j+1)b2j+1si

)
= 0. Hence (a+ b

√
s)
n
= (a− b

√
s)
n,

so that a+b
√
s

a−b
√
s

= ω′ for some ω′ ∈ µn(M) = µn(F ). Thus (a+ b
√
s)

2
=

ω′(a2 − b2s) yielding a2 + b2s + 2ab
√
s ∈ F . This forces 2ab = 0, which, in

turn, as b 6= 0, yields a = 0. Therefore r = ωbnsn/2, so that ω ∈ R – a
contradiction. �

It is now natural to consider maximal n-th root selection fields, which
should serve as analogs of real closed fields of higher level of [1] and [5]:

Definition 3.5. F is called amaximal n-th root selection field if it contains
a n-th root selection that cannot be extended to any larger algebraic extension
of F .

The existence of maximal n-th root selection fields in characteristic 6= 2 is
now pretty obvious:

Theorem 3.6. Let F be a field with char(F ) 6= 2 and let n be even. Let R
be a n-th root selection for F . Then there exists a maximal n-th root selection
field E such that E ⊃ F and with n-th root selection extending R.
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Proof. Let S = {(E,S) | F alg ⊃ E ⊃ F, S isn -th root selection forE,
S ⊃ R}. S is partially ordered by

(E,S) ≺ (E′, S′)⇐⇒ (E ⊂ E′) ∧ (S ⊂ S′)

and union of any chain C in S is again an element of S, so by Zorn’s Lemma
S has a maximal element, which is the desired maximal n-th root selection
field. �

4. Structure of maximal 2p-th root selection fields

In this Section we shall investigate selected properties of maximal n-th
root selection fields. We restrict to the special case n = 2p with the additional
assumption that the fields under consideration contain primitive roots of unity
of degree n. We start with some easy consequences of the results of the previous
Section:

Theorem 4.1. Let F be a maximal n-th root selection field with n-th root
selection R, n even. Let |µn(F )| = n.

(1) R ⊂ F ∗2.
(2) If n = 2p, then R ⊂ F ∗n.
(3) F is perfect.
(4) Finite extensions of F are of degree 2m, for some m ∈ N.
(5) In finite and proper extensions of F n-th powers and n-th roots of 1 in-

tersect non-trivially.
(6) If n = 2p, p > 1, then the absolute Galois group of F is isomorphic to the

additive group of 2-adic integers.
(7) If n = 2p, p > 1, and if Fr denotes the unique extension of F of degree

2r,then Fr is a maximal 2p+r root selection field.

Proof. By Remark 3.3, we may assume char(F ) 6= 2.
(1) Suppose that there exists s ∈ R such that

√
s /∈ F . Then F (

√
s) ⊃ F is of

degree 2 and, by Theorem 3.4, R can be extended to a n-th root selection
of F (

√
s), contrary to the maximality of F.

(2) Fix r ∈ R. By 1. r = a2, for some a ∈ F ∗. We claim that either a ∈ R or
−a ∈ R: indeed, ωa ∈ R, for some ω ∈ µn(F ), and thus ω2a2 ∈ R leading
to ω2 ∈ R. Thus ω2 = 1 and hence ω = 1 or ω = −1.
Now, by 1., either a is a square or −a is a square, so that r is a 4-th power
equal to either (

√
a)

4 or
(√
−1
√
a
)4. Repeating the argument p times we

eventually show that r is a 2p-th power.
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(3) All fields of characteristic 0 are perfect. If charF = q > 2, suppose that
there exists a ∈ F such that q

√
a /∈ F . Then F (q

√
a) ⊃ F is of odd

degree and, by Theorem 3.4, R can be extended to a n-th root selection
of F (q

√
a) – a contradiction.

(4) Let E ⊃ F be a finite extension. Since F is perfect, every algebraic ex-
tension of F is separable. In particular, the normal closure of E ⊃ F , call
it L, is separable, and hence Galois. Let H be the Sylov 2-subgroup of
Gal(L/F ). If the fixed field of H was different from F , it would be an
extension of odd degree of F , hence it would admit a n-th root selection,
contrary to the maximality of F . Therefore H is the full Galois group,
and hence (L : F ) is a power of 2, and so is (E : F ).

