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REFINEMENTS OF SOME RECENT INEQUALITIES
FOR CERTAIN SPECIAL FUNCTIONS

MOHAMED AKKOUCHI, MOHAMED AMINE IGHACHANE

Abstract. The aim of this paper is to give some refinements to several in-
equalities, recently etablished, by P.K. Bhandari and S.K. Bissu in [Inequalities
via Holder’s inequality, Scholars Journal of Research in Mathematics and Com-
puter Science, 2 (2018), no. 2, 124-129] for the incomplete gamma function,
Polygamma functions, Exponential integral function, Abramowitz function,
Hurwitz-Lerch zeta function and for the normalizing constant of the gener-
alized inverse Gaussian distribution and the Remainder of the Binet’s first

formula for InT'(x).

1. Introduction

Throughout this section, p, ¢ are conjugate exponents, that is p,q > 1 and
+ % = 1. K is the real or complex field.
For any continuous functions u, v : [a, b] — K, we recall the integral version

of the Holder’s inequality:

1
P

b b % b %
(1.1) /\u(t)v(t)\dtg /|u(t)pdt /v(t)th |
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Modifying an inequality of C. Mortici ([§]), P.K. Bhandari and S.K. Bissu in
[3] replaced u(t) and v(t) in (L.1)) by

GNP PLFO]P and  [g(O)]" I [R()] [ f (1)1,

to obtain the following new inequality:

b x Yy v u
<m>/gMWWHWMﬁm
b

: (/abg(t)[h(t”w[f o) ([ o@mpisora)”,

a

in which z,y,v,u € R and g, f, h are nonnegative real integrable functions
such that the involved integrals in exist.

P.K. Bhandari and S.K. Bissu in [3] applied the inequality to establish
inequalities for some well-known special functions.

In this paper, we intend to give refinements for inequality and .
This is done in Section [2] In section [3} we apply the result obtained in Sec-
tion [2 to provide refinements to certain inequalities recently obtained by
P.K. Bhandari and S.K. Bissu in [3] for the incomplete gamma function,
Polygamma functions, Exponential integral function, Abramowitz function,
Hurwitz-Lerch zeta function and for the normalizing constant of the gener-
alized inverse Gaussian distribution and the Remainder of the Binet’s first
formula for InT'(x).

2. Some refinements to Holder’s inequality
M. Akkouchi and M.A. Ighachane in [2] proved the following refinements
to Holder’s inequality:

THEOREM 2.1 ([2]). Let f1 and f2 be real or complex measurable functions
on Q such that || f1||, # 0 and || f2]|q # 0. Then for all integers n > 2 we have:

1 1
<m>/ummmmmm(w+w)muwu
+Z()Muﬁm\mﬁ<

(n—k)q

o) ¥ fo(@)| 5 dp(x)
< 11l follas

where (Z) = (n%k'),k, is the usual binomial coefficient, for allk € {0,1,2,...n}.
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As an application of Theorem 2.1} we obtain the following refinements to

the inequality (|1.1)).

THEOREM 2.2. Let x,y,v,u € R and f,h be real and nonnegative inte-
grable functions on Q. For almost all t € Q, set fi(t) = [h()]*/P[f()]*/? and

f2(t) = [R@O)Yf(t)]“/9. Suppose that ||fi]|, # 0 and ||f2||l, # 0. Then we
have:

[ @ @ duto) < (pn n qn) 1211l

n—1
n 1 17@ 17(’”*’\')4
# 3 () g Al

(n

- /Q (P TFOF) T (ROPL 1) du(t)

< [ / [h(t)ﬂf(t)]”dt} p [ [ o]

Proor. We apply Theorem to the measurable functions
Fr(t) = [@®F/P[F(0)]*/P and fa(t) = [p()P/ 2] f(1)]"/9. O

As a consequence, we have the following corollary.

COROLLARY 2.1. Let z,y,v,u € R and let g, f,h be (real) nonnegative
and continuous functions on the interval [a,b]. For all t € [a,b], set fi(t) =
[ PLF(0)]°/P and fo(t) = [h(t)]Y/9[f($)]*/4, and suppose that ||f1]], # O
and ||f2||q # 0. Then we have:

’ sy u 11
/ g)[p@®)]»Ta[f(t)]rTadt < (pn+qn> 1 f1llpl] f2llq
— 1 _kp _(n=k)q
# 3 (1) gl

3=

b (n—k)
X/g(t)([h(tﬂ‘”[f(t)]“) (R@PLF®]) 7 dt

Q[

) Lo,
< [ / g(t)[h(t)]’”[f(t)]”dt} { / g(t)[h(t)]y[f(t)]“dt} .



