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A UNIQUE COMMON FIXED POINT FOR AN INFINITY
OF SET-VALUED MAPS

Hakima Bouhadjera

Abstract. The main purpose of this paper is to establish some common fixed
point theorems for single and set-valued maps in complete metric spaces, un-
der contractive conditions by using minimal type commutativity and without
continuity. These theorems generalize, extend and improve the result due to
Elamrani and Mehdaoui ([2]) and others. Also, common fixed point theorems
in metric spaces under strict contractive conditions are given.

1. Introduction

The theory of common fixed point theorems of single and set-valued maps
is very rich. It provides some techniques for solving numerous problems in
mathematical science and engineering. As in the single-valued setting, many
authors have studied the existence of fixed and common fixed points for single
and set-valued maps for contractive and strictly contractive maps in metric
as well as in compact metric spaces.

Our work here establishes common fixed point theorems for single and set-
valued maps under contractive conditions. These theorems use minimal type
commutativity with no continuity requirements. Our theorems generalize some
results, especially the theorem due to Elamrani and Mehdaoui ([2]). Also we
give some results in metric spaces under strictly contractive conditions which
include neither continuity nor compactness.
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2. Preliminaries

Throughout this paper, (X , d) denotes a metric space and B(X ) is the
set of all nonempty bounded subsets of X . As in [9] and [5], we define the
functions δ(A,B) and D(A,B) as follows:

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B},

for all A,B in B(X ). If A consists of a single point a, we write δ(A,B) =
δ(a,B). Also, if B = {b}, it yields δ(A,B) = d(a, b).

The definition of the function δ(A,B) yields the following:

δ(A,B) = δ(B,A),

δ(A,B) ≤ δ(A,C) + δ(C,B),

δ(A,B) = 0 if and only if A = B = {a},

δ(A,A) = diamA,

for all A,B,C in B(X ).
A subset A of X is the limit of a sequence {An} of non-empty subsets of

X if each point a in A is the limit of a convergent sequence {an}, where an
is in An for n = 1, 2, . . ., and if for arbitrary ε > 0, there exists an integer N
such that An ⊆ Aε for n > N , where Aε is the union of all open spheres with
centers in A and radius ε (see [9]).

Lemma 2.1 ([9]). If {An} and {Bn} are sequences of bounded subsets
of (X , d) which converge to the bounded sets A and B respectively, then the
sequence {δ(An, Bn)} converges to δ(A,B).

Let F be a map of X into B(X ). F is continuous at the point x in X if
for any sequence {xn} in X converging to x, the sequence {Fxn} in B(X )
converges to Fx in B(X ) ([9]).

Definition 2.2 ([10]). Maps T : X → B(X ) and K : X → X are said to
be weakly commuting on X if for any x ∈ X :

δ(KT x, T Kx) ≤ max{δ(Kx, T x),diamKT x}.
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If T is a single-valued map, then diamKT x = 0 for all x ∈ X because
the set KT x contains a single point and the above inequality reduces to the
condition given by Sessa (see [8]) as follows:

d(KT x, T Kx) ≤ d(T x,Kx)

for all x ∈ X .
Clearly, two commuting maps T and K (T Kx = KT x, x ∈ X ) are weakly

commuting but the converse is not necessarily true.
In 1986, Jungck ([3]) introduced extension of weakly commuting maps for

single-valued maps by proposing the following definition.

Definition 2.3 ([3]). Two single-valued maps f and g of a metric space
(X , d) into itself are compatible if and only if

lim
n→∞

d(fgxn, gfxn) = 0

whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = t for some
t ∈ X .

It is well known that weakly commuting single-valued maps are compatible
but the converse need not be true, as is shown in [3].

In 1993, Jungck and Rhoades ([4]) extended the above definition to set-
valued maps, as follows:

Definition 2.4 ([4]). Maps T : X → B(X ) and K : X → X are δ-
compatible if

lim
n→∞

δ(T Kxn,KT xn) = 0

whenever {xn} is a sequence in X such that T xn → {t} and Kxn → t for
some t ∈ X and KT xn ∈ B(X ).

Motivated by the above definition, the same authors ([5]) gave this gener-
alization:

Definition 2.5 ([5]). Maps T : X → B(X ) and K : X → X are weakly
compatible if and only if T x = {Kx} implies that T Kx = KT x.

Before observing that δ-compatible maps are weakly compatible, we must
include the following definitions.
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Definition 2.6. Let T be a map of X into B(X ). We define

T (X ) = {T (x) : x ∈ X}.

Definition 2.7. Let T be a map of X into B(X ). We define

∪T (X ) = ∪
x∈X
T (x).

Now, it can be seen that two weakly commuting set-valued maps are δ-
compatible, but in general the converse is false.

