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A GENERALIZATION OF m-CONVEXITY
AND A SANDWICH THEOREM

Teodoro Lara, Janusz Matkowski, Nelson Merentes,
Roy Quintero, Małgorzata Wróbel

Abstract. Functional inequalities generalizing m-convexity are considered.
A result of a sandwich type is proved. Some applications are indicated.

1. Introduction

We consider some notions of convexity. To be more detailed assume that
α : [0, 1]→ R is a given function and I ⊂ R is an interval such that tI+α(t)I ⊂
I for all t ∈ [0, 1], where tI + α(t)I denotes the set {tx+ α(t)y : x, y ∈ I}. In
Section 2 we deal with functions satisfying the inequality

f (tx+ α(t)y) ≤ tf(x) + α(t)f(y)

for all x, y ∈ I, t ∈ [0, 1], and referred to as a convexity with respect to α
(convex wrt α). It turns out that, under some general conditions on α, if f is
convex wrt α, then f has to be convex; and under a little stronger conditions,
f is convex wrt α if and only if it is convex (Proposition 2.1). We note that
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this notion is “closer” to the classical convexity if α is a decreasing involution
(α ◦ α = id |[0,1]). It occurs, in particular if, for some p > 0,

α(t) = (1− tp)1/p, t ∈ [0, 1].

Moreover, given a number m > 0, we say that f is m-convex with respect to
an involution α, if

f(tx+mα(t)y) ≤ tf(x) +mα(t)f(y), x, y ∈ I, t ∈ [0, 1].

For α(t) = 1 − t, t ∈ [0, 1], this notion coincides with the concept of m-
convexity introduced by Toader [15] 1984 (see also [5, 7, 8, 13]). We compare
the m-convexity with the convexity with respect to a mean (Aumann [2],
1933).

In Section 3 we deal with m-convex functions when 0 < m < 1. We
note that, in general, the m-convex functions do not share the properties of
convex ones (Corollary 3.3). However, we show that a function is affine, if
it is m-affine (Remark 3.4). For every m ∈ (0, 1) we construct a polynomial
h of degree 4 such that f := h|[0,+∞) has the following properties: f is a
diffeomorphic m-convex self-mapping of [0,+∞), but not convex in [0,+∞).
It shows that the m-convex functions do not have the property that their
graphs are placed above the supporting straight-lines. On the other hand,
for any sequence (tn ∈ (0, 1) : n ∈ N) such that limn→+∞ tn = 1 there is a
sequence (sn ∈ (0, 1) : n ∈ N), with limn→+∞ sn = 0, tn + sn < 1 for every
n ∈ N, and

f(tnx+ sny) ≤ tnf(x) + snf(y), x, y ∈ [0,+∞), n ∈ N;

so m-convex functions are, to some extent, quite close to convex ones.
In Section 4, assuming that 0 < m < 1, we prove the following result of

a sandwich type: if f : (0,+∞)→ R is m-convex, then there exists a convex
function h : I → R such that

f(x) ≤ h(x) ≤ mf
( x
m

)
, x > 0.

The main result of the last section says that every m-convex function
f : (0,+∞) → R such that lim infx→0+ f(x) ≤ 0, where m > 1, is a linear
function.
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2. Convexity with respect to a function and m-convexity

Let us begin with the following

Proposition 2.1. Let α : [0, 1] → R be a continuous function and I ⊂ R
be an open nonempty interval such that tI + α(t)I ⊂ I for all t ∈ [0, 1].
Suppose that a function f : I → R is convex with respect to α, i.e., f satisfies
the inequality

(2.1) f(tx+ α(t)y) ≤ tf(x) + α(t)f(y), x, y ∈ I, t ∈ [0, 1].

(i) If there exists t0 ∈ (0, 1) such that t0 + α(t0) = 1, then f is convex in
the classical sense; moreover, if 0 ∈ I, f(0) ≤ 0 and 0 ≤ t+α(t) ≤ 1 for
all t ∈ [0, 1], then f satisfies (2.1) if and only if it is convex.

(ii) If there are t1, t2 ∈ [0, 1] such that t1 + α(t1) < 1 and t2 + α(t2) > 1,
then (0,+∞) ⊂ Iand f(x) = f(1)x for all x ∈ I.