(5) Let E ⊃ F be a proper finite extension. Let L be the normal closure of
E ⊃ F , which is hence Galois. As before, (L : F ) is a power of 2. Let P be
the subgroup of Gal(L/F ) that fixes E, and let M be a maximal proper
subgroup of Gal(L/F ) that contains P . Then the index ofM in Gal(E/F )
is equal to 2, and thus the fixed field of M is a quadratic extension of F
contained in E. This fixed field cannot admit a n-th root selection, as that
would contradict the maximality of F , and hence, by Theorem 2.7, n-th
powers and n-th roots of 1 intersect non-trivially.

(6) Since F is perfect, the separable closure of F is the same as the algebraic
closure F alg. If [F alg : F ] was finite, then F would be real closed, which
is impossible, since |µn(F )| = n with n ≥ 4, so that, in particular, −1
is a square in F . Hence [F alg : F ] is infinite. Let L be any nontrivial
finite Galois extension of F with Galois group G. By 5. in L n-th roots
of unity and n-th powers intersect non-trivially, but since n = 2p, p > 1,
this means that

√
−1 ∈ L. Thus all proper subgroups of G contain the

subgroup M fixing
√
−1. Therefore no automorphism τ in G outside of

M can fix a nontrivial extension, and hence it generates the whole Galois
group G. As before, G is cyclic whose order is a power of 2, so that we
have the same structure for all intermediate fields, unique for each power
of 2. Therefore Gal(F alg/F ) is the inverse limit of some Z/2mZ, that is
the additive group of 2-adic numbers.

(7) We proceed by induction. If r = 1, then F1 = F
(√
a
)
. By Corollary 2.7,

suppose that µ2p+1(F1) and F ∗2
p+1

1 intersect non-trivially at α 6= 1. Say
α = β2p+1

for some β ∈ F1, consider the norm map NF1/F : F1 → F ,
and denote by γ the conjugate of an element γ ∈ F1. As NF1/F (α)

2p+1

=

NF1/F (α
2p+1

) = NF1/F (1) = 1, either NF1/F (α)
2p = 1 or NF1/F (α)

2p =
−1. The latter case cannot occur, as −1 is a 2p-th root of unity and
µ2p(F ) ∩ F ∗2

p

= {1}. Hence NF1/F (α)
2p = 1. On the other hand,

NF1/F (α) = NF1/F (β
2p+1

) = NF1/F (β)
2p+1

= (NF1/F (β)
2)2

p

,
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leading to NF1/F (α) = 1. Therefore

(α
α

)2p
=

(
α2

αα

)2p

=
α2p+1

NF1/F (α)
= 1,

so that α
α is a 2p-th root of unity, and thus an element of F . Say α =

x+ y
√
a for some x, y ∈ F . Then

F 3 α
α

=
α2

αα
=

(x+ y
√
a)

2

NF1/F (α)
= (x2 + y2a) + 2xy

√
a,

leading to either x = 0 or y = 0. If y = 0, then 1 = NF1/F (α) =

NF1/F (x) = x2, so that either x = −1 or x = 1. The latter case can-
not occur, as α = x 6= 1. If α = x = −1, then, as 1 = NF1/F (α) =

(NF1/F (β)
2p)2, either NF1/F (β)

2p = 1 or NF1/F (β)
2p = −1, and the latter

case cannot occur as−1 is a 2p-th root of unity. ThereforeNF1/F (β)
2p = 1,

and thus (
β

β

)2p

=

(
β2

ββ

)2p

=
β2p+1

N(β)2p
=
α

1
= −1,

so that β2p = −β2p . Hence β2p = z
√
a for some z ∈ F . Then −1 = α =

β2p+1

= z2a, but as p > 1,
√
−1 ∈ F , so that a is a square, which yields

a contradiction. Hence x = 0, but this implies 1 = NF1/F (α) = −y2a, so
that, again, a is a square yielding a contradiction. We have thus shown
that F1 admits a 2p+1-st root selection R and it remains to prove that no
algebraic extension of F1 admits a 2p+1-st root selection extension of R.

