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ON A FUNCTIONAL EQUATION RELATED TO
TWO-SIDED CENTRALIZERS

Irena Kosi-Ulbl

Abstract. The main aim of this manuscript is to prove the following result.
Let n > 2 be a fixed integer and R be a k-torsion free semiprime ring with
identity, where k ∈ {2, n− 1, n}. Let us assume that for the additive mapping
T : R→ R

3T (xn) = T (x)xn−1 + xT (xn−2)x+ xn−1T (x), x ∈ R,

is also fulfilled. Then T is a two-sided centralizer.

In this paper R will denote an associative ring with center Z(R). For an
integer n > 1, a ring R is said to be n-torsion free, if for x ∈ R, nx = 0
implies x = 0. The expression xy − yx will be marked by [x, y]. The ring
R is prime if for a, b ∈ R, aRb = (0) implies that either a = 0 or b = 0,
and is semiprime if aRa = (0) implies a = 0. We indicate by char(R) the
characteristic of a prime ring R. Let X be a real or complex Banach space
and let L(X) and F(X) denote the algebra of all bounded linear operators on
X and the ideal of all finite rank operators in L(X), respectively. An algebra
A(X) ⊆ L(X) is said to be standard if F(X) ⊆ A(X). Let us point out
that any standard operator algebra is prime, which is a consequence of Hahn-
Banach theorem. An additive mapping D : R → R is called a derivation, if
D(xy) = D(x)y + xD(y) holds for all pairs x, y ∈ R. An additive mapping
D : R→ R is called a Jordan derivation if D(x2) = D(x)x+xD(x) is fulfilled
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for all x ∈ R. Every derivation is a Jordan derivation. The converse in general
is not true. A classical result of Herstein [9] asserts that any Jordan derivation
on a prime ring with char(R) 6= 2 is a derivation.

A short proof of Herstein theorem can be found in [6]. Cusack [8] has gen-
eralized the theorem to 2-torsion free semiprime rings (an alternative proof
can be found in [4]). Beidar, Brešar, Chebotar and Martindale [1] also gener-
alized it considerably. Generalizations of Herstein theorem are also presented
in [7]. An additive mapping T : R → R is called a left (right) centralizer if
T (xy) = T (x)y (T (xy) = xT (y)) holds for all x, y ∈ R. We call T : R → R a
two-sided centralizer if T is both a left and a right centralizer. If T : R→ R is
a two-sided centralizer, where R is a semiprime ring with extended centroid
C, then there exists an element λ ∈ C such that T (x) = λx for all x ∈ R (see
[2, Theorem 2.3.2]). An additive mapping T : R → R is called a left (right)
Jordan centralizer if T (x2) = T (x)x

(
T (x2) = xT (x)

)
holds for all x ∈ R.

Zalar [17] has proved that any left (right) Jordan centralizer on a 2-torsion
free semiprime ring is a left (right) centralizer. Lately several authors investi-
gated centralizers on rings and algebras. Some of the results can be found in
[3, 11, 12, 13, 14, 15, 16].

Let us start with the following result proved by M. Brešar in [5].

Theorem 1. Let R be a 2-torsion free semiprime ring and let D : R→ R
be an additive mapping satisfying the equality

(1) D(xyx) = D(x)yx+ xD(y)x+ xyD(x)

for all x, y ∈ R. Then D is a derivation.

An additive mapping D : R → R, where R is an arbitrary ring, satisfying
equality (1) for all x, y ∈ R is called a Jordan triple derivation. One can
easily prove that any Jordan derivation on an arbitrary 2-torsion free ring is
a Jordan triple derivation (see, for example, [6] for the details), which means
that Theorem 1 generalizes Cusack’s generalization of Herstein theorem.

Motivated by this result, Vukman and Kosi-Ulbl in [14] proved the follow-
ing

Theorem 2. Let R be a 2-torsion free semiprime ring with extended cen-
troid C and let T : R→ R be an additive mapping. Suppose that

(2) 3T (xyx) = T (x)yx+ xT (y)x+ xyT (x)

holds for all x, y ∈ R. Then T is of the form T (x) = λx for all x ∈ R and
some fixed λ ∈ C.
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Let n > 2 be a fixed integer and let y = xn−2 in (2). Then we obtain

(3) 3T (xn) = T (x)xn−1 + xT (xn−2)x+ xn−1T (x).

One of our main purposes is to investigate equation (3) for additive map-
pings T : A(X) → L(X), where X denotes a Banach space over F ∈ {R,C},
L(X) denotes the algebra of all bounded linear operators acting on X, and
A(X) is a standard operator algebra.

Theorem 3. Let L(X) be the algebra of all bounded linear operators on
X and let A(X) ⊆ L(X) be a standard operator algebra, where X is a Banach
space over the real or complex field F . Suppose that there exists an additive
mapping T : A(X)→ L(X) satisfying the equality

(4) 3T (An) = T (A)An−1 +AT (An−2)A+An−1T (A)

for all A ∈ A(X) and a fixed integer n > 2. Then T is of the form T (A) = λA
for all A ∈ A(X) and some fixed λ ∈ F .