Proof. (i) By the assumption we have

f(t0x+ (1− t0)y) ≤ t0f(x) + (1− t0)f(y), x, y ∈ I,

so f is Jensen convex [4].
Note that there are x, y ∈ I, x 6= y, such that the function [0, 1] 3 t 7→

tx+ α(t)y is not constant.
Indeed, in the opposite case, for every pair (x, y) ∈ I2, x 6= y, there would

exist a constant c(x, y) such that tx+α(t)y = c(x, y) for all t ∈ [0, 1], whence
y 6= 0 and

α(t) =
c(x, y)

y
− x

y
t, t ∈ [0, 1].

Since α does not depend on x and y, it follows that x = y. This contradiction
proves the claim.

Take x, y ∈ I, x 6= y, such that the function [0, 1] 3 t 7→ tx + α(t)y is
not constant. Since it is continuous, its range is a nontrivial interval I(x, y).
Moreover, applying (2.1) and the Weierstrass Theorem for the continuous
function [0, 1] 3 t 7→ tx + α(t)f(y), we get the boundedness from above of f
on the interval I(x, y). Now, the Bernstein-Doetsch Theorem (cf. [6, Theorem
6.4.2]) implies that f is convex.

To prove the “moreover” part note first that if f is convex and f(0) ≤ 0
then f is starshaped, i.e., f(λx) ≤ λf(x) for all λ ∈ [0, 1] and x ∈ I. Indeed,

f(λx+ (1− λ)0) ≤ λf(x) + (1− λ)f(0) ≤ λf(x).
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Hence, for all x, y ∈ I, t ∈ [0, 1], we get

f(tx+ α(t)y) = f

(
t

t+ α(t)
(t+ α(t))x+

α(t)

t+ α(t)
(t+ α(t))y

)

≤ t

t+ α(t)
f((t+ α(t))x) +

α(t)

t+ α(t)
f((t+ α(t))y)

≤ tf(x) + α(t)f(y).

(ii) By the Darboux property of α, between t1, t2 there is t0 ∈ (0, 1) that
t0+α(t0) = 1. In view of (i), the function f is convex, so the function I 3 x 7→
f(x)
x is either monotonic or, for some x0 ∈ I, decreasing in I ∩ (−∞, x0) and

increasing in I ∩ (x0,+∞) (see [1] where this “modality” property of convex
functions, conjectured by M. Kuczma, has been proved). Since, by (2.1),

f((t1 + α(t1))x)

(t1 + α(t1))x
≤ f(x)

x
, x ∈ I,

and

f((t2 + α(t2))x)

(t2 + α(t2))x
≤ f(x)

x
, x ∈ I,

the function x 7→ f(x)
x is non-decreasing and non-increasing, so it must be

constant. �

It follows that in some generalizations of the convexity notion in the form
(2.1) it can be reasonable to assume that (see below, Corollary 5.3)

t+ α(t) ≤ 1, t ∈ [0, 1].

Moreover, taking in this proposition α : [0, 1]→ [0, 1],

α(t) := 1− t, t ∈ [0, 1],

the function f satisfies (2.1) if and only if it is convex. Since in this case we
have (α◦α)(t) = t for all t ∈ [0, 1], it may be sometimes convenient to assume
that α is an involution.

We propose the following generalizations of the notion of m-convex func-
tion introduced by Toader [15].
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Definition 2.2. Let α : [0, 1] → [0, 1] be a function and m > 0 be fixed.
A subset X of a linear space is said to be convex with respect to α (convex
wrt α), if

x, y ∈ X =⇒ tx+ α(t)y ∈ X;

m-convex wrt α, if

x, y ∈ X =⇒ tx+mα(t)y ∈ X.

We say that a function f : X → R is convex (concave, affine) wrt α, if X
is convex wrt α and

f(tx+ α(t)y) ≤ tf(x) + α(t)f(y), x, y ∈ X, t ∈ [0, 1],

(respectively, if converse inequality or equality holds).
We say that a function f : X → R is m-convex (m-concave, m-affine) wrt

α, if X is m-convex wrt α and

(2.2) f(tx+mα(t)y) ≤ tf(x) +mα(t)f(y), x, y ∈ X, t ∈ [0, 1],

(respectively, if converse inequality or equality holds).

