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ON STABILITY OF THE CAUCHY FUNCTIONAL
EQUATION IN GROUPOIDS

Imke Toborg, Peter Volkmann

Abstract. We give some stability results for the functional equation a(xy) =
a(x) + a(y), where a : G → E, G being a groupoid and E a Banach space.

1. Introduction

Let G be a groupoid, i.e., G is a set and for all x, y ∈ G we have a product
xy ∈ G. Furthermore, let E be a Banach space; by θ we denote its zero
element.

We consider the Cauchy equation

a(xy) = a(x) + a(y), x, y ∈ G,(1)

for functions a : G→ E; its solutions are called additive functions.
A subset V of E is ideally convex (Evgenij Arkad’evič Lifšic [4]), if for

every bounded sequence d1, d2, d3, . . . in V and for every numerical sequence

α1, α2, α3, . . .≥ 0 such that
∞∑
k=1

αk = 1 we get
∞∑
k=1

αkdk ∈ V .

Let us mention that a convex subset of E is ideally convex, provided it is
closed, open or finite dimensional (cf. also Jacek Tabor [8], where the relation
between ideally convex sets and stability of the Cauchy equation has been
examined; for this relation see also Volkmann [11]). Thus closed and open balls
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in E are ideally convex. We denote them by S(p; ρ) and S0(p; ρ), respectively
(p ∈ E being the centre and ρ ≥ 0 the radius).

Now we consider triplets (G,E, V ), where G,E, V essentially are as de-
scribed before. More precisely, we introduce the following hypothesis:

(H) G is a groupoid, E a Banach space and V a bounded ideally convex subset
of E.

Definition 1. For a triplet (G,E, V ) according to (H) we say it has
property (U), if for every f : G→ E satisfying

f(xy)− f(x)− f(y) ∈ V, x, y ∈ G,(2)

there is an additive a : G→ E such that

a(x)− f(x) ∈ V, x ∈ G.(3)

Remark 1. Concerning the special case V = S(θ; ε) (where ε > 0) we
have:

Conditions (2), (3) can be written as

‖f(xy)− f(x)− f(y)‖ ≤ ε, x, y ∈ G,

‖a(x)− f(x)‖ ≤ ε, x, y ∈ G,

respectively, and (U) implies the Hyers–Ulam stability of the Cauchy equation
(1) (in the sense of Zenon Moszner [5, Definition 1]; in fact, (U) is equivalent
to the Hyers–Ulam stability of (1), which can be seen by using the Theorem
1 below). Finally property (U) for one ε > 0 implies already (U) for all ε > 0.

Definition 2. For x ∈ G, G being a groupoid, and k = 0, 1, 2, . . . , the
powers x2

k

are recursively defined by

x2
0

= x1 = x, x2
k+1

= x2
k

x2
k

.

The following result is a stability theorem for the functional equation
h(x2) = 2h(x); see Volkmann [12] for the proof.

Theorem 1. Consider (G,E, V ) according to (H) and let f : G → E
satisfy

f(x2)− 2f(x) ∈ V, x ∈ G.(4)
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Then there is exactly one h : G→ E such that

h(x2) = 2h(x), h(x)− f(x) ∈ V, x ∈ G,(5)

namely

h(x) = lim
n→∞

1

2n
f(x2

n

), x ∈ G.(6)

In the next section we use this theorem for a characterization of property
(U) and we give some applications. The third section will be devoted to direct
products of groupoids and the last one to some concluding remarks.

2. A characterization of (U) and some consequences

The following result gives a characterization of property (U).

Theorem 2. Consider (G,E, V ) according to (H) and let f : G → E
satisfy (2). Then the following assertions are equivalent:
(A) There is an additive a : G→ E satisfying (3).
(B) The function h : G→ E (given by (6)) is additive.

Proof. (2) implies (4), and therefore we can apply Theorem 1: There is
exactly one h : G→ E satisfying (5), and this function is given by (6).

(A)⇒ (B): If (A) holds, then the additive function a has all the properties
of h, which are stated in (5). The uniqueness of h gives h = a, and this
proves (B).

