ON ORTHOGONALLY ADDITIVE FUNCTIONS WITH BIG GRAPHS

KAROL BARON

Abstract. Let E be a separable real inner product space of dimension at least 2 and V be a metrizable and separable linear topological space. We show that the set of all orthogonally additive functions mapping E into V and having big graphs is dense in the space of all orthogonally additive functions from E into V with the Tychonoff topology.

Let E be a real inner product space of dimension at least 2 and V a linear topological Hausdorff space. A function f mapping E into V is called orthogonally additive, if

$$f(x+y) = f(x) + f(y)$$
 for all $x, y \in E$ with $x \perp y$.

It is well known, see [6, Corollary 10] (cf. also [4, Theorem 1]), that every orthogonally additive function f defined on E has the form

(1)
$$f(x) = a(||x||^2) + b(x) \text{ for } x \in E,$$

where a and b are additive functions uniquely determined by f.

We continue a study of topological properties of some sets of orthogonally additive functions.

Given a non-empty set S consider the set V^S of all functions from S into V with the usual Tychonoff topology; clearly V^S is a linear topological space.

Received: 29.07.2016. Accepted: 15.09.2016. Published online: 18.12.2016.

⁽²⁰¹⁰⁾ Mathematics Subject Classification: 39B55, 39B52, 54C10.

Key words and phrases: orthogonal additivity, inner product space, linear topological space, Tychonoff topology, big graph, dense set.

58 Karol Baron

In what follows we consider $\operatorname{Hom}_{\perp}(E,V)$ and $\operatorname{Hom}(S,V)$ for $S \in \{\mathbb{R},E\}$ with the topology induced by V^E and V^S , respectively, where

$$\operatorname{Hom}_{\perp}(E, V) = \{ f : E \to V \mid f \text{ is orthogonally additive} \}$$

and

$$\operatorname{Hom}(S, V) = \{ f : S \to V \mid f \text{ is additive} \}$$

for $S \in \{\mathbb{R}, E\}$. According to [2, Corollary 1]:

- 1. If $V \neq \{0\}$, then Hom(E, V) is closed and nowhere dense in $\text{Hom}_{\perp}(E, V)$. This and [1, Theorem] gives:
- 2. The set

$$\{f \in \operatorname{Hom}_+(E, V) : f \text{ is injective and } f(E) = V\}$$

is nowhere dense in $\operatorname{Hom}_{\perp}(E, V)$.

Moreover, see [3, Corollaries 2.3 and 2.4]:

3. If card $E \leq \operatorname{card} V$, then the set

$$\{f \in \operatorname{Hom}_{\perp}(E, V) : f \text{ is injective and } f(E) \neq V\}$$

is dense in $\operatorname{Hom}_{\perp}(E, V)$.

4. If card $V \leq \operatorname{card} E$, then the set

$$\{f \in \operatorname{Hom}_{\perp}(E, V) : f(E) = V \text{ and } f \text{ is not injective}\}$$

is dense in $\operatorname{Hom}_{\perp}(E, V)$.

The main result of this note concerns density of the set of all orthogonally additive functions with big graphs. Following [5, p. 317] we say that a function f mapping a topological space X into a topological space Y has a big graph if $B \cap \operatorname{Graph}(f) \neq \emptyset$ for every Borel subset B of $X \times Y$ such that the projection $\pi_X(B)$ of B onto X has the cardinality card X. We start with the following theorem.

THEOREM 1. If R is a family of subsets of $E \times V$ such that

$$\operatorname{card} \pi_E(R) > \aleph_0 \quad and \quad \operatorname{card} \pi_E(R) \ge \operatorname{card} \mathcal{R} \quad for \ R \in \mathcal{R},$$

then the set

$$\{f \in \operatorname{Hom}_{\perp}(E, V) : R \cap \operatorname{Graph}(f) \neq \emptyset \text{ for every } R \in \mathcal{R}\}$$

is dense in $\operatorname{Hom}_{\perp}(E,V)$.