Also, δ-compatible maps are weakly compatible but the converse is not
true. Examples supporting this can be found in [5]. To confirm this fact, let
us consider the following example.

Example 2.8. Let X = [0, 2] with the usual metric d. Define

Kx =

{
1 if x ∈ [0, 1),

2− x if x ∈ [1, 2],
T x =

{
[0, 1] if x ∈ [0, 1),

[1, x] if x ∈ [1, 2].

Obviously, K and T are weakly compatible maps, since they commute at
coincidence point x = 1. Consider the sequence {xn} in X such that xn =
1 + 1

n , n ∈ N∗. Then,

Kxn = 2− xn → 1 as xn → 1 and T xn = [1, xn]→ {1} as xn → 1.

On the other hand, we have KT xn ∈ B(X ) and

δ(T Kxn,KT xn) = δ([0, 1], [2− xn, 1])→ 1 6= 0,

this tells that K and T are not δ-compatible.

In [6], Khan has established fixed point theorems for self-maps of a com-
plete metric space by altering the distance between points by means of a
continuous and strictly increasing function Φ: [0,∞)→ [0,∞) such that

(2.1) Φ(t) = 0 if and only if t = 0.

Following this technique, Elamrani and Mehdaoui ([2]) established a the-
orem of a common fixed point for compatible and weakly compatible single
and set-valued maps in complete metric spaces.

The objective here is to generalize, improve and extend the result of [2] by
using minimal type commutativity and without assumption of continuity.
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3. Main results

Theorem 3.1. Let (X , d) be a complete metric space and J ,K be single-
valued maps from X into itself. Let S, T : X → B(X ) be set-valued maps such
that

∪T (X ) ⊆ J (X ) and ∪ S(X ) ⊆ K(X ).

Let Φ be an increasing and continuous function of [0,∞) into itself satisfying
property (2.1) and inequality

Φ(δ(T x,Sy)) ≤ a(d(Kx,J y))Φ(d(Kx,J y))(3.1)

+ b(d(Kx,J y)) [Φ(δ(Kx, T x)) + Φ(δ(J y,Sy))]

+ c(d(Kx,J y)) min {Φ(D(Kx,Sy)),Φ(D(J y, T x))}

for all x, y in X , where a, b, c : [0,∞)→ [0, 1) are continuous increasing func-
tions satisfying condition

(3.2) a(t) + 2b(t) + c(t) < 1, t > 0.

If the pairs of maps {T ,K} and {J ,S} are weakly compatible and either

T (X ) or S(X ) (resp. J (X ) or K(X )) is closed,

then J ,K,S and T have a unique common fixed point t in X , i.e.

St = T t = {J t} = {Kt} = {t}.

Proof. Let x0 ∈ X be given. Since ∪T (X ) ⊆ J (X ), then there exists a
point x1 ∈ X such that J x1 ∈ T x0 = Y1. For this point x1, since ∪S(X ) ⊆
K(X ), there is another point x2 ∈ X such that Kx2 ∈ Sx1 = Y2. Continuing
in this way, we can produce by induction a sequence in X such that

(3.3) J x2n+1 ∈ T x2n = Y2n+1,Kx2n+2 ∈ Sx2n+1 = Y2n+2 for all n ∈ N.

For simplicity, we set

δn = δ(Yn, Yn+1), n ∈ N.
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From inequality (3.1) it follows that

Φ(δ2n+1) = Φ(δ(Y2n+1, Y2n+2)) = Φ(δ(T x2n,Sx2n+1))

≤ a(d(Kx2n,J x2n+1))Φ(d(Kx2n,J x2n+1))

+ b(d(Kx2n,J x2n+1)) [Φ(δ(Kx2n, T x2n))

+Φ(δ(J x2n+1,Sx2n+1))]

+ c(d(Kx2n,J x2n+1)) min {Φ(D(Kx2n,Sx2n+1)),

Φ(D(J x2n+1, T x2n))}

for n ∈ N. Since J x2n+1 ∈ T x2n then

c(d(Kx2n,J x2n+1)) min {Φ(D(Kx2n,Sx2n+1)),Φ(D(J x2n+1, T x2n))} = 0,

which implies that

Φ(δ2n+1) ≤ a(δ2n)Φ(δ2n) + b(δ2n) [Φ(δ2n) + Φ(δ2n+1)] ,

so that, taking (3.2) into account,

(3.4) Φ(δ2n+1) ≤ a(δ2n) + b(δ2n)

1− b(δ2n)
Φ(δ2n) < Φ(δ2n).

Similarly, we have

(3.5) Φ(δ2n+2) ≤ a(δ2n+1) + b(δ2n+1)

1− b(δ2n+1)
Φ(δ2n+1) < Φ(δ2n+1).

