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NUMERICAL SOLUTION OF TIME FRACTIONAL
SCHRÖDINGER EQUATION BY USING QUADRATIC

B-SPLINE FINITE ELEMENTS

Alaattin Esen, Orkun Tasbozan∗

Abstract. In this article, quadratic B-spline Galerkin method has been em-
ployed to solve the time fractional order Schrödinger equation. Numerical so-
lutions and error norms L2 and L∞ are presented in tables.

1. Introduction

Consider the time fractional nonlinear Schrödinger equation [15]

(1.1) i
∂γU(x, t)

∂tγ
+
∂2U(x, t)

∂x2
+ |U(x, t)|2U(x, t) = f(x, t)

with the boundary conditions

(1.2) U(a, t) = h1(t), U(b, t) = h2(t), t ≥ 0

and with the initial condition

(1.3) U(x, 0) = g(x), a ≤ x ≤ b,
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where the fractional derivative is in the Caputo’s sense [11, 21], 0 < γ < 1
and i =

√
−1.

Equation (1.1) is solved numerically by using quadratic B-spline Galerkin
method with given initial and boundary conditions. In the rest of the article
we use L1 approximation for 0 < γ ≤ 1

(1.4)
∂γf(t)

∂tγ

∣∣∣∣∣tm =
(∆t)−γ

Γ(2− γ)

m−1∑
k=0

bγk [f(tm−k)− f(tm−1−k)] ,

where bγk = (k + 1)1−γ − k1−γ .
Fractional calculus has taken part in literature in 1695 with letters which

were written by two famous mathematicians G.W. Leibnitz and L’ Hospital
to each other. After that time, a lot of famous mathematicians such as Eu-
ler, Laplace, Fourier, Lacroix, Abel, Riemann, Liouville, Caputo have made
contribution to the development of arbitrary order differentiation and inte-
gration [14]. Fractional order differentiation concept paves way for various
applications and it expresses the many physical problems [19]. Recent appli-
cations(studies) show that the fractional order differential equations are very
effective tools to articulate complex events and modelling many physical, en-
gineering phenomenons [21]. There are many applications of these type equa-
tions various fields such as viscoelastic, biology, signal process, electromag-
netic, chaos and fractals, traffic system, chemistry, control system, economics,
finance and etc. [13].

Riemann–Liouville approximation which is frequently seen in the liter-
ature, is composed of fractional integral and fractional derivative that are
mode by two famous mathematicians Riemann and Liouville. In this approxi-
mation, the initial conditions which are given with fractional order equations
composed of limit values of Rieman-Liouville derivative at the initial point.
This is the biggest disadvantage of this approximation. These initial points
don’t have any physical meaning. In 1967, M. Caputo presented a fractional
order derivative which involves the limit values at the initial points of inte-
ger order derivatives with initial values that are given with fractional order
equation. Due to the advantage of Caputo’s definition, Caputo fractional de-
rivative is preferred as fractional derivative operator in many fractional order
differential equations [21].

In recent years, many scientists have been searching the analytical and
numerical solutions of fractional order differential equations by using Laplace
transform method [21, 14], power series method [21], Adomian decomposition
method [23, 17], variational iteration method [16, 30], differential transform
method [18, 2], homotopy perturbation method [10, 27], homotopy analysis
method [1, 9], finite difference methods [26, 25], finite element method [8, 24,
7, 3, 4, 6, 5, 28, 29] and etc.
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Finite elements method first arose in 1960 and after that time, it has been
used commonly in various fields of physics and engineering. Argyris, Clough
and Zienkiewicz made contribution to this method [20]. With the develop-
ment of computer in the last recent fifty years, it is seen that this method
has a great importance in solving many problems which arise in physics and
engineering [12].