Remark 2.3. A function f : X → R is m-convex wrt α if and only if its
epigraph

E(f) := {(x, y) ∈ X × R : f(x) ≤ y}

is m-convex wrt α.
Indeed, assume that f is m-convex wrt α and take arbitrary (x1, y1),

(x2, y2) ∈ E(f). Then f(x1) ≤ y1, f(x2) ≤ y2 and, for arbitrary t ∈ [0, 1],

f(tx1 +mα(t)x2) ≤ tf(x1) +mα(t)f(x2) ≤ ty1 +mα(t)y2.

Hence

t(x1, y1) +mα(t)(x2, y2) = (tx1 +mα(t)x2, ty1 +mα(t)y2) ∈ E(f),

which shows that the set E(f) is m-convex wrt α. The converse implication
is also easy to verify.

In the sequel we assume that X = I ⊂ R is a nonempty interval such
that tI + α(t)I ⊂ I for every t ∈ I, i.e., I is convex wrt α (respectively,
tI +mα(t)I ⊂ I for every t ∈ I).
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Remark 2.4. If α : [0, 1]→ [0, 1] is a decreasing involution, that is

(α ◦ α)(t) = t, t ∈ [0, 1],

then it is a continuous bijection of [0, 1]. Moreover, replacing t by α(t) in (2.2),
we get

f(α(t)x+mty) ≤ α(t)f(x) +mtf(y), x, y ∈ I, t ∈ [0, 1],

and repeating this procedure here, we return to (2.2), similarly as in the
classical case.

If α is an involution and m ∈ (0, 1) then the interval I must be of the form
[0, b) or (0, b) for some b such that 0 < b ≤ +∞.

Example 2.5. For arbitrarily fixed p > 0, the function α : [0, 1]→ [0, 1],

α(t) := (1− tp)1/p, t ∈ [0, 1],

is an involution. Moreover,

t+m(1− tp)1/p ≤ 1, t ∈ [0, 1], p ∈ (0, 1], m ≤ 1.

For p = 1 we get α(t) := 1− t (t ∈ [0, 1]), and the inequality in Definition
2.2 reduces to

(2.3) f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y), x, y ∈ I, t ∈ [0, 1],

which means that the function f ism-convex in the sense considered by Toader
[15] (see also [5, 7, 16]).

Some generalizations of the classical notion of the convex function are
strictly related to the notion of mean.

Let I ⊂ R be an interval, and a function M : I × I → I be a mean in I,
that is

min(x, y) ≤M(x, y) ≤ max(x, y), x, y ∈ I.

Clearly, if J ⊂ I is a subinterval, then M(J × J) ⊂ J and M is reflexive,
that is

M(x, x) = x, x ∈ I.



m-convexity and sandwich theorem 113

A lot of (already classical) generalizations of the convex function read as
follows: A function f : J → I is convex (concave, affine) with respect to a
mean M in the interval J (Aumann, [2]), if

f(M(x, y)) ≤M(f(x), f(y)), x, y ∈ J,

(respectively, the opposite inequality, equality) holds.
Note that this definition is correct due to the inclusion M(J × J) ⊂ J for

every subinterval J ⊂ I , that is equivalent to the mean property of M . For
I = R and M = A, where A is the arithmetic mean A(x, y) := x+y

2 , we get
the notion of Jensen convex (concave, affine) function in an interval J ⊂ R;
for I = (0,+∞) and M = G, where G(x, y) =

√
xy, we obtain the definition

of Jensen geometrically convex function in an interval J ⊂ (0,+∞) (cf. for
instance [10]).

Remark 2.6. Let α : [0, 1]→ [0, 1] be an involution,m > 0, and an interval
I be m-convex wrt α. For arbitrarily fixed t ∈ (0, 1) such that α(t) 6= t, let
N : I2 → R be given by

N(x, y) := tx+mα(t)y, x, y ∈ I.

Then
(i) N is a mean in I if and only if m = 1 and α(t) = 1 − t (in this case

m-convexity with respect to α coincides with m-convexity);
(ii) if m < 1 and N(I × I) ⊂ I, then 0 must belong to the closure of I; in

particular, if I ⊂ [0,+∞), then I must be of the form [0, b) or (0, b) for
some b such that 0 < b ≤ +∞.
To see (i) note that, ifN is a mean then its reflexivity implies t+mα(t) = 1.

Replacing here t by α(t) and taking into account α(α(t)) = t we get α(t) +
mt = 1. These equalities imply that (1 − m)(α(t) − t) = 0, so m = 1 and,
consequently, α(t) = 1− t. Part (ii) is obvious.