4 Mohamed Akkouchi, Mohamed Amine Ighachane

3. The Results

In this section, we apply Theorem [2.2] to refine some inequalities estab-
lished by P.K. Bhandari and S.K. Bissu in [3] for several well-known special
functions.

3.1. Refinements of an inequality for the Polygamma function

We use I'(z) to designate the usual gamma function. The Psi function is
defined for all z > 0, by ¥(z) := - In(I'(z)). For every positive integer m, the
Polygamma function ¥("™) (see [9]) has the following integral representation:

tm

—xt _
m@ dt, m—1,2,3,...

W) = (- [

For the sequel, for every positive number 3, we use the following notation:

> tﬁ —axt
Wa(x) .—/0 ¢ dt, Vz >0.

In [3], the following result was established.

THEOREM 3.1 ([3]). Let p,q > 1 be real numbers satisfying 1/p + 1/q = 1.
If U™ denotes the Polygamma function, then for all real numbers x,y €
(0,00) and for all integers u,v > 1 such that v/p+u/q is an integer, we have:
1 1

(3.1) |\P<Z+’é> (; + Z) ' < o @) |9 )

We point out that the same arguments of proof in [3] show that the fol-
lowing result is true.

COROLLARY 3.1. Let p,q > 1 be real numbers satisfying 1/p + 1/q = 1.
Then for all real numbers z,y € (0,00) and for all positive numbers u,v, we
have:

Uogu (x + y> < \Ilv(x)%\l’u(y)%
p q p q
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By using Theorem [2.2] we obtain the following refinements of the inequal-

ity :

THEOREM 3.2. Let p,q > 1 be real numbers satisfying 1/p+ 1/q = 1. If
U™ denotes the Polygamma function, then for all real number x,y € (0, 00),
for all integers u,v > 1 such that v/p + u/q is an integer and all integers
n > 2, we have:

v u 1 1
e (e )< G e
p g p q

= 1 ke 1 (n k)
Z i . e “ kx + (n—k)y

1
q

< o @) e )

Proor. We apply Theorem by taking €2 := (0, +00) equipped with the
measure du(t) := g(t)dt, where g(t) = ==, and considering the measurable
functions f(¢) =t and h(t) = e~*. We have the following equalities:

+o00 v4u
pGH (2 V)| = Gt gy
poq o 1—e!

“+oo
- /0 g(O)[R@]F  [F(0)]7 4 dt,

o] = ([ ) = ([T aonoriora)

)| = ([ 1_’*dt) ( GO [f(t)]“dt)le

and

|=

k —k ‘oo x o2k
Uy, oo (—x—i—wy) :/ ﬁ(e—“‘t”) (e_tyt“) dt
w? n n 0 1—e~

(n—k)

(@) e

Ead

3l

= [ s (porvor)
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Therefore, by Theorem [2.2] we obtain

1 1
P q

ot (2 1)) < (L v DY eore) ueg)
b q pr Q"
n—1 1k 1_(n—k)
n 1 P m T k- (n—k)
(v) (u) i
1 1
< [p0 )| e )|
This ends the proof. O

As a consequence, we have the following result concerning the associated
functions ¥y (5 > 0).

THEOREM 3.3. Let p,q > 1 be real numbers satisfying 1/p+1/q = 1. Then
for all real numbers x,y € (0,00) and for all positive numbers u,v, we have:

x Yy 1 1 1 1
Viin (5 +2) < (o + ) Wu(@) P wu(y)?
n—1
n 1 1k 1 (n=k) kx + (n —k)y
P (D oy (i)

< W, (2)7 W, (y)s.

