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REFINEMENTS OF THE HERMITE–HADAMARD
INEQUALITY IN NPC GLOBAL SPACES

Cristian Conde

Abstract. In this paper we establish different refinements and applications of
the Hermite–Hadamard inequality for convex functions in the context of NPC
global spaces.

1. Introduction

Recall that f : [a, b]→ R is called a convex function if it holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ [a, b] and 0 ≤ λ ≤ 1. It is well known that every convex function
can be modified at the endpoints to become convex and continuous. An im-
mediate consequence of this remark is the integrability of f . The integral of
f can then be estimated by:

(1.1) f
(a+ b

2

)
≤ 1

b− a

∫ b

a

f(t) dt ≤ f(a) + f(b)

2
.

This fundamental inequality is well known as the Hermite–Hadamard (H-H)
inequality, it was first published by Hermite in 1883 and independently proved
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in 1893 by Hadamard in [12]. One can easily observe that (1.1) is equivalent
to the following inequality:

f
(a+ b

2

)
≤
∫ 1

0

f(ta+ (1− t)b) dt ≤ f(a) + f(b)

2
.

From the previous statement, we have concluded in [7] that the notions or
concepts necessaries to obtain an analogue of the H-H inequality in a global
NPC space N are: the existence of an unique geodesic connecting two given
points, the notion of convex function associated with this privileged curve and
convex sets. Since these concepts exist in the context of global NPC spaces,
we obtained a generalization of the H-H inequality to such spaces.

The Hermite–Hadamard inequality has several applications. We would like
to refer the reader to [10, 2, 16, 21, 19, 13, 1, 22, 6, 3] and references therein
for more information. In this paper we refine one side of H-H inequality in
NPC global spaces via sequences.

2. Preliminaries

The aim of our paper is to discuss refinements of the H-H inequality to the
framework of spaces with global nonpositive curvature. A formal definition of
these spaces is as follows.

Definition 2.1. Let (N, d) be a complete metric space, which is also a
geodesic length space in the sense that the distance of N can be computed
via the infimum of the length of the rectifiable arcs joining given endpoints
in N (see [14, Section 2.2]). We say that (N, d) is a global NPC space if for
x1, x2 ∈ N there exists a point z ∈ N such that for each x ∈ N we have

d2(x, z) ≤ 1

2
d2(x, x1) +

1

2
d2(x, x2)−

1

4
d2(x1, x2).

These spaces are also known as the Cat(0) spaces. In a global NPC space
each pair of points x1, x2 ∈ N can be connected by a geodesic, i.e. by a
rectifiable curve γ : [0, 1]→ N such that the length of γ|[s,t] is d(γ(s), γ(t)) for
all 0 ≤ s ≤ t ≤ 1. Moreover, this geodesic is unique. The point z that appears
in Definition 2.1 is the midpoint of x1 and x2 and has the property

d(x1, z) = d(x2, z) =
1

2
d(x1, x2).
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Example 2.2. (1) Every Hilbert space is a global NPC space. Its geode-
sics are the line segments.

(2) A Riemannian manifold (M, g) is a global NPC space if and only if it is
complete, simply connected, and of nonpositive sectional curvature.

(3) Let Sym+(n,R) be the set of all n× n dimensional positive definite ma-
trices with real coefficients and for A,B ∈ Sym+(n,R) we consider the
metric

d(A,B) =
(∑

k

log2 λk

)1/2
,

where λ1, . . . , λn are the eigenvalues of AB−1. Then (Sym+(n,R), d) is a
global NPC space (see [17]).

Definition 2.3. A subset C ⊆ N is called convex if for each geodesic
γ : [0, 1]→ N joining two arbitrary points in C holds that γ([0, 1]) ⊆ C.

A function f : C → R is called convex if the function f ◦ γ : [0, 1] → R is
convex whenever γ : [0, 1]→ C is geodesic, that is, for all t ∈ [0, 1]

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)).

For sake of completeness, we recall two inequalities obtained in a previous
work (see [7]). These statements formulate different refinements of the H-H
inequality in global NPC spaces.

