
Annales Mathematicae Silesianae 32 (2018), 313–318
DOI: 10.1515/amsil-2017-0018

MULTI PING-PONG
AND AN ENTROPY ESTIMATE IN GROUPS

Katarzyna Tarchała, Paweł Walczak

Abstract. We provide an entropy estimate from below for a finitely generated
group of transformation of a compact metric space which contains a ping-pong
game with several players located anywhere in the group.

1. Introduction

In [9], we provided entropy estimates for a finitely generated group G of
transformations of a compact metric space X which contains two maps (ping-
pong players) which transform a subset A of X into two disjoint subsets A1

and A2 of A. The players are located anywhere in G. Here, we improve that
estimate in the more general case: G contains an arbitrary finite number of
ping-pong players located anywhere in G.

The notion of entropy for finitely generated groups of transformations of
compact metric spaces has been introduced (in the wider context of pseu-
dogroups and foliations) by Ghys, Langevin and the second author [4] (see
either [2, Chapter 13] or [10] for more detailed expositions). It corresponds
to the topological entropy of single transformations, depends on the choice of
a generating set but its vanishing (or, non-vanishing) is independent of such
a choice.
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Ping-pong in transformation groups is attributed (see [5, Chapter II.B])
to Feliks Klein who used it to study Kleinian groups. It implies some com-
plexity of the dynamics, in particular, positive entropy and – in 1-dimensional
dynamics – arises always when the dynamics of the system is complicated
enough (see, for example, [8] and the bibliography therein). In some sense, in
one dimensional dynamics, ping-pong is related to horseshoes which can be
used to estimate (or even, to calculate) entropies of the systems (see [7] and,
again, the bibliography therein).

It is known (see, for example, Prop. 2.4.10 in [10]) that ping-pong in a
group (with two players) implies the entropy estimate from below: entropy
is greater or equal to the product of log 2 by the inverse of the maximum of
distances (in the metric determined by a given generating set) of ping-pong
players from the identity. In the same way, ping-pong with N players provides
entropy greater or equal to logN divided again by the maximum of their
distances from the identity. Here, we produce a better estimate: we replace
the denominator in the above by a quantity which arises from a well known
lower bound for binomial distribution (see, for example, [1]) and is strictly
larger than the quantity (maximal distance) of the estimate mentioned above.

Note that our estimates can be adapted to pseudogroups and foliations
to relate the value of entropy with the “strength” of a resilient orbit (or, of a
resilient leaf) which can be defined and related to the entropy and expressed
in terms of the “length” of a piece of the orbit (or, of a leaf curve) provid-
ing ping-pong in the corresponding space (for foliations, via holonomy, on a
transversal), see [6]. We expect (and try to get) a similar estimate from above
in the case of 1-dynamical dynamics, that is when our space X coincides with
a segment, a circle or, more generally, a graph (see [7] again), also when a fo-
liation has codimension 1. The work in this direction is in progress. A reader
interested in such topics is referred also to Chapters 2 and 3 of [10].

2. Preliminaries

Throughout the paper, X is a compact metric space with distance d, G a
finitely generated group of continuous transformations of X and G1 a fixed
finite symmetric (i.e., such that e ∈ G1 and G−1 = {g−1; g ∈ G1} ⊂ G1) set of
generators for G. For any n ∈ N, we put Gn = {g1 ◦ . . . ◦ gn; g1, . . . , gn ∈ G1}.
Note that since e ∈ G1, G1 ⊂ G2 ⊂ G3 ⊂ . . ..

Definition 2.1 (Ping-pong). Let G be a group acting on a compact metric
space X. We say that f1, f2 ∈ G are playing ping-pong if there exist sets
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A,A1, A2 ⊂ X such that A1, A2 ⊂ A, dist(A1, A2) > 0, f1(A) ⊂ A1 and
f2(A) ⊂ A2.

Definition 2.2 (Multi Ping-pong). Let G be a group acting on a compact
metric space X. We say that f1, . . . , fN ∈ G are playing multi ping-pong if
there exist sets A,A1, . . . , AN ⊂ X such that A1, . . . , AN ⊂ A, and for all
i 6= j, 1 ≤ i, j ≤ N dist(Ai, Aj) > 0 and fi(A) ⊂ Ai.

Definition 2.3 (Entropy). Let ε > 0 and n > 0, n ∈ N. We say that
points x, y ∈ X are (n, ε)-separated if there exists a continuous map f ∈ Gn
such that d(f(x), f(y)) ≥ ε.

A set A ⊂ X is (n, ε)-separated if all the pairs of points x, y ∈ A, x 6= y,
have this property.

Since X is compact, every (n, ε)-separated set is finite and we may put

s(n, ε,G1) := max{#A;A ⊂ X is (n, ε)-separated}

and

s(ε,G1) := lim sup
n→∞

1

n
log s(n, ε,G1).

The number h(G,G1) := lim
ε→0

s(ε,G1) is called the (topological) entropy of
G with respect to G1.

For simplicity, in the sequel we avoid writing G1 in all these formulae
because we are interested in only one, fixed, set of generators.

In our calculations, we shall use the following (see, [3, Chapter 11]) lower
bound for the binomial distribution.

Lemma 2.4. If k1 + . . .+ kN = n, ki = npi and P = (p1, p2, . . . , pN ), then(
n

k1, k2, . . . , kN

)
≥ 1

(n+ 1)N
enH(P ),

where(
n

k1, k2, . . . , kN

)
:=

n!

k1!k2! . . . kN !
=

(
n

k1

)(
n− k1
k2

)
. . .