3.2. A refined inequality for the incomplete gamma function

We recall (see for example [6]) that the incomplete gamma function is
defined for u,z > 0 as

x
~(u, ) ::/ t“tet dt.
0
It is easy to observe that vy(u,z) is given by the following integral:

1
v(u,x) = x“/ te=tem " qt.
0

P.K. Bhandari and S.K. Bissu ([3]) proved the following result.
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THEOREM 3.4 ([3]). Let p,q > 1 be real numbers satisfying 1/p+1/q = 1.
If v denotes the incomplete gamma function, then for all real numbers x,y €
(0,00) and for all u,v > 0, we have:

R R ) ey O

By using Theorem we obtain the following refinements of the inequal-

ity :

THEOREM 3.5. Let p,q > 1 be real numbers satisfying 1/p + 1/q = 1.
If v denotes the incomplete gamma function, then for all real numbers x,y €
(0,00), for all u,v >0 and all integers n > 2, we have:

v ouzT Yy 1 1 (% %)% 1 !
'Y(i — =+ 7) < (7 + 7) T w [’Y(U x)] [V(U,y)]
poap ¢/ " ey
(a:_|_£>(%+%) n—1 n 1 %7% . (n;k)
+ 2 47 () ['yv,x} [’yuy}
Trya 2 \k) g+ (v, @) (u,y)
oy ko =k k_ (n—k)
(k (n—k) \kyq =k 7(U+ U’x‘Fy)
I CE e = O
(Z+ g)( +%) N s
DI o]

Proor. We apply Theorem by setting © := (0,1) and considering
the measure du(t) := g(t)dt with g(t) = } for all ¢ € (0,1) and choosing the
functions f(t) =t and h(t) = e~*. We have the following equalities:

v u z y
V<<;+Z)’(§+q)> _/1 oHEFE) EE
° ' ot

— / gV P05+ dt,

somorrora) = ([ temea)” - L],
0 0 T
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1

1 1/q
1 1/q
6“ﬂﬁ> = —[(u.y)]

)

(Alawvwwwvun%ﬁ);=:(é
and

(n—k)

:/ {e*”t”)" (e*ytt“) "odt
o t

1 k n—=k k n—k
= (k L - )(%vﬁ_@y)y ((nv—|— ( - )u), (ﬁx—}— ( - )y>> .
nt T Y

Therefore, by virtue of Theorem [2.2] and after some easy computations, we

Q=

obtain
() G2)) = Govge) e e o) o)

_I_

.

n 1 1
v, X
kz::l <k> pkgn—F [7( )}
piy Ko -k k_ (n—k)
’ (Ez + ““’“)y),’iv+m,ﬁu7<n“ to ot ny>]

u
q

1
Ty

which is the desired inequality.

3.3. Refinements to certain inequalities for the exponential
integral functions

We recall (see [I]) that the Exponential function E,, is given by the fol-
lowing integral representation:

+oo
E,(x) = / e "t"dt, n=0,1,2,...,2>0.
1
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For the sequel, we need to extend the definition above for all nonnegative real
numbers. So, we consider the functions Eg (8 € RT) defined by

“+o00
Es(x) = /1 et Pdt, VB e€[0,+00), Yz > 0.

We call them FEzponential integral type functions or more simply Exponential
integral functions.
P.K. Bhandari and S.K. Bissu [3] proved the following result.

THEOREM 3.6 ([3]). Let p,q > 1 be real numbers satisfying 1/p + 1/q =
1. If E,, denotes the Exponential integral function, then for all real number
x,y € (0,00) and for all integers u,v > 0 such that v/p + u/q is integer, we
have:

(3.3) Baex (24 D)] < [B(@)] v [Euy)] i

By using Theorem [2.2] we obtain the following refinements of the inequal-

ity (3.3):
THEOREM 3.7. Let p,q > 1 be real numbers satisfying 1/p+ 1/q = 1. If

Eg denotes the Exponential integral function, then for all real number x,y €
(0,00), for all nonnegative real numbers u,v and all integers n > 2, we have:

Ezr2) (% +2) < (54 ) [Bw)] % [Eu(yﬂ%

q Pt ogn

5 (rlae]

1 (n—k)
9 T n k n — k
[Eu(y)} E%,U_,’_(n;k)u(ﬁm"l_ ( )y)
< [Ev(x)} v [Eu(y)} .
Proor. We apply Theorem by setting © := [1, +00) and considering

the measure du(t) := g(t)dt, where g(t) = 1, for all ¢t € [1,+00) and taking
f(t) =ttt and h(t) = et for all t € [1,+00). We have:

X Yy oo —(E—i—g)t —(242) Foo z Y Lo
E%-ﬁ-% (5 + 5) = / e ‘\pTa/'tT\p T/ dt = / g(t)[h(t)]r) q [f(t)]p a dt,
1 1

@) = ([T ema) = ([ somorisera)”

