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A SIMPLE PROOF OF THE POLAR DECOMPOSITION
THEOREM

Paweł Wójcik

Abstract. In this expository paper, we present a new and easier proof of the
Polar Decomposition Theorem. Unlike in classical proofs, we do not use the
square root of a positive matrix. The presented proof is accessible to a broad
audience.

1. Introduction

The algebra of all real (or complex) n× n matrices is denoted by Mn(K).
Let us recall a well-known result.

Theorem 1.1 (Polar Decomposition). Suppose that A ∈ Mn(K) is a
nonzero matrix. Then there are U,P ∈Mn(K) such that U is unitary, P ≥ 0,
and A = UP .

This result is called the Polar Decomposition, and its proof uses the square
root of a positive matrix (or The Functional Calculus). Different proofs can
be found, e.g., in [1, 2, 3]. The aim of this article is to introduce a new proof
of the Polar Decomposition. Let us point out that our proof neither uses the
square root of a positive operator nor The Functional Calculus.

It should be easier to prove Polar Decomposition Theorem, if we consider
operators instead of matrices. Using elementary techniques, Polar Decompo-
sition will be proved. Throughout this paper we assume that the considered
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Hilbert spaces are finite dimensional and their dimensions are not less than 2.
Let B(H;K) denote the Banach space of all bounded linear operators (between
Hilbert spaces H and K) and we write B(H) for B(H;H). We shall identify
B(H) (where dimH = n) and Mn(K) in the natural way. Let us denote the
unit sphere by S(H) := {x ∈ H : ‖x‖ = 1}. Throughout this work, all Hilbert
spaces are assumed to be real or complex.

If P ∈ B(H), then P is positive if 〈Px|x〉 ≥ 0 for all x ∈ H. In symbols
this is denoted by P ≥ 0. If U ∈ B(H), then U is an isometry if ‖Ux‖ = ‖x‖
for all x ∈ H, or, equivalently, 〈Ux|Uy〉 = 〈x|y〉 for all x, y ∈ H.

2. A new and easy proof

In this section we present an elementary proof of the Polar Decomposition.
The method of proof presented here is different from that of [1, 2, 3]. We start
with the following lemma.

Lemma 2.1. Assume that dimH = 2. If A ∈ B(H;K) and A 6= 0, then
there are vectors x1, x2 in S(H) such that x1⊥x2 and Ax1⊥Ax2.

Proof. Fix x, z ∈ S(H) such that x⊥z. If 〈Ax|Az〉 = 0, we define x1 := x,
x2 := z.

Now, assume that 〈Ax|Az〉 = c 6= 0. Then we define a vector y := c
|c|z. It

follows that 〈Ax|Ay〉 ∈ R and y ∈ S(H). Moreover, x⊥y and 〈Ay|Ax〉 ∈ R.
Then we define a mapping ϕ : [0, 1]→ K by

ϕ(t) :=

〈
A

(
(1− t)x+ ty

‖(1− t)x+ ty‖

) ∣∣∣ A( t(−x) + (1− t)y
‖t(−x) + (1− t)y‖

)〉
.

Define now N1(t) := ‖(1− t)x+ ty‖ and N2(t) := ‖t(−x) + (1− t)y‖. It is
easy to check that ϕ(t) ∈ R for all t ∈ [0, 1]. Indeed, we have

ϕ(t) =
(1− t)(−t)
N1(t)N2(t)

〈Ax|Ax〉+ (1− t)2

N1(t)N2(t)
〈Ax|Ay〉

+
−t2

N1(t)N2(t)
〈Ay|Ax〉+ t(1− t)

N1(t)N2(t)
〈Ay|Ay〉 ∈ R.
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In fact, we can write ϕ : [0, 1] → R. It is easy to see that ϕ is continuous.
Moreover, we have