3. Some properties of m-convex functions and an example

In this section we consider the m-convex functions in the sense of Toader
[15], that is, we assume in Definition 2.2 that m < 1 and α(t) = 1− t for all
t ∈ [0, 1].
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Remark 3.1 ([15, 16]). Let an interval I be as in Definition 2.2 (m-convex
wrt α).
(i) If m > 0 and f : I → R is m-convex, then, for all x, y, z ∈ I,

x < z < my =⇒ f(x)− f(z)

x− z
≤ f(z)−mf(y)

z −my
;

my < z < x =⇒ f(x)− f(z)

x− z
≥ f(z)−mf(y)

z −my
.

It follows that f is continuous and locally Lipschitzian in int I.
(ii) If 0 ≤ m1 < m2 ≤ 1, then every m2-convex function is m1-convex.

If f : [a, b]→ R is convex in the classical sense in the compact real interval
[a, b], then the values of f at a and b can be increased without any harm for the
convexity of f , so f need not be continuous at the endpoints a, b. (Therefore,
in the classical theory of convexity one assumes that the functions are defined
on open convex sets.)

In general, them-convex functions do not have this property, and it follows
from the following

Remark 3.2. Suppose that 0 < m < 1 and f is m-convex in the sense of
the above definition. Then
(i) if 0 ∈ I, then f(0) ≤ 0;
(ii) if a ∈ int I and f(a) ≤ 0, then

f(x) ≤ 0, x ∈ I ∩ [0, a].

Indeed, from (2.3) with x = y = a we get f((t + m(1 − t))a) ≤ 0 for all
t ∈ [0, 1], so f(x) ≤ 0 in the interval [ma, a]. Now, by induction, we obtain
f(x) ≤ 0 in the interval [mna, a] for all n ∈ N.

Hence we get the following

Corollary 3.3. Let 0 < m < 1 and 0 < b < +∞. If f : (0, b) → R is
m-convex and there is a sequence xn ∈ (0, b) such that

lim
n→+∞

xn = b; f(xn) ≤ 0 for all n ∈ N,

then

f(x) ≤ 0, x ∈ (0, b).
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This feature is not shared by the classical convex functions, as they have,
important in different applications, the “modality” property.

In the sequel, we assume that I = (0,+∞).
To show that there are common properties of convex functions and m-

convex functions, we prove the following

Remark 3.4. Let 0 < m < 1. If a function f : (0,+∞) → R is m-affine,
then there are a, b ∈ R such that

f(x) = ax+ b, x > 0.

Proof. Assume that f is m-affine, so

f(tx+m(1− t)y) = tf(x) +m(1− t)f(y), x, y ∈ (0,+∞), t ∈ [0, 1].

Taking arbitrarily fixed x, y ∈ (0,+∞), y < x, and setting here

z = tx+m(1− t)y, t ∈ [0, 1],

we get

f(z) = az + b, z ∈ [my, x],

where

a :=
f(x)−mf(y)

x−my
, b := m

xf(y)− yf(x)

x−my
.

Since x and y can be chosen arbitrarily, it follows that

f(z) = az + b, z > 0. �

This property is shared by the classical convex functions.
It is well known that a real function f defined in an open interval I is

convex iff at every point x0 ∈ I, the graph of f is located above a supporting
straight-line passing by the point (x0, f(x0)).

The following example shows that this property is not shared by m-convex
functions.
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Example 3.5. Let a ∈ (0,+∞) and b ∈ (0, a2 ) be two fixed real numbers.
Then, the polynomial function h : R→ R defined by

h(x) := x4 − 4(a+ b)x3 + 6a(a+ 2b)x2 + a2(11a+ 16b)x

has the following properties: its real roots are −a and 0; its complex roots are

1

2
(5a+ 4b± i

√
19a2 + 24ab− 16b2);

h([0,+∞)) = [0,+∞); f := h|[0,+∞) is strictly increasing and not convex on
[0,+∞); f is m-convex for

m ≤ m(a, b) =
(a− 2b)(a+ 2b)3

(a− b)2(a2 + 6ab+ 11b2)
.