=
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{EU(y)} - </100 o dt) - (/1+OO g@O[h®)Lf (t)]“dt)é

k —k e e
By oo, (o + %y) - / (7)) T
" 1

k (n—k)

(@) " e

|
»—\_.
I
8
i
=
S~—
~~

QOO

Then by Theorem 2.2] we have

s (242) 5 (b 1) el [l

p g p"oq
n—1 1k 1_(n—k)
n 1 T m i k (n—k)
3 <k) e B@] T BT T P (G )
1 1
< [B@]"[Ew)]"
which is the desired inequality. O

3.4. A refined inequality for the Hurwitz-Lerch zeta function

We recall (see [5]) that the integral representation of the Hurwitz-Lerch
zeta function ®(\, z,a) for all real numbers x > 0, a > 0 and |\| < 1 with
A # 1 is given by

1 400 =1 )
P = —dt.
(A z,a) () /0 T e=i® dt

When A\ =1 is turns into Hurwitz zeta function, ®(\, z,a) = {(z, a).
The following inequality was established in [3].

THEOREM 3.8 ([3]). Let p,q > 1 be real numbers satisfying 1/p + 1/q =
1. If ® denotes the Hurwitz-Lerch zeta function, then for all real numbers
x,y,u,v,a € (0,00) and |A| <1, X # 1, we have:

3a) o(A 2+ (2+2)0) < rg)r()

Q=

[CID()\, T, va)} » [Q)()\, Y, ua)}
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By using Theorem [2.2] we obtain the following refinements of the inequal-
ity (3.4):
THEOREM 3.9. Let p,q > 1 be real numbers satisfying 1/p+1/q = 1. If ®

denotes the Hurwitz-Lerch zeta function, then for all real numbers x,y, u,v,a €
(0,00), |A\| <1, A# 1, and all integers n > 2, we have:

‘I)()\,%-i- g, (% + S)a)

z y
q F(p + 4
[(2)T(y)7 (- <n> 1 L —
+ z (p )\,x,va (D )\,y,UCL
s 0 |2 () e (2w [0 )

[(Eg —Y) n— n—
A Do e I (R () )

r@)]" [rw)]

G+ )

S
Q=

[<I)()\, x, Ua)} » [<I>()\, v, ua)} %

PRrROOF. We apply Theorem by setting €2 := (0, 4+00) and considering
the measure du(t) := g(t)dt with g(t) = m for all ¢ € (0,00), and
choosing h(t) =t and f(t) = e~ %, for all t € (0, 0).

By some easy computations, we have the following successive equalities:

too  (E4+Y)
T Yy T Y [V U (A —(24u)q

G Y CYE A N A A

P q p 4 \p q o tl—Ae™t)

_ / TGO ) dr,

[F(x)} v [@(A,x,va)} e (/OOO t(l_ti\et)e”atdt> 1/p

1

</o+oo SO )
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[F(y)] e {<D(A, Y, ua)} Ha = </Ooo t(lty)\e_t)e_““tdt> 1/q

:([fmg@nmwww@wa;

(s 2o (n hew ot (b )

n

“+o00 1 k (n—k)
_ t* fatv> n (ty fatu) " dt
/0 t(1— Xe ) ( ¢ ¢
k

Then by virtue of Theorem [2.2] we have
(A 2+ 2 (242)a)
p g \p ¢

< (i + i) {F@)L [P(y)} [@(A,x,va)} v [@(A,y,ua)};

et e+ )
1_k 1_(n—k)
oy 1 [T@]7 [P
i ; (’f) prgn* [F(% + g)}
1_k 1_(n—k)

X [q)()\, x, va)] : [@()\, Y, ua)] ’

e oo b s 50 (b 20,

n n

_r@] " rw]”

< [I‘(% N %)] [@(A,x,va)} ! [@(A,y,ua)} ’,

which is the desired inequality. O
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3.5. Refinements of an inequality for the Abramowitz function

The Abramowitz function f,, (see [1]) is given for every nonnegative integer
and all nonnegative real number = > 0, by

+OO 2 -1
fn(x) :/ e Utte "t dt.
0

We point out that the Abramowitz function has been used in many fields
of physics, as the field of particle and radiation transform (see [4] for more
details).