In the proof of Theorem 3 we shall use the result below, see Vukman [11].

Theorem 4. Let R be a 2-torsion free semiprime ring and let T : R→ R
be an additive mapping satisfying

2T (x2) = T (x)x+ xT (x)

for all x ∈ R. Then T is a two-sided centralizer.

It should be mentioned that in the proof of Theorem 3 we will use some
methods similar to those used by Molnár in [10].

Proof of Theorem 3. We start with equality (4). Let us first consider
A ∈ F(X) and a projection P such that A = AP = PA. Identity (4) with
A = P yields that

(5) T (P )P = PT (P ) = PT (P )P.

In equation (4) we set A+ αP for A, α ∈ F , and obtain

3

n∑
i=0

(
n

i

)
T
(
An−i

(
αP
)i)

=
(
T (A) + αT (P )

)( n−1∑
i=0

(
n− 1

i

)
An−1−i (αP )

i
)
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(6) + (A+ αP )
( n−2∑

i=0

(
n− 2

i

)
T
(
An−2−i (αP )

i
))

(A+ αP )

+
( n−1∑

i=0

(
n− 1

i

)
An−1−i (αP )

i
)
(T (A) + αT (P )) .

Collecting all expressions with coefficient αn−1 from equation (6) and using
(5), we arrive at

(7) 3nT (A) = T (A)P + PT (A) + nAB + nBA+ (n− 2)PT (A)P,

where B stands for T (P ). Right multiplication of (7) by P gives

(8) 3nT (A)P = T (A)P + PT (A)P + nAB + nBA+ (n− 2)PT (A)P.

Similarly we obtain

(9) 3nPT (A) = PT (A)P + PT (A) + nAB + nBA+ (n− 2)PT (A)P.

Combining (8) and (9) gives us

T (A)P = PT (A),

which reduces equality (7) to

(10) 3T (A) = T (A)P +AB +BA.

Multiplying the above by P from the right gives

(11) 3T (A)P = T (A)P +AB +BA.

Combining (10) with (11) we get

(12) T (A) = T (A)P.

From the above equality one can conclude that T maps F(X) into itself. Using
(12), equality (10) reduces to

(13) 2T (A) = AB +BA.

Multiplying (13) from the right and from the left by A, respectively, gives

(14) 2T (A)A = ABA+BA2 and 2AT (A) = A2B +ABA,
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respectively. Going back to (6) and collecting all expressions with coefficient
αn−2 gives

3n (n− 1)T
(
A2
)
= 2 (n− 1) (T (A)A+AT (A))

+ 2 (n− 2) (AT (A)P + PT (A)A) + (n− 1) (n− 2)
(
A2B +BA2

)
+ (n− 2) (n− 3)PT

(
A2
)
P + 2ABA.

Using (12) the above equality simplifies to

(15) 2
(
n2 + n− 3

)
T
(
A2
)
= 2 (2n− 3) (T (A)A+AT (A))

+ (n− 1) (n− 2)
(
A2B +BA2

)
+ 2ABA.

Combining (14) and (15) we get

(16) 2T (A2) = T (A)A+AT (A).

Therefore we have an additive mapping T : F(X)→ F(X) satisfying equation
(16) for all A ∈ F(X). Since F(X) is prime, by Theorem 4 we may conclude
that T is a two-sided centralizer on F(X). We continue our proof by showing
that there exists an operator C ∈ L(X) such that

(17) T (A) = CA (A ∈ F(X)).

For any fixed x ∈ X and f ∈ X∗ by x ⊗ f we denote an operator from
F(X) defined by (x ⊗ f)y = f(y)x for all y ∈ X. For any A ∈ F(X) we
have A(x ⊗ f) = ((Ax) ⊗ f). Let us choose f and y such that f(y) = 1 and
define Cx = T (x⊗ f)y. Obviously, C is linear. Using the fact that T is a left
centralizer on F(X) we obtain

(CA)x = C(Ax) = T ((Ax)⊗ f)y

= T (A(x⊗ f))y = T (A)(x⊗ f)y = T (A)x, x ∈ X.

Therefore we have T (A) = CA for any A ∈ F(X). Since T is a right centralizer
on F(X) we obtain C(AP ) = T (AP ) = AT (P ) = ACP , where A ∈ F(X) and
P is an arbitrary one-dimensional projection. Therefore [A,C]P = 0. Using
the fact that P is an arbitrary one-dimensional projection we get [A,C] = 0
for all A ∈ F(X). This means C commutes with all operators from F(X). In
other words,

Cx = λx
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is fulfilled for all x ∈ X and some fixed λ ∈ F . Combining the above equation
with (17) it follows that T is of the form

T (A) = λA

for any A ∈ F(X) and some fixed λ ∈ F . We want to prove that the same
equality holds on A(X) as well. For this purpose we introduce a mapping
T1 : A(X)→ L(X) defined by T1(A) = λA. Let us investigate a mapping T0 =
T−T1. One can easily find out that T0 is additive, it satisfies (4) and T0(A) = 0
for all A ∈ F(X). We will prove that T0(A) = 0 for all A ∈ A(X) as well. Let
us introduce an operator S ∈ A(X) defined by S = A+ PAP − (AP + PA),
where A ∈ A(X) and P ∈ F(X) is an one-dimensional projection. From the
definition of the operator S it follows immediately that SP = PS = 0 and
S −A ∈ F(X). Thus we have T0(S) = T0(A). So we can rewrite (4) as

3T0(S
n) = T0(S)S

n−1 + ST0(S
n−2)S + Sn−1T0(S).