ϕ(0) =

〈
A

(
x

‖x‖

) ∣∣∣A( y

‖y‖

)〉
and

ϕ(1) = −
〈
A

(
y

‖y‖

) ∣∣∣A( x

‖x‖

)〉
= −

〈
A

(
x

‖x‖

) ∣∣∣A( y

‖y‖

)〉
,

which means ϕ(0) = −ϕ(1). Thus we get ϕ(0) ≤ 0 ≤ ϕ(1) or ϕ(1) ≤ 0 ≤ ϕ(0).
Without loss of generality, we may assume that ϕ(0) ≤ 0 ≤ ϕ(1). Using the
Darboux property we get ϕ(to) = 0 for some to ∈ [0, 1]. Thus for the vectors

x1 :=
(1− to)x+ toy

‖(1− to)x+ toy‖
, x2 :=

to(−x) + (1− to)y
‖to(−x) + (1− to)y‖

we have x1⊥x2 and 0 = ϕ(to) = 〈A(x1) |A(x2)〉, therefore Ax1⊥Ax2. The
proof is complete. �

The next result is a consequence of the above lemma.

Theorem 2.2. Assume that dimH = n. If A ∈ B(H;K) and A 6= 0, then
there are vectors x1, . . . , xn in S(H) such that

xj⊥xk and Axj⊥Axk, j, k ∈ {1, . . . , n}, j 6= k.

Proof. We proceed by induction (with respect to the dimension of H).
For n = 2 we have proved that it is true (see Lemma 2.1).

Assume the statement holds for n. We will prove it for n + 1. Suppose
that dimH = n + 1. Obviously S(H) is compact. Therefore there is a yo
in S(H) such that ‖A‖ = ‖Ayo‖. It is clear that dim{yo}⊥ = n. Then, by
inductive assumption, there are the vectors x1, . . . , xn ∈ S

(
{yo}⊥

)
⊂ S(H)

such that xj⊥xk and Axj⊥Axk, for j, k ∈ {1, . . . , n}, j 6= k. We define a
vector xn+1 := yo. It is easy to observe that xj⊥xn+1 for all j ∈ {1, . . . , n}.

We will show that Axj⊥Axn+1 for all j ∈ {1, . . . , n}. Assume, contrary to
our claim, that 〈Axjo |Axn+1〉 = c 6= 0, for some xjo ∈ {x1, . . . , xn}. We define
a vector u := c

|c|xjo . It follows that u⊥xn+1, ‖u‖ = 1 and

(1) 〈Au|Axn+1〉 = |c| ∈ R.
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Let α ∈ (0, 1). It is easy to check that αu+
√
1− α2xn+1 ∈ S(H). Therefore

‖A‖2 ≥
∥∥∥A(αu+

√
1− α2xn+1

)∥∥∥2
= α2‖Au‖2 + 2Re

(
α
√

1− α2 〈Au|Axn+1〉
)
+ (1− α2)‖Axn+1‖2

and making use of (1), we obtain

‖A‖2 ≥ α2‖Au‖2 + 2α
√

1− α2 〈Au|Axn+1〉+ (1− α2)‖Ayo‖2

= −α2‖Au‖2 + 2α
√

1− α2|c|+ (1− α2)‖A‖2.

It follows from the above inequality that

α2‖A‖2 ≥ α2‖Au‖2 + 2α
√
1− α2|c|

and

α2
(
‖A‖2 − ‖Au‖2

)
≥ 2α

√
1− α2|c|.

Thus we have

α
(
‖A‖2 − ‖Au‖2

)
≥ 2
√

1− α2|c|.

By letting α tend to 0, we get 0 ≥ 2|c|, which is a contradiction. �

As an illustration of the applications of this theorem we prove here the
polar decomposition of an operator. The main result of this paper is the
following.

Theorem 2.3 (Polar Decomposition). Let H be a Hilbert space such that
dimH = n. If A ∈ B(H), then there are U,P ∈ B(H) such that U is unitary,
P ≥ 0, and A = UP .

Proof. Assume that dim(kerA)⊥ = p. Thus we obtain dimkerA = n−p.
It is clear that A|(kerA)⊥ : (kerA)⊥ → H is injective. We choose {x1, . . . , xp}⊂
S(H) ∩ (kerA)⊥ such that

xj⊥xk and Axj⊥Axk, j, k ∈ {1, . . . , p}, j 6= k,
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by Theorem 2.2. By the injectivity of A|(kerA)⊥ , we obtain Axk 6= 0 for all k ∈
{1, . . . , p}. It is easy to see that {x1, . . . , xp} and

{
1

‖Ax1‖Ax1, . . . ,
1

‖Axp‖Axp

}
are two orthonormal bases for (kerA)⊥ and A

(
(kerA)⊥

)
, respectively.