PROOF. Since (see [2, Theorem 1]) the operator which assigns the function f defined by (1) to the variable (a, b) from $\operatorname{Hom}(\mathbb{R}, V) \times \operatorname{Hom}(E, V)$ is a homeomorphism onto $\operatorname{Hom}_{\perp}(E, V)$, it is enough to prove that the set

(2)
$$\bigcap_{R \in \mathcal{R}} \bigcup_{x \in E} \left\{ (a, b) \in \operatorname{Hom}(\mathbb{R}, V) \times \operatorname{Hom}(E, V) : (x, a(\|x\|^2) + b(x)) \in R \right\}$$

is dense in $\operatorname{Hom}(\mathbb{R}, V) \times \operatorname{Hom}(E, V)$.

We shall show more: if $a \in \text{Hom}(\mathbb{R}, V)$ and $\mathcal{U} \subset \text{Hom}(E, V)$ is open and non-empty, then $\{a\} \times \mathcal{U}$ intersects set (2). To this end we may assume that

$$\mathcal{U} = \{ b \in \text{Hom}(E, V) : b(z_n) \in U_n \text{ for } n \in \{1, \dots, N\} \}$$

with some open subsets U_1, \ldots, U_N of $V, z_1, \ldots, z_N \in E$ and $N \in \mathbb{N}$.

Fix $b_0 \in \mathcal{U}$. To prove that $\{a\} \times \mathcal{U}$ meets set (2) it is enough to show that there is a $b \in \text{Hom}(E, V)$ such that (a, b) is in the set (2) and

(3)
$$b(z_n) = b_0(z_n) \text{ for } n \in \{1, \dots, N\}.$$

Let H be a base of the vector space E over the field \mathbb{Q} of all rationals and let H_0 be a finite subset of H such that $z_1, \ldots, z_N \in \text{Lin}_{\mathbb{Q}} H_0$. Put

$$\gamma = \operatorname{card} \mathcal{R}$$

and let $(R_{\alpha})_{\alpha<\gamma}$ be a transfinite sequence of all elements of \mathcal{R} . (We treat γ as an ordinal.) By transfinite induction we define an injective transfinite sequence $(x_{\alpha})_{\alpha<\gamma}$ of vectors of E and a transfinite sequence $(v_{\alpha})_{\alpha<\gamma}$ of vectors of V such that for every $\alpha<\gamma$ we have

(4)
$$H_0 \cup \{x_\beta : \beta \le \alpha\}$$
 is linearly independent over \mathbb{Q} ,

(5)
$$H_0 \cap \{x_\beta : \ \beta \le \alpha\} = \emptyset,$$

and

$$(6) (x_{\alpha}, v_{\alpha}) \in R_{\alpha}.$$

We proceed as follows. If $\delta < \gamma, (x_{\alpha})_{\alpha < \delta}$ is an injective transfinite sequence of vectors of E and $(v_{\alpha})_{\alpha < \delta}$ is a transfinite sequence of vectors of V such that (4)–(6) hold for every $\alpha < \delta$, then

$$\operatorname{card} \operatorname{Lin}_{\mathbb{Q}}(H_0 \cup \{x_{\alpha} : \alpha < \delta\}) \leq \aleph_0 \cdot \max\{\aleph_0, \operatorname{card} \delta\}$$

= $\max\{\aleph_0, \operatorname{card} \delta\} < \operatorname{card} \pi_E(R_\delta),$

60 Karol Baron

and so the set

$$\pi_E(R_\delta) \backslash \operatorname{Lin}_{\mathbb{Q}}(H_0 \cup \{x_\alpha : \alpha < \delta\})$$

is non-empty; choosing a point x_{δ} from this set we see that $H_0 \cup \{x_{\alpha} : \alpha \leq \delta\}$ consists of vectors linearly independent over \mathbb{Q} and $(x_{\delta}, v_{\delta}) \in R_{\delta}$ for some $v_{\delta} \in V$.

Let $b \colon E \to V$ be an additive function such that

$$b|_{H_0} = b_0|_{H_0}$$
 and $b(x_\alpha) = v_\alpha - a(\|x_\alpha\|^2)$ for $\alpha < \gamma$.