(B) ⇒ (A): If h is additive, then a = h obviously leads to (A). �

Remark 2. If the assertions (A), (B) of Theorem 2 are true, then a = h.

Theorem 3. Consider (G,E, V ) according to (H).
I) If (U) holds for (G,E, S(θ; ε)) (ε > 0), then (U) also holds for (G,E, V ).
II) If IntV 6= ∅ and (U) holds for (G,E, V ), then (U) also holds for the triplet

(G,E, S(θ; ε)) (ε > 0).

Proof. I) Let f : G → E satisfy (2). We choose ε > 0 such that V ⊆
S(θ; ε), and we get

f(xy)− f(x)− f(y) ∈ S(θ; ε), x, y ∈ G.(7)
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Since (U) holds for (G,E, S(θ; ε)), we can apply Theorem 2 with V replaced
by S(θ; ε) to get the additivity of h : G → E given by (6). This finishes the
proof of (U) for (G,E, V ) (because of (B) ⇒ (A) from Theorem 2).

II) We choose p ∈ E and ε > 0 such that

S(p; ε) = p+ S(θ; ε) ⊆ V ;

according to Remark 1 it is sufficient to keep the ε fixed and to show property
(U) for (G,E, S(θ; ε)). So let f : G→ E satisfy (7). For

g(x) := f(x)− p, x ∈ G,

we have

g(xy)− g(x)− g(y) = f(xy)− f(x)− f(y) + p ∈ S(p; ε) ⊆ V, x, y ∈ G.

When using (U) for (G,E, V ), we get by Theorem 2 the additivity of

k(x) = lim
n→∞

1

2n
g(x2

n

), x ∈ G.

For h : G→ E given by (6) we now have

h(x) = lim
n→∞

1

2n
f(x2

n

) = lim
n→∞

1

2n

[
g(x2

n

) + p
]

= k(x),

hence h is an additive function, and from Theorem 2 we get property (U) for
(G,E, S(θ; ε)). �

The next definition is taken from Roman Badora, Barbara Przebieracz,
Volkmann [1]; we adopt the notation N = {0, 1, 2, . . . }, N∗ = N \ {0}.

Definition 3. A groupoid G is called Tabor groupoid, if for x, y ∈ G there
exists k ∈ N∗ such that

(xy)2
k

= x2
k

y2
k

.(8)

Groups satisfying this condition had been considered by Józef Tabor [9];
we call them Tabor groups. The special case k = 1 in (8), i.e.,

(xy)2 = x2y2, x, y ∈ G,(9)

had been called square-symmetry by Zsolt Páles, Volkmann, R. Duncan Luce
[6]. Of course, (9) holds in commutative semigroups.
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The next theorem has two parts: Part I) is from Volkmann [12]; Part II)
is similar to a result of Jürg Rätz [7].

Theorem 4. A triplet (G,E, V ) according to (H) satisfies (U) in the fol-
lowing two cases:
I) G is a Tabor groupoid.
II) For every x ∈ G the set {x, x2, x4, x8, . . . } is finite.

Proof. Let f : G→ E satisfy (2). According to Theorem 2 it is sufficient
to show the additivity of h : G→ E (given by (6)). In Case I) this can be done
by the procedure of Józef Tabor [9]. In Case II) we simply get h(x) ≡ θ. �

Remark 3. For commutative semigroups G, Part I) goes back to Jacek
Tabor [8].

Remark 4. Condition II) is equivalent to the following: For every x ∈ G
there are m,n ∈ N, m 6= n such that x2

m

= x2
n

.

Remark 5. In groupoids G, Rätz [7] uses the “left” powers, here for x ∈ G
written as x(n) := x(x(n−1)) (n ∈ N \ {0, 1}), where x(1) := x. By Rätz’ The-
orem 2, a triplet (G,E, V ) according to (H) also satisfies (U) in the following
case:
III) For every x ∈ G the set {x(1), x(2), x(3), . . . } is finite.

Let us give an example of a groupoid G, where I), II) hold but III) does
not hold. We take G = N, equipped with the product

x ◦ y =

{
0 if x = y,

x+ y + 1 if x 6= y, x, y ∈ N.