Since Φ is increasing, {δn} is a decreasing sequence. Put δ = lim
n→∞

δn. Then
δ = 0. In fact, from (3.4) and (3.5),

(3.6) Φ(δ) ≤ Φ(δn) ≤ a(δn−1) + b(δn−1)

1− b(δn−1)
Φ(δn−1)

for all n, and letting n→∞ in (3.6) yields

Φ(δ) ≤ a(δ) + b(δ)

1− b(δ)
Φ(δ)

which, in view of (3.2), gives Φ(δ) = 0. Hence, by property (2.1), δ = 0.
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Let yn be an arbitrary point in Yn for n ∈ N. We claim that {yn} is a
Cauchy sequence. Since

lim
n→∞

d(yn, yn+1) ≤ lim
n→∞

δ(Yn, Yn+1) = 0,

it is sufficient to show that {y2n} is a Cauchy sequence. We proceed by con-
tradiction. Thus, assume there exists ε > 0 such that for each even integer
2k, k ∈ N, even integers 2m(k) and 2n(k) with 2k ≤ 2n(k) ≤ 2m(k) can be
found for which

(3.7) δ(Y2n(k), Y2m(k)) > ε.

For each integer k, fix 2n(k) and let 2m(k) be the least even integer exceeding
2n(k) and satisfying (3.7). Then

δ(Y2n(k), Y2m(k)−2) ≤ ε and δ(Y2n(k), Y2m(k)) > ε.

Hence, for each even integer 2k we have, by the triangle inequality,

ε < δ(Y2n(k), Y2m(k)) ≤ δ(Y2n(k), Y2m(k)−2) + δ2m(k)−2 + δ2m(k)−1.

Letting k tends to infinity, we obtain

(3.8) lim
k→∞

δ(Y2n(k), Y2m(k)) = ε.

Moreover, by the triangle inequality we also have

−δ2n(k) − δ2m(k) + δ(Y2n(k), Y2m(k)) ≤ δ(Y2n(k)+1, Y2m(k)+1)

≤ δ2n(k) + δ(Y2n(k), Y2m(k)) + δ2m(k),

and therefore

(3.9) δ(Y2n(k)+1, Y2m(k)+1)→ ε

when k →∞. The same argument shows that

δ(Y2n(k)+1, Y2m(k)+1)− δ2n(k) ≤ δ(Y2n(k), Y2m(k)+1)

≤ δ(Y2n(k), Y2m(k)) + δ2m(k),

so that also

(3.10) δ(Y2n(k), Y2m(k)+1)→ ε as k →∞.
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Also we have

− δ2n(k) − δ2m(k)+1 − δ2m(k) + δ(Y2n(k), Y2m(k))

≤ δ(Y2n(k)+1, Y2m(k)+2) ≤ δ(Y2n(k)+1, Y2m(k)+1) + δ2m(k)+1,

thus,

(3.11) δ(Y2n(k)+1, Y2m(k)+2)→ ε as k →∞.

On the other hand, by assumption (3.1), we have

Φ(δ(Y2m(k)+2, Y2n(k)+1))(3.12)

= Φ(δ(Sx2m(k)+1, T x2n(k))) = Φ(δ(T x2n(k),Sx2m(k)+1))

≤ a(d(Kx2n(k),J x2m(k)+1))Φ(d(Kx2n(k),J x2m(k)+1))

+ b(d(Kx2n(k),J x2m(k)+1))
[
Φ(δ(Kx2n(k), T x2n(k)))

+Φ(δ(J x2m(k)+1,Sx2m(k)+1))
]

+ c(d(Kx2n(k),J x2m(k)+1)) min
{

Φ(D(Kx2n(k),Sx2m(k)+1)),

Φ(D(J x2m(k)+1, T x2n(k)))
}

≤ a(δ(Y2m(k), Y2n(k)) + δ2m(k))Φ(δ(Y2m(k), Y2n(k)) + δ2m(k))

+ b(δ(Y2m(k), Y2n(k)) + δ2m(k))
[
Φ(δ2n(k)) + Φ(δ2m(k)+1)

]
+ c(δ(Y2m(k), Y2n(k)) + δ2m(k)) min

{
Φ(δ(Y2m(k), Y2n(k))) + δ2m(k)

+δ2m(k)+1,Φ(δ(Y2m(k)+1, Y2n(k)+1))
}
.

Thus, letting k →∞ in (3.12), from (2.1), (3.2), (3.8), (3.9), (3.10) and (3.11)
we obtain

Φ(ε) ≤ [a(ε) + c(ε)]Φ(ε) < Φ(ε),

which is a contradiction. This proves our claim.
Since X is complete, the sequence {yn} converges in X . Hence, the se-

quences {Kx2n}, {J x2n+1} constructed in (3.3) converge to one and the same
t ∈ X . Furthermore, the sequences of sets {T x2n} and {Sx2n+1} converge to
the singleton {t}. Since {T x2n} ⊆ T (X ) and T (X ) is closed we have that
{t} ∈ T (X ). Consequently, t ∈ ∪T (X ) ⊆ J (X ).