For the sequel, we need to extend the definition above to all nonnegative
real numbers. So, we consider the functions fz (8 € RT) defined by

Foo 2 —1
fa(z) = / e UtPem  dt, VB € [0,400), Vo > 0.
0

We call them generalized Abramowitz functions, or more simply, Abramowitz
functions.
The following inequality was established in [3].

THEOREM 3.10 ([3]). Let p,q > 1 be real numbers satisfying 1/p+1/q = 1.
If f,. denotes the Abramowitz function, then for all real numbers x,y > 0 and
for all nonnegative integers u,v such that v/p + u/q is an integer, we have:

(3.5) fiex (5 +2) < [fo@)] )’

By using Theorem [2.2] we obtain the following refinements of the inequal-

ity (33):

THEOREM 3.11. Let p,q > 1 be real numbers satisfying 1/p+1/q = 1. If
fs denotes the Abramowitz function, then for all real numbers x,y > 0, for
all nonnegative integers u,v such that v/p+u/q is an integer and all integers
n > 2, we have:

< [1@] [rw)]"
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Proor. We apply Theorem by setting €2 := (0, 400) and considering
the measure du(t) := g(t)dt, where g(t) = e~'" for all ¢ in (0,+00) and
choosing the functions: f(t) = ¢ and h(t) = et for all t € (0,+00). After
some easy computations, we have the following equalities:

+oo B o
fﬂ—i-g (§ + g) = / €_t267(%+%)t 1t(g+;) dt
rTa\p q 0

::A+waww@ﬂiz[“Hth
([ eoerea) ol

([ swmoriora)
(/Om (Ol 0) )

Q|-

and
Travcon o+ H50)
- /+OO e (e_rt_lt”> ; (e—yt—ltu> (n—k) »
- [ (morter) (mopor)

Then by application of Theorem we obtain

f;g(i—%z)g(;; Aé)puxﬂ [£.)]

B (D] ] s G 55

S

Q=

< [1@] [nw)]".

which is the required inequality. O
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3.6. A refined inequality for the normalizing constant of
the generalized inverse Gaussian distribution

The generalized inverse Gaussian distribution function (see [7]) is defined
for allt > 0 as

1 -1, —tB—t !
g(t) = ———t% e HATN
©) I(a, B8,7)

where —oo < a < 400, 8> 0, v > 0.
The number I(«a;f3,7) is the normalizing constant, that is:

+o0 .
I(a; 8,7) = / et tB=7t gy,
0
The following inequality was established in [3].

THEOREM 3.12 ([3]). Let p,q > 1 be real numbers satisfying 1/p+ 1/q =
1. If I denotes the normalizing constant of the generalized inverse Gaussian
distrubition, then for all real numbers x,y,u,v € (0,00) and —oco < a < 400,
we have:

(3.6) I(a;%—f-g,f-l-y) < [I(a;v,x)}%[l(a,u,y)}%.

By using Theorem [2.2] we obtain the following refinements of the inequal-

ity :

THEOREM 3.13. Let p,q > 1 be real numbers satisfying 1/p+ 1/q = 1. If
I denotes the normalizing constant of the generalized inverse Gaussian dis-
trubition, then for all real number x,y,u,v € (0,00), —00 < a < 400 and all
integers n > 2, we have:

_,_Q) < <1+q )[I(a v m)};[ (a;uay):|

p?’L

v

(3.7) I(a; =

Q=

U
q

x
'p
n 1 1_k 1_(n=k)
+ ( > g F I(a v a:)}p n[[(a;u,y)}q !
=1

k -k k —k
xI(a;ngL(nn )u,ﬁx+(nT)y)

S
Q=

< [I(a;v,m)} {I(a (] y)}
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Proor. We apply Theorem by setting €2 := (0, 400) and considering
the measure du(t) := g(t)dt with g(t) = t*~1 for all ¢ in (0, o), and choosing
f(t)=e "t and h(t) = et for all t in (0, 00). We have:

9 dt

LTSS

+oo v u x yyp—1
0

/0 R OGIEAING)

a4 2200,
p qgp g

(/ o porrora) = ([Testerea) " asnn)] ™,
(/O+OO g(t)[h(t)]y[f(t)]“dt>q = (/Ooo to‘_le_“te_yt_ldt>1/q = [I(a;u, y)r/q
and
oo S\t —yt~! e
:/o - (67” e’ " ) (e e ) dt

- [ (porvor) (morswr) "