Proof. Since

h(x) = x(x+ a)(x2 − (5a+ 4b)x+ 11a2 + 16ab),

−a and 0 are roots of h. In turn, the quadratic polynomial given above has
discriminant

∆ = [−(5a+ 4b)]2 − 4(11a2 + 16ab) = −19a2 − 24ab+ 16b2

and ∆ < 0 if and only if b ∈ (3−2
√
7

4 a, 3+2
√
7

4 a). But, by hypothesis, b belongs
to (0, a2 ) which is a proper subset of (3−2

√
7

4 a, 3+2
√
7

4 a). So, the other roots of
h are complex and they are of the indicated form.

The next property follows from the facts that h is continuous,

lim
x→+∞

h(x) = +∞,

and its only root in [0,+∞) is 0. Since

f ′′(x) = 12(x2 − 2(a+ b)x+ a(a+ 2b)) = 12(x− a)(x− (a+ 2b)),

the function f is convex in [0, a) and (a+ 2b,+∞) and concave in (a, a+ 2b).
Consequently, h is not convex.

Since f is the product of the identity and the polynomial of degree three
which is strictly increasing in [0,+∞), it is strictly increasing.
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To show the last property we apply formula (3) given in [16] withm instead
of p denoted by m(f); that is,

m(f) = inf

{
xf ′(x)− f(x)

yf ′(x)− f(y)
: f ′′(x) = 0, f ′(x) = f ′(y), x, y > 0

}
.

First we have to check that xf ′(x) − f(x) > 0 for all x ∈ (0,+∞) (i.e., f is
strictly starshaped on (0,+∞)). In fact,

xf ′(x)− f(x) = 3x4 − 8(a+ b)x3 + 6a(a+ 2b)x2

= 3x2
(
x2 − 8

3
(a+ b)x+ 2a(a+ 2b)

)

= 3x2

[(
x− 4

3
(a+ b)

)2

+
16

9

(a
2
− b
)(a

4
+ b
)]

> 0

for all x ∈ (0,+∞). We already know that f ′′(x) = 0 if and only if x = a or
x = a + 2b. Set x1 = a and x2 = a + 2b. Performing a simple calculation we
get

f ′(x1) = 15a3 + 28a2b, f ′(x2) = 15a3 + 28a2b− 16b3.

Solving for y on each of the equations

f ′(y) = 15a3 + 28a2b, f ′(y) = 15a3 + 28a2b− 16b3,

we get the solutions y11 = a+ 3b or y12 = a and y21 = a− b or y22 = a+ 2b,
respectively. The next step consists in evaluating the function of two variables

Φ(x, y) :=
xf ′(x)− f(x)

yf ′(x)− f(y)

at four points (x1, y11), (x1, y12), (x2, y21) and (x2, y22). In fact,

Φ(x1, y11) =
a3(a+ 4b)

a4 + 4a3b+ 27b4
, Φ(x2, y21) =

(a− 2b)(a+ 2b)3

(a− b)2(a2 + 6ab+ 11b2)

and

Φ(x1, y12) = Φ(x2, y22) = 1.
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To conclude, we have to compare all these values. Observe that all are positive.
Set

A = a3(a+ 4b), B = a4 + 4a3b+ 27b4,

C = (a− 2b)(a+ 2b)3, D = (a− b)2(a2 + 6ab+ 11b2).

Then,

Φ(x11, y11) > Φ(x2, y21)⇔ AD −BC > 0.

Since AD −BC = 432(a+ b)b7 and Φ(x2, y21) < 1, we get

m(f) = min{Φ(x1, y11),Φ(x2, y21), 1} = Φ(x2, y21),

which completes the proof. �

Proposition 3.6. For every m ∈ (0, 1) there is a polynomial h of degree 4
such that f := h|[0,+∞) has the following properties:
(i) f(0) = 0;
(ii) f is a diffeomorphic mapping of [0,+∞);
(iii) f is m-convex in [0,+∞), and its epigraph E(f) is an m-convex subset

of R2;
(iv) f is not convex, and its epigraph E(f) is not a convex subset of R2;
(v) for any sequence tn ∈ (0, 1), n ∈ N, such that

lim
n→+∞

tn = 1

there is a sequence sn ∈ (0, 1), n ∈ N, such that

lim
n→+∞

sn = 0; tn + sn < 1 for every n ∈ N,

and

f(tnx+ sny) ≤ tnf(x) + snf(y), x, y ∈ [0,+∞), n ∈ N.
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Proof. Take arbitrarily fixed m ∈ (0, 1), a > 0 and put b = a
2r where

r ∈ [0, 1]. Then, clearly, b ∈ [0, a2 ] and, in view of Example 3.5, we have

m(r) := m(a,
a

2
r) =

16(1− r)(2 + r)3

(2− r)2(4 + 12r + 11r2)
, r ∈ [0, 1],

(so m(r) does not depend on a). Since m(0) = 1, m(1) = 0, and the function
m(r) is continuous and one-to-one in [0, 1], there exists a unique r0 ∈ (0, 1)
such that m(r0) = m. Applying the above example with b = a