Theorem 2.4 ([7, Theorem 3.3]). Let (N, d) be a global NPC space, C ⊆ N
a convex set and f : C → R a convex function. Then

f
(
γ(1/2)

)
≤ 1

2

[
f(γ(2/3)) + f(γ(1/3))

]
≤ 1

2

[
f(γ(1/4)) + f(γ(3/4))

]
≤
∫ 1

0

f(γ(t)) dt

≤ 1

2

[
f
(
γ(1/2)

)
+
f(γ(0)) + f(γ(1))

2

]
≤ f(γ(0)) + f(γ(1))

2
(2.1)

and

f
(
γ(1/2)

)
≤ l(λ) ≤

∫ 1

0

f(γ(t))dt ≤ L(λ) ≤ f(γ(0)) + f(γ(1))

2
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for all geodesic γ : [0, 1]→ C and λ ∈ [0, 1], where

l(λ) = λf

(
γ
(λ
2

))
+ (1− λ)f

(
γ
(1 + λ

2

))
and

L(λ) =
1

2
[f(γ(λ)) + λf(γ(0)) + (1− λ)f(γ(1))].

Remark 2.5. Note that the following inequality is valid for a convex
function f : C → R, where C ⊆ N is a convex set:∫ 1

0

f(γ(t))dt− l(λ) ≤ L(λ)−
∫ 1

0

f(γ(t))dt.

The proof is a consequence of the bounds of the normalized Jensen func-
tional (see [8, Corollary 1] or [20, Corollary 3.1]), more precisely: let f be a
convex function on [a, b]. Then

2λmin

(
f(x1) + f(x2)

2
− f

(x1 + x2
2

))
≤ λf(x1) + (1− λ)f(x2)− f(λx1 + (1− λ)x2)

≤ 2λmax

(
f(x1) + f(x2)

2
− f

(x1 + x2
2

))
,

where 0 < λ < 1, λmin = min{λ, 1 − λ}, λmax = max{λ, 1 − λ} and
x1, x2 ∈ [a, b].

3. Refinements of Hermite–Hadamard inequality

We begin this section with a statement that has motivated the other results
obtained in this work.

Lemma 3.1. Let f : [a, b]→ R be a convex function. Then

f
(a+ b

2

)
≤ 1

b− a

∫ b

a

f(t) dt ≤ 1

2

(
f
(a+ b

2

)
+

1

2
f(a) +

1

2
f(b)

)

≤ 1

16

(
2f
(a+ b

2

)
+ 7f(a) + 7f(b)

)
≤ f(a) + f(b)

2
.
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Proof. Using convexity of the function f , we can easily verify the last
inequality. Now we will prove that:

1

b− a

∫ b

a

f(t) dt ≤ 1

2

(
f
(a+ b

2

)
+

1

2
f(a) +

1

2
f(b)

)
≤ 1

16

(
2f
(a+ b

2

)
+ 7f(a) + 7f(b)

)
.

Let us note that the first inequality is well-known ([11, Theorem 1.1]), but we
include its proof here for the sake of completeness. We have

1

b− a

∫ b

a

f(t) dt =
1

b− a

(∫ a+b
2

a

f(t) dt+

∫ b

a+b
2

f(t) dt)
)

≤ 1

b− a

(f(a) + f(a+b2 )

2

b− a
2

+
f(b) + f(a+b2 )

2

b− a
2

)
=

1

4

(
2f
(a+ b

2

)
+ f(a) + f(b)

)
=

1

16

(
8f
(a+ b

2

)
+ 4f(a) + 4f(b)

)
≤ 1

16

(
2f
(a+ b

2

)
+ 3(f(a) + f(b)) + 4f(a) + 4f(b)

)
=

1

16

(
2f
(a+ b

2

)
+ 7f(a) + 7f(b)

)
. �

From now on in this section, we assume that (N, d) is a global NPC space,
C ⊆ N a convex set, f : C → R a convex function and γ : [0, 1] → C a
geodesic connecting γ(0) with γ(1). In this paper we establish a refinement of
inequality (2.1). For this let us first define the following sequences (motivated
by the previous Lemma 3.1) for any n ∈ N with n ≥ 2:

xn =
1

2

[
f
(
γ
( 1
n

))
+ f

(
γ
(
1− 1

n

))]
and

yn =
2

n+ 1
f
(
γ
(1
2

))
+
[
1− 2

n+ 1

]f(γ(0)) + f(γ(1))

2
.
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Remark 3.2. In the particular case of R with the usual distance we have

y3 =
1

2

(
f
(a+ b

2

)
+

1

2
f(a) +

1

2
f(b)

)
and

y15 =
1

16

(
2f
(a+ b

2

)
+ 7f(a) + 7f(b)

)
.

The following result is a refinement of the “arithmetic-geometric” inequal-
ity.

Proposition 3.3. Let xn and yn be sequences defined as above. Then
(i) {xn}n≥2 and {yn}n≥2 are non-decreasing sequences,
(ii) for n ≥ 2 we have

f
(
γ(1/2)

)
≤ xn ≤ yn ≤

f(γ(0)) + f(γ(1))

2
.