By 3. and 4. it suffices to show that no quadratic extension E = F1 (
√
α)

of F1 admits a 2p+1-st root selection extension of R. Firstly, observe that
all 2p+1-st roots of unity are already in F1: take a nontrivial 2p-th root of
unity ω ∈ F1 which is also a 2p-th power in F1, say ω = γ2

p

. Then ω2 =

γ2
p+1

and (ω2)2
p+1

= (ω2p)4 = 1, so that ω2 = 1, as µ2p+1(F1)∩F ∗2
p+1

1 =
{1}. Hence either ω = −1 or ω = 1, the latter case being impossible due
to nontriviality of ω. But this means γ2

p

= −1 and γ2
p+1

= 1, that is γ is
a primitive 2p+1-st root of unity in F1.

Secondly, we claim that if α ∈ F1 is such an element that
√
α /∈ F1,

then the unique ω ∈ µ2p(F ) such that ωαα is in the maximal 2p-th root
selection of F is a primitive root of unity in F . Indeed, suppose that, for
some α ∈ F1 with

√
α /∈ F1, ωαα = b2

p

, for some b ∈ F ∗ and ω2p−1

= 1.
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Thus αα = NF1/F (α) is a square. Consider the square class exact sequence
([6], Theorem VII.3.8):

F ∗/F ∗2
r−→ F ∗1 /F

∗2
1

NF1/F−−−−→ F ∗/F ∗2,

where NF1/F is induced by the norm map and r : F ∗/F ∗2 → F ∗1 /F
∗2
1

is given by r(βF ∗2) = βF ∗21 . NF1/F (α) being a square means αF ∗21 ∈
KerNF1/F = Im r, so that αF ∗21 = cF ∗21 , for some c ∈ F ∗, or, equivalently,
α = cβ2, for some c ∈ F ∗ and β ∈ F1. In order to obtain a contradiction,
it suffices to show that c is, in fact, a square in F1: if

√
c /∈ F ∗ then, by

the already proven part of the theorem, the field F (
√
c) admits a 2p+1-st

root selection R′. In particular, ω′
√
c ∈ R′, for some ω′ ∈ µ2p+1 (F (

√
c)).

As F1 contains a primitive 2p+1-st root of unity, this really means ω′ ∈
µ2p+1(F1). On the other hand, let ω′′ ∈ µ2p(F ) be such that ω′′c = d2

p

,
for some d ∈ F ∗. Then (ω′′)2c2 = d2

p+1 ∈ R′ but, at the same time,
(ω′)4c2 = (ω′

√
c)

4 ∈ R′ as well, so by the uniqueness of the choice of
a 2p+1-st root of unity in such a representation, (ω′′)2 = (ω′)4, so that
ω′′ = ±(ω′)2: since

√
−1 ∈ F , in both cases this leads to ω′′ being a square

of an element of F1 and likewise c. This proves the claim.
To finish the proof suppose that E = F1 (

√
α) admits a 2p+1-st root

selection extension S of R, where α ∈ F1 and
√
α /∈ F1. Let ω1, ω2 ∈

µ2p+1(E) = µ2p+1(F1) be such that ω1
√
α ∈ S and ω2

√
α ∈ S. By the

above claim, ωαα = b2
p

, for some b ∈ F ∗ and ω ∈ µ2p(F ) with ω2p−1

=

−1. Thus ω2α2α2 = b2
p+1 ∈ R and ω4

1ω
4
2α

2α2 ∈ S ∩ F1 = R, so that
ω = ±ω2

1ω
2
2. As

√
−1 ∈ F , this yields a contradiction.

Now, the inductive step is really no different from the r = 1 case. �

Finally, we are able to give equivalent definitions of maximal n-th root
selection fields.

Theorem 4.2. Let F be a field and assume that F contains the n-th prim-
itive root of unity ωn, n even. Let F alg denote the algebraic closure of F . The
following conditions are equivalent:
(1) F is a maximal n-th root selection field;
(2) F is maximal among subfields E of F alg such that µn(E) ∩ E∗n = {1};
(3) F has a n-th root selection and no nontrivial finite extension of F does.

Proof. The sequence of implications 1.⇒ 2.⇒ 3.⇒ 1. follows from the
already proven results: 1.⇒ 2. is Theorem 4.1.5, in 2.⇒ 3. both the existence
of a n-th root selection in F and the non-existence of a n-th root selection in
E with F alg ⊃ E ) F follows from Corollary 2.7, and 3.⇒ 1. is basically just
the definition of a maximal root selection field. �
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