2r0 and Remark
2.3 we get the function f having properties (i)–(iv). Property (v) follows
from (iii). �

4. A result of a sandwich type

Now we shall prove a result of a sandwich type. But first notice that

Remark 4.1. If I is (0,+∞) or [0,+∞) and f : I → R is m-convex, then

f(mx) ≤ mf(x), x ∈ I.

Theorem 4.2. Let I be (0,+∞) or [0,+∞), and 0 < m < 1. Assume that
f : I → R is m-convex. Then
(i) there exists a convex function h : I → R such that

f(x) ≤ h(x) ≤ mf
( x
m

)
, x ∈ I,

or, equivalently,

1

m
h(mx) ≤ f(x) ≤ h(x), x ∈ I.

(ii) If

mf(x) ≤ f(mx), x ∈ I,

then

f(x) = f(1)x, x ∈ I.
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Proof. (i) Replacing y in (2.3) by y
m we obtain

(4.1) f(tx+ (1− t)y) ≤ tf(x) +m(1− t)f
( y
m

)
, x, y ∈ I, t ∈ [0, 1].

Hence,

f(tx+ (1− t)y) ≤ tmf
( x
m

)
+ (1− t)mf

( y
m

)
, x, y ∈ I, t ∈ [0, 1],

whence, setting

g(x) := mf
( x
m

)
, x ∈ I,

we get

f(tx+ (1− t)y) ≤ tg(x) + (1− t)g(x), x, y ∈ I, t ∈ [0, 1].

Applying the sandwich theorem [3] we conclude that there exists a (classical)
convex function h : I → R such that

f(x) ≤ h(x) ≤ g(x), x ∈ I,

i.e., that

f(x) ≤ h(x) ≤ mf
( x
m

)
, x ∈ I.

Since it is obvious that these inequalities are equivalent to

1

m
h(mx) ≤ f(x) ≤ h(x), x ∈ I,

the proof of (i) is complete.
(ii) In this case, by Remark 4.1, we have

f(mx) = mf(x), x ∈ I,

and,

f(tx+ (1− t)y) ≤ tf(x) +m(1− t)f
( y
m

)
= tf(x) + (1− t)f(y),

which means that f is convex. Moreover,

f(0+) = 0.
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Now the convexity of f implies that the function

(0,+∞) 3 x 7→ f(x)

x
is increasing.

But then for any x, y ∈ I arbitrary with 0 < x < y,

f(x)

x
≤ f(y)

y
.

We assure f is a constant function. Indeed, if this is not the case we can
find x1, y1 with 0 < x1 < y1 and positive integer n such that mny1 < x1,
consequently

f(mny1)

mny1
=
f(y1)

y1
≤ f(x1)

x1
<
f(y1)

y1

which is impossible. �

In [12] it has been shown that an analogue of the sandwich theorem for
convex functions (see [3]) is not true in the class of m-convex functions with
m ∈ (0, 1).

Example 4.3 ([12]). Let us fix m ∈ (0, 1). For arbitrary fixed a ∈ R define
the functions f : [0,+∞)→ R and g : [0,+∞)→ R by

f(x) := ax+ 1, g(x) := ax+
1

m
.

Then, for all x, y ∈ [0,+∞) and t ∈ [0, 1], we have

f(tx+m(1− t)y) ≤ tg(x) +m(1− t)g(y),

and, of course, f(x) ≤ g(x) for all x ∈ [0,+∞). However, there is no m-convex
function h : [0,+∞)→ R such that

f(x) ≤ h(x) ≤ g(x), x ≥ 0.
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5. Remarks on m-convex functions in the case m > 1

In this case the class of m-convex functions f : (0,+∞) → R such that
f(0+) ≤ 0 is rather poor. Namely the following holds true.

Proposition 5.1. Let m > 1 be fixed. If f : (0,+∞) → R is m-convex
and

lim inf
x→0+

f(x) ≤ 0,

then f is a linear function, i.e., f(x) = f(1)x for all x > 0.