Proof. (i) The monotonicity of {xn}n≥2 is a consequence of the convexity
of f and the following relations:

γ
( 1
n

)
= γ

([
1− 1

n(n− 1)

] 1

n+ 1
+

1

n(n− 1)

n

n+ 1

)
and

γ
(
1− 1

n

)
= γ

([
1− 1

n(n− 1)

] n

n+ 1
+

1

n(n− 1)

1

n+ 1

)
.

On the other hand, {yn}n≥2 is a non-decreasing sequence as consequence
of (2.1).

(ii) The first inequality is a consequence of the convexity of f and the fact
that for any t0 ∈ [0, 1] the midpoint between γ(t0) and γ(1 − t0) is given by
γ(1/2). Then in particular, if we consider t0 = 1/n, we obtain the relation

f(γ(1/2)) ≤ 1

2

[
f
(
γ
( 1
n

))
+ f

(
γ
(
1− 1

n

))]
.

To prove the second inequality, we use the fact that {xn}n≥2 is a non-decre-
asing sequence, the convexity of f and the following equalities:

γ

(
1

n+ 1

)
= γ

([
1− 2

n+ 1

]
0 +

2

n+ 1

1

2

)
,
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γ

(
n

n+ 1

)
= γ

([
1− 2

n+ 1

]
+

2

n+ 1

1

2

)
.

Finally, the last inequality is a consequence of (2.1). �

With the sequences introduced above, we can rewrite the inequality (2.1)
as follows:

f
(
γ(1/2)

)
= x2 ≤ x3 ≤ x4 ≤

∫ 1

0

f(γ(t)) dt ≤ y3 ≤
f(γ(0)) + f(γ(1))

2
.

From the previous statement, we obtain the following improvement of the H-H
inequality and refinement of Lemma 3.1.

Theorem 3.4. Let (N, d) be a global NPC space, C ⊆ N a convex set,
f : C → R a convex function and n ≥ 3. Then

f
(
γ(1/2)

)
≤ x3 ≤ x4 ≤

∫ 1

0

f(γ(λ)) dλ ≤ y3 ≤ . . . yn ≤ . . .

≤ f(γ(0)) + f(γ(1))

2

for all geodesic γ : [0, 1]→ C.

Now we consider the following sequences, for n ≥ 2:

zn =
1

2

(
xn +

f(γ(0)) + f(γ(1))

2

)
and

wn =
1

2

(
yn +

f(γ(0)) + f(γ(1))

2

)
.

Proposition 3.5. Let zn, wn be the sequences defined above. Then
(i) {zn}n≥2 and {zn}n≥2 are non-decreasing sequences,
(ii) for n ≥ 2 we have zn ≤ wn,
(iii) for n ≥ 2 we have

1

2

[
f
(
γ(1/2)

)
+
f(γ(0)) + f(γ(1))

2

]
= z2 ≤ . . . ≤ zn ≤ . . .

≤ f(γ(0)) + f(γ(1))

2
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and for n ≥ 3

1

2

[
f
(
γ(1/2)

)
+
f(γ(0)) + f(γ(1))

2

]
= w3 ≤ . . . ≤ wn ≤ . . .

≤ f(γ(0)) + f(γ(1))

2
.

Proof. It is a consequence of Proposition 3.3 and the fact that z2 =
y3 = w3. �

Theorem 3.6. Let (N, d) be a global NPC space, C ⊆ N a convex set and
f : C → R a convex function. Then for n ≥ 2

f
(
γ(1/2)

)
≤ x3 ≤ x4 ≤

∫ 1

0

f(γ(λ)) dλ ≤ z2 ≤ . . . zn ≤ . . .

≤ f(γ(0)) + f(γ(1))

2

and for m ≥ 3

f
(
γ(1/2)

)
≤ x3 ≤ x4 ≤

∫ 1

0

f(γ(λ)) dλ ≤ w3 ≤ . . . wm ≤ . . .

≤ f(γ(0)) + f(γ(1))

2

for all geodesic γ : [0, 1]→ C.

4. Applications

4.1. Let us consider (N, d) = (R, |.|), the global NPC space of the real
numbers with the usual distance, i.e. d(x, y) = |x − y|. If we take γa,b(t) =
(1− t)a+ tb, the unique geodesic connecting a to b, and f : [a, b]→ R a convex
function, then:

xn =
1

2

[
f
(a+ (n− 1)b

n

)
+ f

((n− 1)a+ b

n

)]
,

yn =
2

n+ 1
f
(a+ b

2

)
+
[
1− 2

n+ 1

]f(a) + f(b)

2
,
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zn =
1

2

(
xn +

f(a) + f(b)

2

)
,

wn =
1

2

(
yn +

f(a) + f(b)

2

)
.