Therefore, by Theorem [2.2] we have
I(a;%+ g,%+ g) < (pl”+ qln> [I(oz;v,yc)};[I(oz;u,y)}é
iy s e
+ ; (k:) pkqln_k [I(a; v, x)} [I(a; u, y)}
< [I(a; v, x)} ' {I(a; u, y)} g

which is the desired inequality (3.7)).
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3.7. A refined inequality for the n-th derivative of the remainder
of the Binet’s first Formula for InT'(x)

The Binet’s first formula for InI'(x) is given by
InT(z) = (x — 1/2)log(z) — x + log(v2m) + 0(x)

for all number z > 0, where the function

oo 1 1 1ye *t
"@)'—/0 (-7 +a)

is known as the the remainder of the Binet’s first Formula for InT'(x) (see for
example the handbook [1]).
By making derivatives, we obtain for every positive integer m > 1:

+oo
60m) () = (—1)m/0 (g — 7+ 3 )" e ™t = (-1 (a),

where the function

oo 1 1 1
= )Pt
£s(@) /0 (et—l t +2> ¢

is defined for all number 8 > 1 and for all positive number x > 0.
The following result was established in [3].

THEOREM 3.14 ([3]). Let p,q > 1 be real numbers satisfying 1/p+1/q = 1.
If 0™ denotes the m-th derivative of the remainder of the Binet’s first formula
for the logarithm of the function, i.e. InT'(x), then for all real numbers x,y €
(0,00) and for all integers u,v > 1 such that m := v/p + u/q is an integer,
we have:

1 1
P q

0 (y)

(3.8) ‘9<Z+’$>(;§ + Zq’)‘ < o @)

Before giving our result, we need the following lemma.

LEMMA 3.1. For all t € (0,+00), we have 5 — 1 + 3 > 0.

et—1
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PRrROOF. For all t € (0,400), we have

tet —2e' +t+2  u(t)
2t(et — 1)  w(t)

1 1 1

-1 1 3
The function  is defined on [0, 400) and it is indefinitely differentiable therein.
We have u/(t) = te! —e'+1 and u”(t) = te! > 0, for all ¢ > 0. This shows that
u’ is increasing on [0, +00). Since u/(0) = 0, we infer that «/(¢) > u/(0) = 0 for
all ¢ > 0. Therefore, u is increasing on [0, +00). Then we get u(t) > 0 = u(0)
for all ¢ > 0. This ends the proof. ([

By using Theorem [2.:2] and the lemma above, we obtain the following re-
finements of the inequality (3.8):

THEOREM 3.15. Let p,q > 1 be real numbers satisfying 1/p+1/q = 1. If
6™ denotes the m—th derivative of the remainder of the Binet’s first formula
for the logarithm of the function, i.e. InI'(z), then for all real numbers z,y €
(0,00), for all integers u,v > 1 such that m := v/p + u/q is an integer and
all integers n > 2, we have:

1 1
(T, Y\ (1L 1’@) 7| g ()|
(3.9) ‘9 (p + q)’ < (pn + qn) 0@ (2)|” [0 (y)
n—1 1_k 1_ (n—k)
n 1 T iy k (n—k)
3 (v) (w) k
+ (k) prgn—F ’9 (z) 0 (y)‘ 6(%U+@u) (nx+ n y)

k=1

< o @) o )|

Proor. We apply Theorem by setting €2 := (0, 400) and considering
the measure du(t) := g(t)dt, where g(t) = 1 ( L1 —}—%), for all ¢ in (0, 4+00)

T i\e-1 ¢

and choosing f(t) =t and h(t) = e, for all ¢ € (0, +00). Note that

+oo
o+ (L 41| = / Mg — 1 )i G
p q 0 t et -1 t 2

+oo
- / g1 dt,
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I 1,1 11y o \Y?
0 @) :(/0 ;(m‘ﬂﬁ)e ““)

o] = /fi 7o %+%>e‘“~'t“dt)”"
(

(n—Fk)

(e*tyt“) "odt

3=

+o0
:/0 %(e%l_%%) (e=t?)
- [ s (moriror) (mor for) T

Therefore, by Theorem [2.2] we have

‘9<;+g><; N Z)' < (pl N qlnﬂg(v)(x)

n—1 1_k 1_(n—k)
n 1 T T E (n—k)
§ (v) P e bl

k=1

1
q

(y)

1
q

< |6 @) |p )

which is the desired inequality (3.9). O
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