Then (3) holds and

$$(x_{\alpha}, a(\|x_{\alpha}\|^2) + b(x_{\alpha})) = (x_{\alpha}, v_{\alpha}) \in R_{\alpha}$$

for $\alpha < \gamma$ and so (a, b) is in the set (2).

Corollary 1. If E is separable and V is metrizable and separable, then the set

(7)
$$\{f \in \operatorname{Hom}_{\perp}(E, V) : f \text{ has a big graph}\}\$$

is dense in $\operatorname{Hom}_{\perp}(E,V)$.

PROOF. If R denotes the family

$$\{B \subset E \times V : B \text{ is Borel and } \operatorname{card} \pi_E(B) = \operatorname{card} E\},\$$

then (see, e.g., [5, Theorem 2.3.4])

$$\operatorname{card} \mathcal{R} = \mathfrak{c} = \operatorname{card} E = \operatorname{card} \pi_E(B)$$

for every $B \in \mathcal{R}$.

Functions with big graphs have a lot of interesting properties. In particular the following (see [5, Theorems 2.5.6 and 2.8.3] and the proofs of Theorems 12.4.4 and 12.4.5 in [5]):

- 5. Assume X and Y are Polish spaces.
 - (i) If X has no isolated points, then the graph of any function with big graph mapping X into Y is dense in $X \times Y$.
 - (ii) If X and Y have no isolated points and $f: X \to Y$ has a big graph, then neither Graph(f), nor $(X \times Y) \setminus Graph(f)$ contains a second category set with the Baire property.

(iii) If X and Y are connected, then the graph of any function with big graph mapping X into Y is connected.

Hence and from Corollary 1 we obtain the following corollary.

COROLLARY 2. If E is separable and Hilbert and V is Polish, $V \neq \{0\}$, then the set

$$\{f \in \operatorname{Hom}_{\perp}(E, V) : \operatorname{Graph}(f) \text{ is dense and connected,}$$

 $and \ neither \operatorname{Graph}(f), \ nor \ (E \times V) \setminus \operatorname{Graph}(f)$
 $contains \ a \ second \ category \ set \ with \ the \ Baire \ property\}$

is dense in $\operatorname{Hom}_{\perp}(E, V)$.

At the end note also that:

- 6. If $V \neq \{0\}$, then the complement of the set (7) is dense in $\operatorname{Hom}_{\perp}(E, V)$. In fact, an obvious modification of the proof of Theorem 1 shows that:
- 7. The set

$$\{f \in \operatorname{Hom}_{\perp}(E, V) : f(E) \text{ is countable}\}$$

is dense in $\operatorname{Hom}_{\perp}(E, V)$.

The reader interested in further problems connected with orthogonal additivity is referred to the survey paper [7] by Justyna Sikorska.

Acknowledgement. The research was supported by the University of Silesia Mathematics Department (Iterative Functional Equations and Real Analysis program).

References

- [1] Baron K., Orthogonally additive bijections are additive, Aequationes Math. 89 (2015), 297–299.
- [2] Baron K., On the continuous dependence of solutions to orthogonal additivity problem on given functions, Ann. Math. Sil. 29 (2015), 19–23.
- [3] Baron K., On orthogonally additive injections and surjections, Comment. Math. 55 (2015), 157–162.
- [4] Baron K., Rätz J., On orthogonally additive mappings on inner product spaces, Bull. Polish Acad. Sci. Math. 43 (1995), 187–189.
- [5] Kuczma M., An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality, Second edition (edited by A. Gilányi), Birkhäuser Verlag, Basel, 2009.

62 Karol Baron

[6] Rätz J., On orthogonally additive mappings, Aequationes Math. 28 (1985), 35–49.

[7] Sikorska J., Orthogonalities and functional equations, Aequationes Math. 89 (2015), 215–277.

Institute of Mathematics University of Silesia Bankowa 14 40-007 Katowice Poland e-mail: baron@us.edu.pl