U(x, t) function which is given in fractional order Eq. (1.1) is a complex
function. So U(x, t) can be written

(1.5) U(x, t) = R(x, t) + iS(x, t),

where R(x, t) is the real part and S(x, t) is the imaginary part of the function
U(x, t). Substituting Eq. (1.5) in problem (1.1)-(1.3), we obtain a fractional
partial differential equation system

∂γS

∂tγ
− ∂2R

∂x2
−
(
R2 + S2

)
R = −fr(x, t),

∂γR

∂tγ
+
∂2S

∂x2
+
(
R2 + S2

)
S = fI(x, t),

(1.6)

where

fr(x, t) = − 2t2−γ

Γ(3− γ)
cos(2πx) + (t6 − 4π2t2) sin(2πx),

fI(x, t) =
2t2−γ

Γ(3− γ)
sin(2πx) + (t6 − 4π2t2) cos(2πx)

with the boundary conditions

R(0, t) = 0, R(1, t) = 0, t ≥ 0,

S(0, t) = t2, S(1, t) = t2, t ≥ 0,
(1.7)

with the initial conditions

(1.8) R(x, 0) = 0, S(x, 0) = 0, 0 ≤ x ≤ 1.

Exact solutions of this system can be given as

(1.9) R(x, t) = t2 sin(2πx), S(x, t) = t2 cos(2πx).
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2. Quadratic B-spline finite element Galerkin solutions

In this part, to apply the method, we multiply the Eq. system (1.6) with
W weighted function and integrate the system over the region, then we obtain
the weighted integral function of the system

1∫
0

W

[
∂γS

∂tγ
− ∂2R

∂x2
− (R2 + S2)R

]
dx = −

1∫
0

Wfr(x, t)dx,

1∫
0

W

[
∂γR

∂tγ
+
∂2S

∂x2
+ (R2 + S2)S

]
dx =

1∫
0

WfI(x, t)dx.

(2.1)

Applying partial integration, we get the weak form of the system over only
one finite element [xm, xm+1] as

xm+1∫
xm

(
W
∂γS

∂tγ
+
∂W

∂x

∂R

∂x
− (R2 + S2)WR

)
dx

= W
∂R

∂x

∣∣∣∣xm+1

xm

−
xm+1∫
xm

Wfr(x, t)dx,

xm+1∫
xm

bigl(W
∂γR

∂tγ
− ∂W

∂x

∂S

∂x
+ (R2 + S2)WS

)
dx

= −W ∂S

∂x

∣∣∣∣xm+1

xm

+

xm+1∫
xm

WfI(x, t)dx.

(2.2)

Now, let us define the quadratic B-spline base functions. Partitioning the in-
terval [a, b] into N finite elements of uniformly equal length by knots xm, m =
0, 1, 2, . . . , N such that a = x0 < x1 · · · < xN = b and h = xm+1 − xm. We
define the quadratic B-splines Qm(x) , (m = −1(1)N), at the knots xm are
defined over the interval [a, b] by [22]
(2.3)

Qm(x) = 1
h2


(xm+2 − x)2 − 3(xm+1 − x)2 + 3(xm − x)2, x ∈ [xm−1, xm],

(xm+2 − x)2 − 3(xm+1 − x)2, x ∈ [xm, xm+1],

(xm+2 − x)2, x ∈ [xm+1, xm+2],

0, otherwise.
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A basis for the functions defined over [a, b] is formed by the set of splines
{Q−1(x), Q0(x), . . . , QN (x)}. Hence, a solution approximation RN (x, t) and
SN (x, t) can be written in terms of the quadratic B-splines trial functions as:

RN (ξ, t) =

N∑
j=−1

δj(t)Qj(ξ), SN (ξ, t) =

N∑
j=−1

σj(t)Qj(ξ),

where δm(t)’s and σm(t)’s are unknown, time dependent parameters which are
going to be determined from the boundary and weighted residual conditions.
Each quadratic B-spline covers three elements, thus each element [xm, xm+1] is
covered by three quadratic B-splines. For problem, the finite elements are iden-
tified with the interval [xm, xm+1] and the elements knots xm, xm+1. When
we use the nodal values Rm, Sm, R

′

m, S
′

m which are given in terms of the
parameters δm(t), σm(t)

RN (xm) = Rm = δm−1 + δm,

SN (xm) = Sm = σm−1 + σm,

R′N (xm) = R′m = 2(−δm−1 + δm)/h,

S′N (xm) = S′m = 2(−σm−1 + σm)/h,

(2.4)

the variations of RN (x, t), SN (x, t) over the typical element [xm, xm+1] is
given by

(2.5) RN (ξ, t) =

m+1∑
j=m−1

δj(t)Qj(ξ), SN (ξ, t) =

m+1∑
j=m−1

σj(t)Qj(ξ).