A unique common fixed point for an infinity of set-valued maps 87

It then follows that, there exists an element u ∈ X such that J u = t.
Using inequality (3.1), we obtain

Φ(δ(T x2n,Su)) ≤ a(d(Kx2n,J u))Φ(d(Kx2n,J u))

+ b(d(Kx2n,J u)) [Φ(δ(Kx2n, T x2n)) + Φ(δ(J u,Su))]

+ c(d(Kx2n,J u)) min {Φ(D(Kx2n,Su)),Φ(D(J u, T x2n))}.

If we had Su 6= {t}, then by letting n tends to infinity in the above inequality,
using Lemma 2.1 and conditions (2.1) and (3.2), we would get

Φ(δ(t,Su)) ≤ a(d(t, t))Φ(d(t, t))

+ b(d(t, t)) [Φ(δ(t, t)) + Φ(δ(t,Su))]

+ c(d(t, t)) min {Φ(D(t,Su)),Φ(D(t, t))}

= b(0)Φ(δ(t,Su)) < Φ(δ(t,Su)),

a contradiction. Thus, Su = {t} = {J u}. But the maps S and J are weakly
compatible, then SJ u = JSu, i.e. St = {J t}. We claim that t is a common
fixed point of S and J . Suppose not. Then, by estimation (3.1), we get

Φ(δ(T x2n,St)) ≤ a(d(Kx2n,J t))Φ(d(Kx2n,J t))

+ b(d(Kx2n,J t)) [Φ(δ(Kx2n, T x2n)) + Φ(δ(J t,St))]

+ c(d(Kx2n,J t)) min {Φ(D(Kx2n,St)),Φ(D(J t, T x2n))}.

Therefore, at infinity, by using Lemma 2.1 and properties (2.1) and (3.2), we
have

Φ(δ(t,St)) ≤ a(d(t,St))Φ(d(t,St))

+ b(d(t,St)) [Φ(δ(t, t)) + Φ(δ(St,St))]

+ c(d(t,St)) min {Φ(D(t,St)),Φ(D(St, t))}

= a(d(t,St))Φ(d(t,St)) + c(d(t,St))Φ(D(t,St))

≤ [a(d(t,St)) + c(d(t,St))] Φ(δ(t,St))

< Φ(δ(t,St)).
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This contradiction implies that St = {t}. Hence St = {J t} = {t}. Now,
since ∪S(X ) ⊆ K(X ), then there is a point v ∈ X such that {Kv} = St.
Consequently, we have {t} = {J t} = St = {Kv}. Again the use of (3.1) gives

Φ(δ(T v,St)) ≤ a(d(Kv,J t))Φ(d(Kv,J t))

+ b(d(Kv,J t)) [Φ(δ(Kv, T v)) + Φ(δ(J t,St))]

+ c(d(Kv,J t)) min {Φ(D(Kv,St)),Φ(D(J t, T v))} .

If we had T v 6= {t}, then by properties (2.1) and (3.2) we would get

Φ(δ(T v, t)) ≤ a(d(t, t))Φ(d(t, t))

+ b(d(t, t)) [Φ(δ(t, T v)) + Φ(δ(t, t))]

+ c(d(t, t)) min {Φ(D(t, t)),Φ(D(t, T v))}

= b(0)Φ(δ(t, T v)) < Φ(δ(t, T v)).

This is a contradiction, so we have T v = {t} = {Kv}. Thus, {t} = {J t} =
St = {Kv} = T v. Since T and K are weakly compatible, T v = {Kv} implies
that T Kv = KT v and so T t = {Kt}. We confirm that {t} = T t = {Kt}. If
not, then by (3.1) and conditions (2.1) and (3.2) it comes

Φ(δ(T t, t)) = Φ(δ(T t,St)) ≤ a(d(Kt,J t))Φ(d(Kt,J t))

+ b(d(Kt,J t)) [Φ(δ(Kt, T t)) + Φ(δ(J t,St))]

+ c(d(Kt,J t)) min {Φ(D(Kt,St)),Φ(D(J t, T t))}

= a(d(T t, t))Φ(d(T t, t)) + c(d(T t, t))Φ(D(T t, t))

≤ [a(d(T t, t)) + c(d(T t, t))] Φ(δ(T t, t)) < Φ(δ(T t, t)),

which is a contradiction. Hence T t = {Kt} = {t}. Consequently, {t} = {Kt} =
{J t} = St = T t and t is a common fixed point of J ,K,S and T . Similarly,
one can obtain this conclusion by assuming S(X ) is closed.