Proof. By the assumption there is a positive decreasing sequence (zn :
n ∈ N) such that limn→∞ zn = 0 and limn→∞ f(zn) ≤ 0. Let (xn : n ∈ N)
be an arbitrary positive sequence such that limn→∞ xn = 0. Without loss of
generality, we can assume that x1 ≤ z1. Since limn→∞ zn = 0, for every n ∈ N,
there exist kn, ln ∈ N, kn < ln, such that

mzln ≤ xn ≤ zkn , lim
n→∞

kn =∞.

Note that

tn :=
xn −mzln
zkn −mzln

∈ [0, 1], n ∈ N,

and

xn = tnzkn +m(1− tn)zln , n ∈ N.

Hence, by the m-convexity of f , we have

f(xn) = f(tnzkn +m(1− tn)zln) ≤ tnf(zkn) +m(1− tn)f(zln)

for every n ∈ N. Letting here n→∞ we get

lim sup
n→∞

f(xn) ≤ 0,

which proves that

lim sup
x→0+

f(x) ≤ 0.
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Since m > 1, we can choose t ∈ (0, 1) such that the numbers

α := t, β := m(1− t),

fulfill the inequalities

0 < α < 1 < α+ β,

and f satisfies the linear functional inequality

(5.1) f(αx+ βy) ≤ αf(x) + βf(y), x, y ∈ (0,+∞).

Since lim supx→0+ f(x) ≤ 0, the result follows from [11, Theorem 1] (see also
[9, 10, 14]). �

Remark 5.2. If, in the proposition above, f : [0,+∞) → R is m-convex
and f(0) = 0, one can also apply a simple direct reasoning.

First, let us observe that, by m-convexity where m > 1, there exist real
numbers α, β such that 0 < α < 1 < α+ β, log β

logα is an irrational number and
(5.1) holds. Taking y = x in (5.1), we have

f((α+ β)x) ≤ (α+ β)f(x), x ∈ (0,+∞),

whence, by induction,

f((α+ β)kx) ≤ (α+ β)kf(x), x ∈ (0,+∞), k ∈ N.

Choose k ∈ N such that β̄ := β(α + β)k > 1. Hence, by (5.1), for all x, y ∈
(0,+∞),

f(αx+ β̄y) = f(αx+ β(α+ β)ky)

≤ αf(x) + βf((α+ β)ky)

≤ αf(x) + β(α+ β)kf(y) = αf(x) + β̄f(y).

So, if β < 1 we can replace it by β̄.
Setting y = 0 and then x = 0, yields

f(αx) ≤ αf(x), f(βx) ≤ βf(x), x ∈ (0,+∞),
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that is, f satisfies the simultaneous system of two inequalities. Hence, by
induction, we obtain

f(αkx) ≤ αkf(x), f(βnx) ≤ βnf(x), x ∈ (0,+∞), k, n ∈ N,

whence

f(αkβnx) ≤ αkβnf(x), x ∈ (0,+∞), k, n ∈ N.

Now, by the continuity of f in (0,+∞) (see Remark 3.1 (i)) and the Kronecker
theorem on the density of the set {αkβn : k, n ∈ N}, one gets

f(rx) ≤ rf(x), r, x > 0.

Replacing here x by x
r we hence get 1

rf(x) ≤ f(1rx) for all r, x > 0, whence

rf(x) ≤ f(rx), r, x > 0,

and, consequently,

f(rx) = rf(x), r, x > 0.

Taking here x = 1 we get f(r) = f(1)r for all r > 0, which completes the
proof.

From Proposition 5.1 we immediately get the following

Corollary 5.3. Let α : [0, 1] → [0, 1] and m (in Definition 2.2) be such
that for some t ∈ (0, 1),

min{t,mα(t)} < 1 < t+mα(t).

If f : (0,+∞) → R is m-convex wrt α, and lim infx→0+ f(x) ≤ 0, then
f(x) = f(1)x for all x > 0.

Remark 5.4. In this corollary we need not to assume that a function α
is continuous as we do in Proposition 2.1 (ii).

It follows that considering the functions which are m-convex wrt α, it is
rational to assume that either t+ α(t) ≤ 1 for all t ∈ [0, 1] or t+ α(t) ≥ 1 for
all t ∈ [0, 1].

Acknowledgement. The authors are indebted to the Reviewers for their
valuable remarks.
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