If we take quadratic B-spline functions (2.3) instead of weighted functions and
substituting the approximations (2.5) into equation system (2.2), we get

m+1∑
j=m−1

(

h∫
0

QiQjdξ)σ̇
e
j +

m+1∑
j=m−1

(

h∫
0

Q′iQ
′
jdξ)δ

e
j − Zm

m+1∑
j=m−1

(

h∫
0

QiQjdξ)δ
e
j

−
m+1∑
j=m−1

(QiQ
′
j)

∣∣∣∣h
0

δej = −
h∫

0

Qif̃r(ξ, t)dξ, i = m− 1,m,m+ 1,(2.6)
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m+1∑
j=m−1

(

h∫
0

QiQjdξ)δ̇
e
j −

m+1∑
j=m−1

(

h∫
0

Q′iQ
′
jdξ)σ

e
j + Zm

m+1∑
j=m−1

(

h∫
0

QiQjdξ)σ
e
j

+

m+1∑
j=m−1

(QiQ
′
j)

∣∣∣∣h
0

σej =

h∫
0

Qif̃I(ξ, t)dξ, i = m− 1,m,m+ 1,(2.7)

where Zm = R2 + S2 and δ̇, σ̇ denote the γ− order fractional derivatives
dependent to t. When we take

Aeij =

h∫
0

QiQjdξ, Beij =

h∫
0

Q′iQ
′
jdξ, Ceij = QiQ

′
j

∣∣h
0
,

De
i = −

h∫
0

Qif̃r(ξ, t)dξ, Eei =

h∫
0

Qif̃I(ξ, t)dξ,

equation system (2.6)-(2.7) can be written in the matrix form

Aeσ̇e +Beδe − ZmAeδe − Ceδe = De,

Aeδ̇e −Beσ̇e + ZmA
eσe + Ceσe = Ee,

(2.8)

where δe = (δm−1, δm, δm+1) and σe = (σm−1, σm, σm+1). Evaluating the
above integrals for i, j, k = m − 1,m,m + 1, by using quadratic B-spline
functions Aeij , Beij and Ceij , element matrices can be found as

Aeij =

h∫
0

QiQjdξ =
h

30

 6 13 1
13 54 13
1 13 6

 ,
Beij =

h∫
0

Q′iQ
′
jdξ =

2

3h

 2 −1 −1
−1 2 −1
−1 −1 2

 ,
Ceij = QiQ

′
j

∣∣h
0

=
2

h

 1 −1 0
1 −2 1
0 −1 1

 .
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Also, De
i and Eei element matrixes can be evaluated as

De
i = −

h∫
0

Qif̃r(ξ, t)dξ =

 −
∫ h
0
Qm−1f̃r(ξ, t)dξ

−
∫ h
0
Qmf̃r(ξ, t)dξ

−
∫ h
0
Qm+1f̃r(ξ, t)dξ

 ,

Eei =

h∫
0

Qif̃I(ξ, t)dξ =


∫ h
0
Qm−1f̃I(ξ, t)dξ∫ h

0
Qmf̃I(ξ, t)dξ∫ h

0
Qm+1f̃I(ξ, t)dξ

 .
From equation Zm = R2

N + S2
N , by substituting the nodal values

Zm = (δm−1 + δm)2 + (σm−1 + σm)2

into equation (2.8), we obtain

Aσ̇ +Bδ −A(Zm)δ − Cδ = D,

Aδ̇ −Bσ̇ +A(Zm)σ + Cσ = E,
(2.9)

where δ = (δ−1, δ0, . . . , δN−1, δN ) and σ = (σ−1, σ0, . . . , σN−1, σN ). For m =
1(1)N − 2, the generalized rows of matrices A, B, C can be written as

A :
h

30
(1, 26, 66, 26, 1), B :

2

3h
(−1,−2, 6,−2,−1), C : (0, 0, 0, 0, 0),

and that of A(Zm) as

h

30
(Zm1, 13Zm1 + 13Zm2, 6Zm1 + 54Zm2 + 6Zm3, 13Zm2 + 13Zm3, Zm3),

where

Zm1 = (δm−2 + δm−1)2 + (σm−2 + σm−1)2,

Zm2 = (δm−1 + δm)2 + (σm−1 + σm)2,

Zm3 = (δm + δm+1)2 + (σm + σm+1)2.