Finally, we prove that t is unique. Let t′ be another common fixed point
of maps J ,K,S and T such that t′ 6= t. Then, using inequality (3.1) and
properties (2.1) and (3.2) we obtain

Φ(δ(t, t′)) = Φ(δ(T t,St′)) ≤ a(d(Kt,J t′))Φ(d(Kt,J t′))

+ b(d(Kt,J t′)) [Φ(δ(Kt, T t)) + Φ(δ(J t′,St′))]
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+ c(d(Kt,J t′)) min {Φ(D(Kt,St′)),Φ(D(J t′, T t))}

= a(d(t, t′))Φ(d(t, t′)) + c(d(t, t′))Φ(D(t, t′))

≤ [a(d(t, t′)) + c(d(t, t′))] Φ(δ(t, t′)) < Φ(δ(t, t′)).

Therefore t′ = t. Hence, t is the unique common fixed point of J ,K,S and T .
�

If we put S = T and J = K = IX (the identity map on X ) in Theorem 3.1
and we drop the closeness we get the next result.

Corollary 3.2. Let (X , d) be a complete metric space and S : X → B(X )
be a set-valued map. Let Φ be as in Theorem 3.1. Assume that S satisfies the
following inequality

Φ(δ(Sx,Sy)) ≤ a(d(x, y))Φ(d(x, y))

+ b(d(x, y)) [Φ(δ(x,Sx)) + Φ(δ(y,Sy))]

+ c(d(x, y)) min {Φ(D(x,Sy)),Φ(D(y,Sx))}

for all x, y ∈ X , where a, b and c are as in Theorem 3.1. Then S has a unique
fixed point in X .

If we let in Theorem 3.1, S = T and J = K, then we obtain the following
result.

Corollary 3.3. Let (X , d) be a complete metric space and S : X → B(X ),
K : X → X be a set-valued map (resp. a single-valued map). Assume that S
and K satisfy conditions
(i) ∪S(X ) ⊆ K(X ) and
(ii) the inequality

Φ(δ(Sx,Sy)) ≤ a(d(Kx,Ky))Φ(d(Kx,Ky))

+ b(d(Kx,Ky)) [Φ(δ(Kx,Sx)) + Φ(δ(Ky,Sy))]

+ c(d(Kx,Ky)) min {Φ(D(Kx,Sy)),Φ(D(Ky,Sx))}

holds for all x, y ∈ X , where Φ, a, b and c are as in Theorem 3.1.
If maps S and K are weakly compatible and S(X ) (resp. K(X )) is closed or
K is surjective, then S and K possess a unique common fixed point in X .
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Now, if we put J = K = IX , then we get the following corollary.

Corollary 3.4. Let (X , d) be a complete metric space and let S, T : X →
B(X ) be two set-valued maps such that

Φ(δ(T x,Sy)) ≤ a(d(x, y))Φ(d(x, y))

+ b(d(x, y)) [Φ(δ(x, T x)) + Φ(δ(y,Sy))]

+ c(d(x, y)) min {Φ(D(x,Sy)),Φ(D(y, T x))}

for all x, y ∈ X , where Φ, a, b and c are as in Theorem 3.1. If S(X ) or T (X )
is closed, then S and T have a unique common fixed point in X .

Obviously, Theorem 3.1 is a generalization of the result of [2], since no
continuity hypothesis is assumed here and the weak compatibility is among
the least conditions for maps to have common fixed points.

Remark 3.5.
(1) From condition (3.3) it is easy to see that Theorem 3.1 remains valid if
J or K is surjective in lieu of S(X ) (resp. K(X )) or T (X ) (resp. J (X ))
is closed.

(2) The same result remains valid if we replace inequality (3.1) by the follow-
ing one

Φ(δ(T x,Sy)) ≤ a(d(Kx,J y))Φ(d(Kx,J y))

+ b(d(Kx,J y)) [Φ(δ(Kx, T x)) + Φ(δ(J y,Sy))]

+ c(d(Kx,J y))

[
Φ(D(Kx,Sy)) + Φ(D(J y, T x))

2

]
with Φ satisfying, in addition to the hypothesis of Theorem 3.1, the prop-
erty Φ(2t) ≤ 2Φ(t), t ≥ 0.

For a set-valued map S : X → B(X ) (resp. a self-map J : X → X ), we
denote FS = {x ∈ X : S(x) = {x}} (resp. FJ = {x ∈ X : J (x) = x}).