(
n−

∑N−1
ξ=1 kξ

kN

)
and H(P ) := −

∑N
i=1 pi log pi.
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3. Multi ping-pong

Theorem 3.1. Let G be a group of transformations of X containing N
continuous maps f1, . . . , fN playing multi ping-pong. If fi ∈ Gmi , m1 ≤ m2 ≤
. . . ≤ mN , then the entropy h(G) satisfies

h(G) ≥ − log p,

where p ∈ (0, 1) and
∑N
i=1 p

mi = 1.

Proof. Let X be a compact metric space. Take f1, . . . , fN , A1, . . . , AN as
in Definition 2.2 and choose ε such that for all i 6= j dist(Ai, Aj) > ε. Choose
any c ∈ X. Define the set

En,k := {fi1 ◦ . . . ◦ fin(c); ij ∈ {1, . . . , N},∀ξ<N #{j : ij = ξ} ≥ kξ},

where k = (k1, . . . , kN ), 0 ≤ kξ ≤ n,
N−1∑
ξ=1

kξ ≤ n, kN := n−
N−1∑
ξ=1

kξ.

From Ai ∩ Aj = ∅ for all i 6= j we gain that points fi1 ◦ . . . ◦ fin(c) and fj1 ◦
. . .◦fjn(c) are different when {i1, . . . , in} 6= {j1, . . . , jn}. Therefore, we obtain
the inequality

#En,k ≥
kN∑
i1=0

(
n

k1 + i1

) kN−i1∑
i2=0

(
n− i1
k2 + i2

)
. . .

kN−(i1+...+iN−2)∑
iN−1=0

(
n− (i1 + . . .+ iN−2)

kN−1 + iN−1

)
.

Moreover, if x = fi1 ◦ . . . ◦ fin(c) and y = fj1 ◦ . . . ◦ fjn(c) are different
points of En,k, then d((fi1 ◦ . . . ◦ fim)−1(x), (fj1 ◦ . . . ◦ fjm)−1(y)) ≥ ε, where
m is the largest number satisfying the condition i1 = j1, . . . , im = jm.
Furthermore, (fi1 ◦ . . . ◦ fim)−1 ∈ G(m1k1+...+mNkN ). Thus the set En,k is
(m1k1 + . . .+mNkN , ε)-separated and

s(

N∑
i=1

kimi, ε) ≥ #En,k ≥
N−1∏
j=1

kN−(
∑j−1
ξ=1 iξ)∑

ij=0

(
n− (

∑j−1
ξ=1 iξ)

kj + ij

)
.

Remember that for any n ∈ N we have
∑N
ξ=1 kξ = n, so our sequences k

consist of numbers depending on n.
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We obtain the estimate

h(G) ≥ lim
n→∞

1∑N
i=1 kimi

log

N−1∏
j=1

kN−(
∑j−1
ξ=1 iξ)∑

ij=0

(
n− (

∑j−1
ξ=1 iξ)

kj + ij

)
.

Of course, the whole sum in the above is larger than its first term. So by
Lemma 2.4 and putting ki := npi we obtain

h(G) ≥ lim
n→∞

1∑N
i=1 kimi

log

(
n

k1, k2, . . . , kN

)

≥
−
∑N
i=1 pi log pi∑N
i=1 pimi

=: φ(p1, . . . , pN ), where
N∑
i=1

pi = 1, pi ≥ 0.

The best estimate is obtained for the maximal value of our function φ.
One can check by the method of Lagrange multipliers that the best value
φ(p1, . . . , pN ) = − log p is attained for pi = pmi , where p ∈ (0, 1) and∑N
i=1 p

mi = 1. �

Corollary 3.2. For N continuous maps f1, . . . , fN playing multi ping-
pong we have the following.
(1) If fi ∈ G1 for all 1 ≤ i ≤ N , the entropy satisfies h(G) ≥ logN .
(2) If fi ∈ Gm for all 1 ≤ i ≤ N , the entropy satisfies h(G) ≥ logN

m .

Finally, we present some computer aided numerical estimates:

Example 3.3. For (m1, . . . ,mN ) we assume that there exist N continuous
maps fi such that fi ∈ Gmi for 1 ≤ i ≤ N whose are playing multi ping-pong.
Then, we receive the following:
(1) for (m1;m2;m3) = (1; 5; 5), p ≈ 0, 689139 and h(G) ≥ 0, 372312,
(2) for (m1;m2;m3) = (1; 5; 7), p ≈ 0, 715802 and h(G) ≥ 0, 334352,
(3) for (m1;m2;m3) = (1; 7; 7), p ≈ 0, 745072 and h(G) ≥ 0, 294274,
(4) for (m1;m2;m3) = (2; 5; 7), p ≈ 0, 76488 and h(G) ≥ 0, 268036,
(5) for (m1;m2;m3) = (7; 7; 7), p ≈ 0, 85475 and h(G) ≥ 0, 1569446,
(6) for (m1;m2;m3;m4) = (1; 5; 5; 5), p ≈ 0, 65052 and h(G) ≥ 0, 429983,
(7) for (m1;m2;m3;m4) = (1; 7; 7; 7), p ≈ 0, 714581 and h(G) ≥ 0, 336059,
(8) for (m1; . . . ;m5) = (1; 2; 3; 4; 5), p ≈ 0, 50866 and h(G) ≥ 0, 675975,
and so on.

As we can see, if one of the ping-pong player is of “shorter length” (smaller
value of mi), we gain more entropy. Bigger entropy is also received for larger
amount of players in a ping-pong game.
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