(2.10)

In system (2.9), if we write

(2.11) δ =
δn + δn+1

2
, σ =

σn + σn+1

2
,
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Crank-Nicolson finite difference approximations instead of δ, σ and

δ̇ =
dγδ

dtγ
=

(∆t)−γ

Γ(2− γ)

n−1∑
k=0

[
(k + 1)1−γ − k1−γ

] [
δn−k − δn−k−1

]
,(2.12)

σ̇ =
dγσ

dtγ
=

(∆t)−γ

Γ(2− γ)

n−1∑
k=0

[
(k + 1)1−γ − k1−γ

]
,
[
σn−k − σn−k−1

]
(2.13)

L1 approximation instead of δ̇m, σ̇m, we obtain (2N + 4)× (2N + 4) algebraic
equation system as follows:

A

(∆t)γΓ(2− γ)
σn+1 +

1

2
[B −A(Zm)− C] δn+1

=
A

(∆t)γΓ(2− γ)
σn − 1

2
[B −A(Zm)− C] δn

− A

(∆t)γΓ(2− γ)

n∑
k=1

[
(k + 1)1−γ − k1−γ

] [
σn−k − σn−k−1

]
+D,

(2.14)

A

(∆t)γΓ(2− γ)
δn+1 − 1

2
[B −A(Zm)− C]σn+1

=
A

(∆t)γΓ(2− γ)
δn +

1

2
[B −A(Zm)− C]σn

− A

(∆t)γΓ(2− γ)

n∑
k=1

[
(k + 1)1−γ − k1−γ

] [
δn−k − δn−k−1

]
+ E.

(2.15)

By vanishing the parameters δ−1, δN , σ−1, σN with the help of boundary
conditions given with problem, we handle (2N × 2N) square matrix algebraic
system. To start the iteration, we have to know the initial parameters δ0, σ0.
After evaluating the initial parameters δ0 and σ0, the numerical solutions can
be obtained by using these parameters in the equation system (2.14)–(2.15).
We can attain numerical solutions at the intended time by writing these values
in the RN and SN approximations. To enhance the approximation RN and
SN solutions, we apply the iteration formulas

δ∗m = δnm +
1

2
(δn+1
m − δnm), σ∗m = σnm +

1

2
(σn+1
m − σnm)

to nonlinear terms in Eq. system (2.14)–(2.15) for each time step.
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Initial parameters can be obtained as follows: The initial vectors

d0 = (δ−1, δ0, δ1, . . . , δN−2, δN−1, δN )T ,

d̃0 = (σ−1, σ0, σ1, . . . , σN−2, σN−1, σN )T
(2.16)

are determined with the aid of the initial and boundary conditions. It is nec-
essary to have the initial numerical approximations RN (x, 0) and SN (x, 0)
which satisfy the following conditions:

RN (x, 0) = R(xm, 0), m = 0, 1, . . . , N,

SN (x, 0) = S(xm, 0), m = 0, 1, . . . , N,

R′N (x0, 0) = R′(x0, 0), S′N (x0, 0) = S′(x0, 0).

(2.17)

Hence, using these conditions lead to a two-diagonal systems of matrix of the
forms

(2.18) Wd0 = b, W d̃0 = b̃,

where

W =



−2
h

2
h

1 1
1 1

. . .
1 1

1 1


and

b = (R′(x0, 0), R(x0, 0), R(x1, 0), . . . , R(xN−2, 0), R(xN−1, 0), R(xN , 0))T ,

b̃ = (S′(x0, 0), S(x0, 0), S(x1, 0), . . . , S(xN−2, 0), S(xN−1, 0), S(xN , 0))T .
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2.1. Numerical Results

In this section, considered problem is solved numerically by using Galerkin
finite element method. Now, consider the time fractional nonlinear Schrödinger
equation (1.1) with the boundary conditions

U(0, t) = it2, U(1, t) = it2, t ≥ 0

and the initial condition

U(x, 0) = 0, 0 ≤ x ≤ 1.