Let {e1, . . . , en−p} be an orthonormal basis for kerA and let {y1, . . . , yn−p}
be an orthonormal basis for A

(
(kerA)⊥

)⊥. Then we define a positive operator
P ∈ B(H) by

Pxk := ‖Axk‖xk, k ∈ {1, . . . , p}; Pet := 0, t ∈ {1, . . . , n− p}.

We can now define an isometry U ∈ B(H) by

Uxk :=
1

‖Axk‖
Axk, k ∈ {1, . . . , p}; Uet := yt, t ∈ {1, . . . , n− p}.

We have

UPxk = U (‖Axk‖xk) = ‖Axk‖U (xk) = ‖Axk‖
1

‖Axk‖
Axk = Axk,

and UPet = U (0) = 0 = Aet. We have shown that UP and A coincide on the
basis, thus they are equal: UP = A. This completes the proof. �

3. Remark

Now, we are going to present one more application of Theorem 2.2. Namely,
we will prove that any injective operator can restrict to a similarity (a scalar
multiple of an isometry).

Theorem 3.1. Assume that dimH = n = 2m ≥ 4. Let A ∈ B(H) be
injective. Then there is a subspace M⊂H such that dimM = 1

2n = m and
A|M is a similarity (a scalar multiple of an isometry).

Proof. We choose {x1, x2, . . . , x2m} ⊂ S(H) such that

xj⊥xk and Axj⊥Axk, j, k ∈ {1, 2, . . . , 2m}, j 6= k;

see Theorem 2.2. Without loss of generality, we may assume that

‖Ax1‖ ≤ ‖Ax2‖ ≤ . . . ≤ ‖Ax2m‖.
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Choose γ ∈ R such that

‖Ax1‖ ≤ . . . ≤ ‖Axm‖ ≤ γ ≤ ‖Axm+1‖ ≤ . . . ≤ ‖Ax2m‖.

We consider the following collection of subspaces:

X1 : = span{x1, x2m},
X2 : = span{x2, x2m−1},

...
Xm : = span{xm, xm+1}.

It is easy to observe that Xj⊥Xk for j, k ∈ {1, . . . ,m}, j 6= k. Since
S(X1) = X1 ∩ S(H), the unit sphere S(X1) is an arcwise connected subset
of H. Moreover, we have ‖Ax1‖ ≤ γ ≤ ‖Ax2m‖. Hence there is a vector
w1 ∈ S(X1) such that γ = ‖Aw1‖.

In a similar way we obtain a vector w2 ∈ S(X2) such that γ = ‖Aw2‖.
Indeed, since S(X2) = X2 ∩ S(H), the unit sphere S(X2) is an arcwise con-
nected subset of H. Moreover, we have ‖Ax2‖ ≤ γ ≤ ‖Ax2m−1‖. Hence there
is a vector w2 ∈ S(X2) such that γ = ‖Aw2‖.

This and similar reasoning shows that there are vectors w1, . . . , wm such
that

wj ∈ S(Xj), γ = ‖Awj‖, where j ∈ {1, . . . ,m}.

It is easy to check that {w1, . . . , wm} is an orthonormal set in H.
It is not hard to see that A(Xj)⊥A(Xk) for j, k ∈ {1, . . . ,m}, j 6= k.

Therefore { 1γAw1, . . . ,
1
γAwm} is also an orthogonal set in H. We define a

subspaceM := span{w1, . . . , wm}. Thus we have dimM = m = 1
2n. Now, we

define an operator T ∈ B(M;H) as follows:

Twj :=
1

γ
Awj , j ∈ {1, 2, . . . ,m}.

It follows that T is an isometry. Finally, we get A|M = γT . The proof is
complete. �

Theorem 3.2. Assume that dimH = n = 2m + 1 ≥ 3. Let A ∈ B(H) be
injective. Then there is a subspaceM⊂H such that dimM = 1

2(n+1) = m+1
and A|M is a similarity.

The proof of Theorem 3.2 runs similarly.
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