Theorem 3.6 (cf. [7, Theorem 3]). Let S, T : X → B(X ) be set-valued
maps and J ,K : X → X be self-maps on the metric space X . If inequality
(3.1) holds for all x, y ∈ X with Φ, a, b, c satisfying (2.1) and (3.2), then

(FK ∩ FJ ) ∩ FS = (FK ∩ FJ ) ∩ FT .
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Proof. Let u ∈ (FK ∩ FJ ) ∩ FS . If we had u /∈ FT , then by estimation
(3.1) and properties (2.1) and (3.2) we would get

Φ(δ(T u, u)) = Φ(δ(T u,Su)) ≤ a(d(Ku,J u))Φ(d(Ku,J u))

+ b(d(Ku,J u)) [Φ(δ(Ku, T u)) + Φ(δ(J u,Su))]

+ c(d(Ku,J u)) min {Φ(D(Ku,Su)),Φ(D(J u, T u))}

= b(0)Φ(δ(u, T u)) < Φ(δ(u, T u)).

This contradiction implies that T u = {u}. Thus,

(FK ∩ FJ ) ∩ FS ⊂ (FK ∩ FJ ) ∩ FT .

Similarly, we can prove that

(FK ∩ FJ ) ∩ FT ⊂ (FK ∩ FJ ) ∩ FS . �

Theorems 3.1 and 3.6 imply the following one.

Theorem 3.7. Let (X , d) be a complete metric space. Let J ,K : X → X
be two self-maps and Si : X → B(X ), i ∈ N∗, be set-valued maps such that
(i) ∪Si(X ) ⊆ J (X ) and ∪Si+1(X ) ⊆ K(X ),
(ii) either Si(X )(resp. J (X )) or Si+1(X ) (resp. K(X )) is closed,
(iii) the pairs {Si,K} and {Si+1,J } are weakly compatible.
Let Φ be an increasing and continuous function of [0,∞) into itself satisfying
(2.1) and the inequality

Φ(δ(Six,Si+1y)) ≤ a(d(Kx,J y))Φ(d(Kx,J y))

+ b(d(Kx,J y)) [Φ(δ(Kx,Six)) + Φ(δ(J y,Si+1y))]

+ c(d(Kx,J y)) min {Φ(D(Kx,Si+1y)),Φ(D(J y,Six))}

holds for all x, y ∈ X , i ∈ N∗, where a, b, c : [0,∞) → [0, 1) are continuous
increasing functions satisfying (3.2). Then J ,K and {Si}i∈N∗ have a unique
common fixed point in X .

Remark 3.8. Theorem 3.7 remains valid if J or K is surjective in lieu of
the condition (ii).

Now, we establish a fixed point theorem under a strict contractive condi-
tion in a metric space. Our version requires neither continuity nor compactness
but only minimal conditions and a concept of maps called D-maps.
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Definition 3.9 ([1]). Maps T : X → B(X ) and K : X → X are said to be
D-maps if and only if there exists a sequence {xn} in X such that lim

n→∞
Kxn = t

and lim
n→∞

T xn = {t} for some t ∈ X .

Example 3.10.
(1) Consider X = [0,∞) with the usual metric and define T : X → B(X ) and
K : X → X by

T x = [0, x] and Kx = 2x, ∀x ∈ X .

Let xn =
1

3n
for all n ∈ N∗. Clearly, lim

n→∞
T xn = {0} and lim

n→∞
Kxn = 0.

That is, T and K are D-maps.
(2) Consider X = [0,∞) with the usual metric and define T : X → B(X ) and
K : X → X by

T x = [0, x] and Kx = 3x+ 2, ∀x ∈ X .

Suppose there exists a sequence {xn} in X such that lim
n→∞

Kxn = t and
lim
n→∞

yn = t for some t ∈ [0,∞), with yn ∈ T xn = [0, xn]. Then lim
n→∞

xn =
t−2
3 and 0 ≤ t ≤ t−2

3 , which is impossible. Thus T and K are not D-maps.

Theorem 3.11. Let J ,K be single-valued maps from a metric space (X , d)
into itself and S, T : X → B(X ) be two set-valued maps with ∪T (X ) ⊆ J (X )
and ∪S(X ) ⊆ K(X ). Let Φ be an increasing and continuous function of [0,∞)
into itself satisfying (2.1). Suppose that inequality (3.1) holds for all x, y ∈ X ,
where functions a, b, c : [0,∞) → [0, 1) are only continuous and satisfy (3.2).
If either
(3’) T ,K are weakly compatible D-maps; S,J are weakly compatible and

T (X ) (resp. J (X )) is closed or
(3”) S,J are weakly compatible D-maps; T ,K are weakly compatible and

S(X ) (resp. K(X )) is closed,
then there is a unique common fixed point t ∈ X , i.e.

St = T t = {t} = {J t} = {Kt}.

Proof. Suppose that T and K are D-maps, then there is a sequence {xn}
in X such that, lim

n→∞
Kxn = t and lim

n→∞
T xn = {t} for some t ∈ X . Since T (X )

is closed we have {t} ∈ T (X ). Consequently, t ∈ ∪T (X ) ⊆ J (X ). It then
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follows that there exists a point u in X such that J u = t. By condition (3.1)
we have

Φ(δ(T xn,Su)) ≤ a(d(Kxn,J u))Φ(d(Kxn,J u))

+ b(d(Kxn,J u)) [Φ(δ(Kxn, T xn)) + Φ(δ(J u,Su))]

+ c(d(Kxn,J u)) min {Φ(D(Kxn,Su)),Φ(D(J u, T xn))} .