Additionally, the f(x, t) is the form

f(x, t) = − 2t2−γ

Γ(3− γ)
cos(2πx) + (t6 − 4π2t2) sin(2πx)

+ i

(
2t2−γ

Γ(3− γ)
sin(2πx) + (t6 − 4π2t2) cos(2πx)

)
and the exact solution of this problem is given by [15]

U(x, t) = t2(sin(2πx) + i cos(2πx)).

L2 and L∞ error norms which are evaluated with the numerical solutions
of real and imaginary parts are given for ∆t = 0.005, γ = 0.50, t = 1 and
different values of N in the Tables 1–2, respectively. Both of two tables show

Table 1. Error norms and numerical solutions of real part of the problem
for γ = 0.50, ∆t = 0.005, t = 1

x N = 25 N = 30 N = 35 N = 40 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 0.942844 0.947022 0.949524 0.951150 0.951057
0.4 0.581600 0.584759 0.586665 0.587916 0.587785
0.6 -0.585850 -0.586937 -0.587577 -0.587970 -0.587785
0.8 -0.945695 -0.948541 -0.950228 -0.951298 -0.951057
1.0 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 5.338936 2.598532 0.966275 0.170855
L∞ × 103 9.117853 4.239642 1.331924 0.562147

that the error norms decrease as the partition number N increases in the nu-
merical solutions obtained by Galerkin method. In Tables 3–4, the numerical
of real and imaginary parts of the solutions and L2, L∞ error norms are given,
respectively for γ = 0.50, N = 40, t = 1 and different values of ∆t. From the
tables, it is seen that the error norms decrease for the increasing values of ∆t
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Table 2. Error norms and numerical solutions of imaginary part of the
problem for γ = 0.50, ∆t = 0.005, t = 1

x N = 25 N = 30 N = 35 N = 40 Exact
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.2 0.314710 0.311708 0.309935 0.308792 0.309017
0.4 -0.795690 -0.802782 -0.807021 -0.809772 -0.809017
0.6 -0.795791 -0.802899 -0.807144 -0.809898 -0.809017
0.8 0.314552 0.311525 0.309739 0.308586 0.309017
1.0 1.000000 1.000000 1.000000 1.000000 1.000000

L2 × 103 8.643806 4.248708 1.583606 0.311933
L∞ × 103 14.545977 6.790519 2.133489 0.911772

Table 3. Error norms and numerical solutions of real part of the problem
for γ = 0.50, N = 40, t = 1

x ∆t = 0.0125 ∆t = 0.01 ∆t = 0.008 ∆t = 0.005 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 0.959018 0.956395 0.954297 0.951150 0.951057
0.4 0.594085 0.592028 0.590383 0.587916 0.587785
0.6 -0.590194 -0.589454 -0.588861 -0.587970 -0.587785
0.8 -0.956777 -0.954952 -0.953491 -0.951298 -0.951057
1.0 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 5.305685 3.575290 2.191628 0.170855
L∞ × 103 10.472901 7.168726 4.524940 0.562147

Table 4. Error norms and numerical solutions of imaginary part of the
problem for γ = 0.50, N = 40, t = 1

x ∆t = 0.0125 ∆t = 0.01 ∆t = 0.008 ∆t = 0.005 Exact
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.2 0.303001 0.304932 0.306476 0.308792 0.309017
0.4 -0.824177 -0.819376 -0.815534 -0.809772 -0.809017
0.6 -0.824501 -0.819635 -0.815741 -0.809898 -0.809017
0.8 0.302458 0.304500 0.306134 0.308586 0.309017
1.0 1.000000 1.000000 1.000000 1.000000 1.000000

L2 × 103 8.706987 5.860150 3.582478 0.311933
L∞ × 103 16.864538 11.544108 7.286787 0.911772

time step. Lastly the numerical solutions of real and imaginary parts, L2 and
L∞ error norms for the considered problem are given for ∆t = 0.005, N = 40,
t = 1 and different values of γ in Tables 5–6. The L∞ error norms obtained by
radial basis functions given in Ref. [15] and L2, L∞ error norms of the numer-
ical solutions of real and imaginary parts of the considered problem obtained
by B-spline Galerkin method for N = 30, t = 1 are given in Tables 7–8 for
γ = 0.10, γ = 0.30, respectively. The L∞ error norms of the numerical results
that obtained by this method with the choice ∆t = 0.008 are smaller than the
L∞ error norms that are given in Ref. [15]. In Figures 1–2, the absolute errors
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Table 5. Error norms and numerical solutions of real part of the problem
for ∆t = 0.005, N = 40, t = 1