I), II) are obviously satisfied, but

1(2) = 1 ◦ 1 = 0, 1(3) = 1 ◦ 0 = 2, 1(4) = 1 ◦ 2 = 4,

1(n) = 2(n− 2), n ≥ 2.

{1(1), 1(2), 1(3), . . . } is an infinite set, hence III) does not hold.
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3. Direct products of groupoids

Let G,H be groupoids. By the direct product of them we understand (as
usual) G×H equipped with the coordinate-wise defined product, i.e.,

(x, y)(x̄, ȳ) = (xx̄, yȳ), x, x̄ ∈ G; y, ȳ ∈ H.

A basic question is the following: Let furthermore V be an ideally convex set
in a Banach space E, and suppose (G,E, V ), (H,E, V ) to have property (U).
Under which conditions is it true that (G×H,E, V ) also has property (U)?

Concerning this question, Badora, Przebieracz, Volkmann [2] observed that
G × H is a Tabor groupoid, provided G,H have this property and in at
least one of them the square-symmetry (9) holds. This fact also follows from
Theorem 5 below, which gives a necessary and sufficient condition for G×H
to be a Tabor groupoid.

Definition 4. For groupoids G and x, y ∈ G we set

TG(x, y) = {k|k ∈ N∗, (xy)2
k

= x2
k

y2
k

}.

Remark 6. A groupoid G is a Tabor groupoid if and only if

TG(x, y) 6= ∅, x, y ∈ G,

and in square-symmetric groupoids G we have

TG = N∗, x, y ∈ G.

Theorem 5. Let G,H be groupoids. Then G ×H is a Tabor groupoid if
and only if TG(x, y) ∩ TH(a, b) 6= ∅ (x, y ∈ G; a, b ∈ H). In particular G and
H are Tabor groupoids in this case.

Proof. Consider x, y ∈ G and a, b ∈ H. The theorem follows from the
formula

TG×H((x, a), (y, b)) = TG(x, y) ∩ TH(a, b),

which is easily shown: For k ∈ TG×H((x, a), (y, b)) we have

((xy)2
k

, (ab)2
k

) = (xy, ab)2
k

= ((x, a)(y, b))2
k

= (x, a)2
k

(y, b)2
k

= (x2
k

, a2
k

)(y2
k

, b2
k

) = (x2
k

y2
k

, a2
k

b2
k

),
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hence k ∈ TG(x, y)∩ TH(a, b). On the other hand, for k ∈ TG(x, y)∩ TH(a, b),
we get

((x, a)(y, b))2
k

= (xy, ab)2
k

= ((xy)2
k

, (ab)2
k

) =

= (x2
k

y2
k

, a2
k

b2
k

) = (x2
k

, a2
k

)(y2
k

, b2
k

) = (x, a)2
k

(y, b)2
k

,

hence k ∈ TG×H((x, a), (y, b)). �

Theorem 6. Let (G,E, V ) satisfy (U). Let Σ be a groupoid with an el-
ement σ = σ2 ∈ Σ such that for every ξ ∈ Σ there exists m ∈ N yielding
ξ2

m

= σ. Then (G× Σ, E, V ) also has property (U).

Proof. Let f : G× Σ→ E satisfy

f(xy, ξη)− f(x, ξ)− f(y, η) ∈ V, x, y ∈ G; ξ, η ∈ Σ.(10)

Then y = x, η = ξ leads to

f(x2, ξ2)− 2f(x, ξ) ∈ V, x ∈ G, ξ ∈ Σ,

and Theorem 1 applied to (G × Σ, E, V ) shows the existence of exactly one
function h : G× Σ→ E such that

h(x2, ξ2) = 2h(x, ξ), h(x, ξ)− f(x, ξ) ∈ V, x ∈ G, ξ ∈ Σ.(11)

This function is given by

h(x, ξ) = lim
n→∞

1

2n
f(x2

n

, ξ2
n

), x ∈ G, ξ ∈ Σ.