If we had Su 6= {J u}, then letting n→∞, by the continuity of the functions
Φ, a, b and c, using Lemma 2.1 and properties (2.1) and (3.2), we would obtain

Φ(δ(J u,Su)) ≤ a(d(J u,J u))Φ(d(J u,J u))

+ b(d(J u,J u)) [Φ(δ(J u,J u)) + Φ(δ(J u,Su))]

+ c(d(J u,J u)) min {Φ(D(J u,Su)),Φ(D(J u,J u))}

= b(0)Φ(δ(J u,Su)) < Φ(δ(J u,Su)),

which is a contradiction. Thus, Su = {J u}. Hence, by the weak compatibility
we get, SSu = SJ u = JSu = {JJ u}. Again, by (3.1), we have

Φ(δ(T xn,SSu)) ≤ a(d(Kxn,JSu))Φ(d(Kxn,JSu))

+ b(d(Kxn,JSu)) [Φ(δ(Kxn, T xn)) + Φ(δ(JSu,SSu))]

+ c(d(Kxn,JSu)) min {Φ(D(Kxn,SSu)), Φ(D(JSu, T xn))} .

If we had SSu 6= {J u}, then letting n → ∞, since Φ is increasing, by the
continuity of Φ, a, b and c, the use of Lemma 2.1 and conditions (2.1) and
(3.2), we would obtain

Φ(δ(J u,SSu)) ≤ a(d(J u,JSu))Φ(d(J u,JSu))

+ b(d(J u,JSu)) [Φ(δ(J u,J u)) + Φ(δ(JSu,SSu))]

+ c(d(J u,JSu)) min {Φ(D(J u,SSu)),Φ(D(JSu,J u))}

= a(d(J u,SSu))Φ(d(J u,SSu))

+ c(d(J u,SSu))Φ(D(J u,SSu))

≤ [a(d(J u,SSu)) + c(d(J u,SSu))] Φ(δ(J u,SSu))

< Φ(δ(J u,SSu)).
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This is a contradiction, so we have SSu = JSu = {J u}, i.e. SSu = JSu =
Su and Su is a common fixed point of S and J . Since ∪S(X ) ⊆ K(X ), then,
there is a point v ∈ X such that {Kv} = Su. If we had T v 6= {Kv}, then by
condition (3.1) and properties (2.1) and (3.2) we would have

Φ(δ(T v,Kv)) = Φ(δ(T v,Su))

≤ a(d(Kv,J u))Φ(d(Kv,J u))

+ b(d(Kv,J u)) [Φ(δ(Kv, T v)) + Φ(δ(J u,Su))]

+ c(d(Kv,J u)) min {Φ(D(Kv,Su)),Φ(D(J u, T v))}

= b(0)Φ(δ(Kv, T v)) < Φ(δ(Kv, T v)).

This is a contradiction, thus T v = {Kv} = Su. By the weak compatibility of
T and K we have T T v = T Kv = KT v = {KKv}. Again, if we had T T v 6= Su,
then, since Φ is increasing, by conditions (3.1), (2.1) and (3.2), we would have

Φ(δ(T T v,Su)) ≤ a(d(KT v,J u))Φ(d(KT v,J u))

+ b(d(KT v,J u)) [Φ(δ(KT v, T T v)) + Φ(δ(J u,Su))]

+ c(d(KT v,J u)) min {Φ(D(KT v,Su)),Φ(D(J u, T T v))}

= a(d(T T v,Su))Φ(d(T T v,Su))

+ c(d(T T v,Su))Φ(D(T T v,Su))

≤ [a(d(T T v,Su)) + c(d(T T v,Su))] Φ(δ(T T v,Su))

< Φ(δ(T T v,Su)).

This contradiction shows that T T v = Su, i.e., T Su = Su = KSu and Su is
also a common fixed point of T and K. Since Su = {t}, then

St = T t = {t} = {Kt} = {J t}.

Finally, we prove that t is unique. Indeed, let t′ 6= t be another common
fixed point of the maps J ,K,S and T . Since Φ is increasing, by estimation
(3.1) and conditions (2.1) and (3.2), one may get

Φ(d(t, t′)) = Φ(δ(T t,St′)) ≤ a(d(Kt,J t′))Φ(d(Kt,J t′))

+ b(d(Kt,J t′)) [Φ(δ(Kt, T t)) + Φ(δ(J t′,St′))]
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+ c(d(Kt,J t′)) min {Φ(D(Kt,St′)),Φ(D(J t′, T t))}

= a(d(t, t′))Φ(d(t, t′)) + c(d(t, t′))Φ(D(t, t′))

≤ [a(d(t, t′)) + c(d(t, t′))] Φ(d(t, t′)) < Φ(d(t, t′)).