x γ = 0.10 γ = 0.30 γ = 0.70 γ = 0.90 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 0.951334 0.951257 0.951010 0.950787 0.951057
0.4 0.588199 0.588084 0.587685 0.587291 0.587785
0.6 -0.587683 -0.587799 -0.588207 -0.588610 -0.587785
0.8 -0.951110 -0.951187 -0.951445 -0.951679 -0.951057
1.0 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 0.240379 0.186763 0.271229 0.531091
L∞ × 103 0.468496 0.499439 0.665903 0.844600

Table 6. Error norms and numerical solutions of imaginary part of the
problem for ∆t = 0.005, N = 40, t = 1

x γ = 0.10 γ = 0.30 γ = 0.70 γ = 0.90 Exact
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.2 0.308882 0.308856 0.308677 0.308454 0.309017
0.4 -0.809636 -0.809678 -0.809933 -0.810222 -0.809017
0.6 -0.809770 -0.809814 -0.810029 -0.810235 -0.809017
0.8 0.308659 0.308632 0.308524 0.308445 0.309017
1.0 1.000000 1.000000 1.000000 1.000000 1.000000

L2 × 103 0.436366 0.499439 0.485480 0.846714
L∞ × 103 0.776350 0.328332 1.061380 1.314998

Table 7. Comparison of error norms of problem with the re-
sults from Ref. [15] for N = 30, γ = 0.10, t = 1

Real Imaginary
L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

∆t = 0.008 0.5442 0.4981 0.8560 0.7526
[15] ——– 2.8536 ——– 2.1753

Table 8. Comparison of error norms of problem with the re-
sults from Ref. [15] for N = 30, γ = 0.30, t = 1

Real Imaginary
L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

∆t = 0.008 0.5254 0.4382 0.8846 0.6685
[15] ——– 2.8610 ——– 2.1771

of real and imaginary parts solutions are presented for ∆t = 0.005, N = 40,
t = 1 and different values of γ.
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Figure 1. Error distributions of real part of Problem for ∆t = 0.005, N = 40, t = 1

3. Conclusion

In this paper, quadratic B-spline Galerkin method has been applied to
achieve the numerical solutions of the time fractional Schrödinger equation.
The time fractional derivative operators are made allowance for the Caputo
fractional derivatives. It can be easily viewed from the numerical solutions
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Figure 2. Error distributions of imaginary part of Problem for ∆t = 0.005, N = 40, t = 1

and error norms in tables obtained that this method is an extremely good
to achieve numerical solutions of time fractional partial differential equations
arising in physics and engineering.



Numerical solution of time fractional Schrödinger equation 97

References

[1] Dehghan M., Jalil M., Abbas S., Solving nonlinear fractional partial differential equa-
tions using the homotopy analysis method, Numer. Meth. Part. D. E. 26 (2010), 448–
479.

[2] Ertürk V.S., Momani S., Solving systems of fractional differential equations using dif-
ferential transform method, J. Comput. Appl. Math. 215 (2008), 142–151.

[3] Esen A., Tasbozan O., An approach to time fractional gas dynamics equation: Qua-
dratic B-spline Galerkin method, Appl. Math. Comput. 261 (2015), 330–336.

[4] Esen A., Tasbozan O., Cubic B-spline collocation method for solving time fractional
gas dynamics equation, Tbilisi Math. J. 8 (2015), 221–231.

[5] Esen A., Tasbozan O., Numerical solution of time fractional Burgers equation, Acta
Univ. Sapientiae Math. 7 (2015), 167–185.

[6] Esen A., Tasbozan O., Numerical solution of time fractional Burgers equation by cubic
B-spline finite elements, Mediterr. J. Math. 13 (20016), 1325–1337.

[7] Esen A., Tasbozan O., Ucar Y., Yagmurlu N.M., A B-spline collocation method for
solving fractional diffusion and fractional diffusion-wave equations, Tbilisi Math. J. 8
(2015), 181–193.

[8] Esen A., Ucar Y., Yagmurlu N.M., Tasbozan O., A Galerkin finite element method to
solve fractional diffusion and fractional diffusion-wave equations, Math. Model. Anal.
18 (2013), 260–273.