The choice ξ = η = σ in (10) leads to

f(xy, σ)− f(x, σ)− f(y, σ) ∈ V, x, y ∈ G,

and since (G,E, V ) has the property (U), we get an additive a : G→ E such
that

a(x)− f(x, σ) ∈ V, x ∈ G.

By Theorem 2 and Remark 2 we now have

a(x) = lim
n→∞

1

2n
f(x2

n

, σ) = h(x, σ), x ∈ G.(12)
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For ξ ∈ Σ let m ∈ N be such that ξ2
m

= σ. Then we get by (11), (12) for
x ∈ G:

h(x, ξ) =
1

2
h(x2, ξ2) = . . .

=
1

2m
h(x2

m

, σ) =
1

2m
a(x2

m

) = a(x).

So we have

h(x, ξ) = a(x), x ∈ G, ξ ∈ Σ,

and therefore the function h : G×Σ→ E occuring in (11) is additive. Indeed,
for x, y ∈ G and ξ, η ∈ Σ we get

h((x, ξ)(y, η)) = h(xy, ξη) = a(xy)

= a(x) + a(y) = h(x, ξ) + h(y, η).

This finishes the proof of (U) for (G× Σ, E, V ). �

Remark 7. When taking G = {0} (a singleton) and observing Σ ∼= {0}×
Σ, we see that (Σ, E, V ) has property (U). In fact, Σ is a Tabor groupoid
(a proof is easy), which in the semigroup-case already is known from Badora,
Przebieracz, Volkmann [2, Theorem 3, Case I)].

The next theorem is trivial (we omit the proof), but it may be useful in
applications.

Theorem 7. Let (G1, E1, V1), (G2, E2, V2) have property (U) and let the
function f : G1 ×G2 → E1 × E2 be given by

f(x1, x2) = (f1(x1), f2(x2)), (x1, x2) ∈ G1 ×G2,

where fj : Gj → Ej (j = 1, 2). Suppose

f(xy)− f(x)− f(y) ∈ V1 × V2, x, y ∈ G1 ×G2.

Then there exists an additive a : G1 ×G2 → E1 × E2 such that

a(x)− f(x) ∈ V1 × V2, x ∈ G1 ×G2.
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Remark 8. If E1 × E2 is normed by ‖(x1, x2)‖ = max{‖x1‖, ‖x2‖} and
V1, V2 are closed (or open) ε-balls centered at θ, then V1 × V2 also is a closed
(or open) ε-ball centered at θ, i.e.,

SE1(θ; ε)× SE2(θ; ε) = SE1×E2(θ; ε),

S0
E1

(θ; ε)× S0
E2

(θ; ε) = S0
E1×E2

(θ; ε).

Of course, this remark concerns in particular the Hyers–Ulam stability men-
tioned in Remark 1.

Let us conclude this section by recalling some known results for groups.

Theorem 8. Let G be a group.
I) If every element of G has odd order, then G is a Tabor group.
II) If every element of G has an order 2n (where n ∈ N), then G is a Tabor

group.
III) If G ∼= G1×G2 with groups G1, G2 as in I), II) (respectively), then G is

a Tabor group.
IV) Any finite Tabor group G has the form given in III).

Remark 9. I), II) follow from Badora, Przebieracz, Volkmann [2], con-
cerning II) cf. Remark 7; III), IV) are from Toborg [10].

4. Final remarks

Let F (a, b) be the free group with two generators and let R denote the
space of the reals. Gian Luigi Forti [3] has shown that the triplet (F (a, b),R,
[−1, 1]) does not have property (U). Thus F (a, b) is not a Tabor group. Now
the question is of interest, whether there exist torsion free non commutative
Tabor groups.

Finally let us mention that all groupoids with two elements are Tabor
groupoids; this can be easily checked. On the other hand, there is a groupoid
G = {a, b, c} which is not a Tabor groupoid: It is sufficient to require a2 =
a, ab = c, b2 = c2 = b 6= c. Indeed, assume for some k ∈ N∗ that

(ab)2
k

= a2
k

b2
k

.

We get c2
k

= ab, hence b = c, which is a contradiction.
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