This contradiction implies that t′ = t.
Similarly, one can obtain this conclusion by using (3”) in lieu of (3’). �

Remark 3.12. Theorem 3.11 remains valid if we replace inequality (3.1) by

Φ(δ(T x,Sy)) ≤ a(d(Kx,J y))Φ(d(Kx,J y))

+ b(d(Kx,J y)) [Φ(δ(Kx, T x)) + Φ(δ(J y,Sy))]

+ c(d(Kx,J y))

[
Φ(D(Kx,Sy)) + Φ(D(J y, T x))

2

]
,

where – in addition to the hypothesis of Theorem 3.1 – Φ satisfies also the
condition Φ(2t) ≤ 2Φ(t), t ≥ 0, or

δ(T x,Sy) ≤ αmax {d(Kx,J y), δ(Kx, T x), δ(J y,Sy)}

+ (1− α) [aD(Kx,Sy) + bD(J y, T x)] ,

where 0 ≤ α < 1, 0 ≤ a ≤ 1
2 and 0 ≤ b < 1

2 .

In Theorem 3.11, if we set S = T and K = J , then we will get the following
result.

Corollary 3.13. Let K : X → X be a single-valued map of a metric space
(X , d) and T : X → B(X ) be a set-valued map. Assume that T and K satisfy
the conditions
(i) ∪T (X ) ⊆ K(X ),
(ii) the inequality

Φ(δ(T x, T y)) ≤ a(d(Kx,Ky))Φ(d(Kx,Ky))

+ b(d(Kx,Ky)) [Φ(δ(Kx, T x)) + Φ(δ(Ky, T y))]

+ c(d(Kx,Ky)) min {Φ(D(Kx, T y)),Φ(D(Ky, T x))}

holds for all x, y ∈ X , where Φ is as in Theorem 3.1 and functions a, b
and c are as in Theorem 3.11.
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If T and K are weakly compatible D-maps and T (X ) (resp. K(X )) is closed,
then there is a unique common fixed point t in X , i.e.

T t = {t} = {Kt}.

For three maps we have the following result.

Corollary 3.14. Let K : X → X be a single-valued map of a metric space
(X , d) and S, T : X → B(X ) be two set-valued maps such that
(i) ∪T (X ) ⊆ K(X ) and ∪S(X ) ⊆ K(X ),
(ii) the inequality

Φ(δ(T x,Sy)) ≤ a(d(Kx,Ky))Φ(d(Kx,Ky))

+ b(d(Kx,Ky)) [Φ(δ(Kx, T x)) + Φ(δ(Ky,Sy))]

+ c(d(Kx,Ky)) min {Φ(D(Kx,Sy)),Φ(D(Ky, T x))}

holds for all x, y ∈ X , where Φ is as in Theorem 3.1 and functions a, b
and c are as in Theorem 3.11. If either

(iii) T ,K are weakly compatible D-maps; S,K are weakly compatible and
T (X ) (resp. K(X )) is closed or

(iv) S,K are weakly compatible D-maps; T ,K are weakly compatible and
S(X ) (resp. K(X )) is closed,

then there is a unique common fixed point t in X , i.e.

St = T t = {Kt} = {t}.

Now, we give a generalization of Theorem 3.11.

Theorem 3.15. Let J ,K be single-valued maps of a metric space (X , d)
and Sn : X → B(X ), n ∈ N∗ be set-valued maps such that
(i) ∪Sn(X ) ⊆ J (X ) and ∪Sn+1(X ) ⊆ K(X ),
(ii) the inequality

Φ(δ(Snx,Sn+1y)) ≤ a(d(Kx,J y))Φ(d(Kx,J y))

+ b(d(Kx,J y)) [Φ(δ(Kx,Snx)) + Φ(δ(J y,Sn+1y))]

+ c(d(Kx,J y)) min {Φ(D(Kx,Sn+1y)),Φ(D(J y,Snx))}

holds for all x, y ∈ X , n ∈ N∗, where Φ is as in Theorem 3.1 and func-
tions a, b and c are as in Theorem 3.11. If either
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(iii) K and {Sn}n∈N∗ are weakly compatible D-maps; J and {Sn+1}n∈N∗ are
weakly compatible and Sn(X ) (resp. J (X )) is closed or

(iv) J and {Sn+1}n∈N∗ are weakly compatible D-maps; K and {Sn}n∈N∗ are
weakly compatible and Sn+1(X ) (resp. K(X )) is closed,

then there is a unique common fixed point t ∈ X , i.e.

Snt = {t} = {J t} = {Kt}, n ∈ N∗.
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