[9] Esen A., Yagmurlu N.M., Tasbozan O., Approximate analytical solution to time-
fractional damped Burger and Cahn-Allen equations, Appl. Math. Inf. Sci. 7 (2013),
1951–1956.

[10] Jafari H., Momani S., Solving fractional diffusion and wave equations by modified
homotopy perturbation method, Phys. Lett. A 370 (2007), 388–396.

[11] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional dif-
ferential equations, Elsevier, Amsterdam, 2006.

[12] Logan D.L., A first course in the finite element method, Fourth edition, Thomson,
Toronto 2007.

[13] Machado J.A.T., Silva M.F., Barbosa R.S., Jesus I.S., Reis C.M., Marcos M.G., Gal-
hano A.F., Some applications of fractional calculus in engineering, Math. Probl. Eng.
2010, Article ID 639801, 34 pp., http://dx.doi.org/10.1155/2010/639801.

[14] Miller K.S., Ross B., An introduction to the fractional calculus and fractional differ-
antial equations, John Wiley, New York, 1993.

[15] Mohebbi A., Abbaszadeh M., Dehghan M., The use of a meshless technique based
on collocation and radial basis functions for solving the time fractional nonlinear
Schrödinger equation arising in quantum mechanics, Eng. Anal. Bound. Elem. 37
(2013), 475–485.

[16] Momani S., Odibat Z., Analytical approach to linear fractional partial differential equa-
tions arising in fluid mechanics, Phys. Lett. A 355 (2006), 271–279.

[17] Momani S., Odibat Z., Numerical comparison of methods for solving linear differential
equations of fractional order, Chaos Soliton Fractals 31 (2007), 1248–1255.

[18] Odibat Z., Momani S., A generalized differential transform method for linear partial
differential equations of fractional order, Appl. Math. Lett. 21 (2008), 194–199.

[19] Oldham K.B., Spainer J., The fractional calculus, Academic Press, New York, 1974.
[20] Otteson N., Pettorson H., Introduction to the finite element method, Prentice Hall,

London, 1992.
[21] Podlubny I., Fractional differential equations, Academic Press, San Diego, 1999.
[22] Prenter P.M., Splines and variasyonel methods, John Wiley, New York, 1975.
[23] Shawagfeh N.T., Analytical approximate solutions for nonlinear fractional differential

equations, Appl. Math. Comput. 131 (2002), 517–529.

http://dx.doi.org/10.1155/2010/639801


98 Alaattin Esen, Orkun Tasbozan

[24] Tasbozan O., Esen A., Yagmurlu N.M., Ucar Y., A numerical solution to fractional
diffusion equation for force-free case, Abstr. Appl. Anal. 2013, Article ID 187383,
6 pp., http://dx.doi.org/10.1155/2013/187383.

[25] Yuste S.B., Weighted average finite difference methods for fractional diffusion equa-
tions, J. Comput. Phys. 216 (2006), 264–274.

[26] Yuste S.B., Acedo L., An explicit finite difference method and a new von Neumann-
type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal. 42
(2005), 1862–1874.

[27] Wang Q., Homotopy perturbation method for fractional KdV-Burgers equation, Chaos
Soliton Fractals 35 (2008), 843–850.

[28] Wei L., He Y., Zhang X., Wang S., Analysis of an implicit fully discrete local discon-
tinuous Galerkin method for the time-fractional Schrödinger equation, Finite Elem.
Anal. Des. 59 (2012), 28–34.

[29] Wei L., Zhang X., Kumar S., Yildirim A., A numerical study based on an implicit
fully discrete local discontinuous Galerkin method for the time-fractional coupled
Schrödinger system, Comput. Math. Appl. 64 (2012), 2603–2615.

[30] Wua G.C., Baleanu D., Variational iteration method for the Burgers flow with frac-
tional derivatives-New Lagrange multipliers, Appl. Math. Model. 37 (2013), 6183–6190.

Department of Mathematics
Inönü University
Malatya, 44280
Turkey

Department of Mathematics
Mustafa Kemal University
Hatay, 31000
Turkey
e-mail: orkun.tasbozan@inonu.edu.tr

http://dx.doi.org/10.1155/2013/187383