Using the above and the facts that T0(P ) = 0 as well as SP = PS = 0, we
obtain

T0(S)S
n−1 + ST0(S

n−2)S + Sn−1T0(S) = 3T0(S
n) = 3T0(S

n + P )

= 3T0((S + P )n) = T0(S + P )(S + P )n−1

+ (S + P )T0((S + P )n−2)(S + P ) + (S + P )n−1T0(S + P )

= T0(S)S
n−1 + T0(S)P + ST0(S

n−2)S + ST0(S
n−2)P

+ PT0(S
n−2)S + PT0(S

n−2)P + Sn−1T0(S) + PT0(S).

Since T0(S) = T0(A), we actually have

(18) T0(A)P + ST0(A
n−2)P + PT0(A

n−2)S + PT0(A
n−2)P + PT0(A) = 0.

Setting αA for A in (18), we obtain

α (T0(A)P + PT0(A)) + αn−2PT0(A
n−2)P

+ αn−1
(
ST0(A

n−2)P + PT0(A
n−2)S

)
= 0.

This implies that T0(A)P +PT0(A) = 0. Multiplying by P on both sides gives
PT0(A)P = 0. Multiplying on the right gives T0(A)P = −PT0(A)P = 0.
Since P is an arbitrary one-dimensional projection, one can conclude that
T0(A) = 0 for any A ∈ A(X). In other words, we have proved that T is of the
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form T (A) = λA for all A ∈ A(X) and some fixed λ ∈ F . The proof of the
theorem is complete. �

Conjecture. Let R be a semiprime ring with suitable torsion restrictions
and let T : R→ R be an additive mapping satisfying the equation

3T (xn) = T (x)xn−1 + xT (xn−2)x+ xn−1T (x)

for all x ∈ R and a fixed integer n > 2. Then T is a two-sided centralizer.

The result below proves the above conjecture in the case when R has an
identity element.

Theorem 5. Let n > 2 be a fixed integer and R be a k-torsion free
semiprime ring with identity, where k ∈ {2, n − 1, n}. Let us assume that,
for the additive mapping T : R→ R,

(19) 3T (xn) = T (x)xn−1 + xT (xn−2)x+ xn−1T (x), x ∈ R,

is also fulfilled. Then T is a two-sided centralizer.

Proof. Let us start from equation (19). Using the same techniques as in
Theorem 3, we obtain

(20) 2
(
n2 + n− 3

)
T
(
x2
)
= 2 (2n− 3)T (x)x+ 2 (2n− 3)xT (x)

+
(
n2 − 3n+ 2

)
ax2 +

(
n2 − 3n+ 2

)
x2a+ 2xax, x ∈ R,

and

(21) 2T (x) = xa+ ax, x ∈ R,

where a stands for T (e). Comparing the steps of the proof of Theorem 3
with the beginning of the proof of Theorem 5 we see that equations (20) and
(21) correspond to equations (15) and (13), respectively. In the procedure
mentioned above we used the fact that R is n-torsion free. According to (21)
we obtain

(22) 2T
(
x2
)
= x2a+ ax2, x ∈ R.

Multiplying (21) by x first from the right and then from the left side we get

(23) 2T (x)x = xax+ ax2 and 2xT (x) = x2a+ xax, x ∈ R.
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Using (22) and (23) in (20) after some calculation we obtain

x2a+ ax2 − 2xax = 0, x ∈ R.

In the above calculation we used the assumption that the ring R is 2 and
(n− 1)-torsion free. Now let us rewrite the above equation in the form

(24) [[a, x] , x] = 0, x ∈ R.

Putting x+ y in place of x in (24) we obtain

(25) [[a, x] , y] + [[a, y] , x] = 0, x, y ∈ R.

Putting xy in place of y in (25) we obtain

0 = [[a, x] , xy] + [[a, xy] , x]

= [[a, x] , x] y + x [[a, x] , y] + [[a, x] y + x [a, y] , x]

= x [[a, x] , y] + [[a, x] , x] y + [a, x] [y, x] + x [[a, y] , x]

= [a, x] [y, x] , x, y ∈ R,

where we also used (24) and (25). Thus we have

[a, x] [y, x] = 0, x, y ∈ R.

Substituting y with ya in the above we obtain [a, x] y [a, x] = 0 for all x, y ∈ R.
Since R is semiprime, it follows from the last equation that [a, x] = 0 for all
x ∈ R. This means that a ∈ Z (R) and (21) reduces to T (x) = ax, x ∈ R, since
R is 2-torsion free. It follows immediately that T is a two-sided centralizer,
which completes the proof. �
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