In conclusion, we can state the following.

Proposition 4.1. Let f : [a, b]→ R be a convex function.
(1) For any n ≥ 3 we have

f
(a+ b

2

)
≤ x3 ≤ x4 ≤

1

b− a

∫ b

a

f(t) dt ≤ 1

2

[
f
(a+ b

2

)
+
f(a) + f(b)

2

]
= y3 ≤ . . . ≤ yn ≤ . . . ≤

f(a) + f(b)

2
.

(2) For any n ≥ 2 we have

f
(a+ b

2

)
≤ x3 ≤ x4 ≤

1

b− a

∫ b

a

f(t) dt ≤ 1

2

[
f
(a+ b

2

)
+
f(a) + f(b)

2

]
= z2 ≤ . . . ≤ zn ≤ . . . ≤

f(a) + f(b)

2
.

(3) For any n ≥ 3 we have

f
(a+ b

2

)
≤ x3 ≤ x4 ≤

1

b− a

∫ b

a

f(t) dt ≤ 1

2

[
f
(a+ b

2

)
+
f(a) + f(b)

2

]
= w3 ≤ . . . ≤ wn ≤ . . . ≤

f(a) + f(b)

2
.

Remark 4.2. We can compare the sequences {yn}n≥2, {zn}n≥2 introduced
above with the refinement given by Zabandan in [23]. Recall that the sequence
introduced by him was defined as follows:

Yn(f, a, b) =
1

2n

[f(a) + f(b)

2
+

2n−1∑
i=1

f
((

1− i

2n

)
a+

i

2n
b
)]
.

It is obvious that Y1(f, a, b) = y3 = z2. Then, by the monotonicity of each of
these sequences, we have that Y1(f, a, b) is a lower bound and consequently
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we have the following refinement of the H-H inequality:

f
(a+ b

2

)
≤ x3 ≤ x4 ≤

1

b− a

∫ b

a

f(t) dt ≤ Ym(f, a, b) ≤ . . . ≤ Y1(f, a, b)

=
1

2

[
f
(a+ b

2

)
+
f(a) + f(b)

2

]
= y3 ≤ . . . ≤ yn ≤ . . .

≤ f(a) + f(b)

2

for all m ≥ 1 and n ≥ 3.

4.2. Classical means

Recall that for two positive numbers a and b the following classical means
are defined by:

A = A(a, b) =
a+ b

2
arithmetic mean,

Fν = Fν(a, b) = (1− ν)
√
ab+ ν

a+ b

2
, ν ∈ [0, 1] Heinz mean,

Hν = Hν(a, b) =
aνb1−ν + a1−νbν

2
, ν ∈ [0, 1] Heron mean,

G = G(a, b) =
√
ab geometric mean,

L = L(a, b) =
b− a

ln(b)− ln(a)
(a 6= b); L(a, a) = a logarithmic mean.

Combining the different statements obtained previously we get:

Proposition 4.3. For α, β > 0 we have

G(α, β) ≤ F1/n(α, β) ≤ H1− 2
n+1

(α, β) ≤ A(α, β),

in particular, if α 6= β, then

G(α, β) < H1/3(α, β) < H1/4(α, β) < L(α, β) <
(√α+

√
β

2

)2
< H1− 2

n+1
(α, β) < A(α, β),
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G(α, β) < H1/3(α, β) < H1/4(α, β) < L(α, β) <
(√α+

√
β

2

)2
<

1

2
(H1/n(α, β) +A(α, β)) < A(α, β),

G(α, β) < H1/3(α, β) < H1/4(α, β) < L(α, β) <
(√α+

√
β

2

)2
< H1− 1

n+1
(α, β) < A(α, β).

Proof. Consider Propositions 3.3 and 4.1 with f(t) = et and α = ea,
β = eb. �

The above proposition gives comparisons between Heinz and Heron means.
Some of the previous inequalities have been obtained by Bhatia in [4] and
Carlson in [5]. On the other hand, in [18] Leach and Sholander showed that

(4.1) 3
√
G2A < L.

Particularly, as an application of (4.1) and the arithmetic-geometric’s inequal-
ity one can deduce

G <
3
√
G2A < L.

Using the previous proposition, we can refine that inequality as follows:

G < H1/3(α, β) <
3
√
G2A < L.

4.3. Utilizing the previous refinement obtained for convex real functions
defined in [a, b] and mimicking the proof given by Dragomir in [9], we can
provide some Hermite–Hadamard’s type inequalities for operator convex func-
tions of selfadjoint operators in Hilbert spaces.
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