Annales Mathematicae Silesianae **31** (2017), 107–126 DOI: 10.1515/amsil-2017-0003

A GENERALIZATION OF *m*-CONVEXITY AND A SANDWICH THEOREM

Teodoro Lara, Janusz Matkowski, Nelson Merentes, Roy Quintero, Małgorzata Wróbel

Abstract. Functional inequalities generalizing *m*-convexity are considered. A result of a sandwich type is proved. Some applications are indicated.

1. Introduction

We consider some notions of convexity. To be more detailed assume that $\alpha \colon [0,1] \to \mathbb{R}$ is a given function and $I \subset \mathbb{R}$ is an interval such that $tI + \alpha(t)I \subset I$ for all $t \in [0,1]$, where $tI + \alpha(t)I$ denotes the set $\{tx + \alpha(t)y : x, y \in I\}$. In Section 2 we deal with functions satisfying the inequality

$$f(tx + \alpha(t)y) \le tf(x) + \alpha(t)f(y)$$

for all $x, y \in I$, $t \in [0, 1]$, and referred to as a convexity with respect to α (convex wrt α). It turns out that, under some general conditions on α , if f is convex wrt α , then f has to be convex; and under a little stronger conditions, f is convex wrt α if and only if it is convex (Proposition 2.1). We note that

Received: 04.10.2016. Accepted: 21.02.2017. Published online: 12.04.2017.

⁽²⁰¹⁰⁾ Mathematics Subject Classification: 26B25, 28A51, 39B62.

Key words and phrases: convexity, convexity with respect to a function, *m*-convexity, functional inequality, functional equation, sandwich theorem, a characterization of L^p -norm.

this notion is "closer" to the classical convexity if α is a decreasing involution $(\alpha \circ \alpha = \mathrm{id}|_{[0,1]})$. It occurs, in particular if, for some p > 0,

$$\alpha(t) = (1 - t^p)^{1/p}, \quad t \in [0, 1].$$

Moreover, given a number m > 0, we say that f is m-convex with respect to an involution α , if

$$f(tx + m\alpha(t)y) \le tf(x) + m\alpha(t)f(y), \quad x, y \in I, \ t \in [0, 1].$$

For $\alpha(t) = 1 - t$, $t \in [0, 1]$, this notion coincides with the concept of *m*-convexity introduced by Toader [15] 1984 (see also [5, 7, 8, 13]). We compare the *m*-convexity with the convexity with respect to a mean (Aumann [2], 1933).

In Section 3 we deal with *m*-convex functions when 0 < m < 1. We note that, in general, the *m*-convex functions do not share the properties of convex ones (Corollary 3.3). However, we show that a function is affine, if it is *m*-affine (Remark 3.4). For every $m \in (0, 1)$ we construct a polynomial *h* of degree 4 such that $f := h|_{[0,+\infty)}$ has the following properties: *f* is a diffeomorphic *m*-convex self-mapping of $[0, +\infty)$, but not convex in $[0, +\infty)$. It shows that the *m*-convex functions do not have the property that their graphs are placed above the supporting straight-lines. On the other hand, for any sequence $(t_n \in (0,1) : n \in \mathbb{N})$ such that $\lim_{n\to+\infty} t_n = 1$ there is a sequence $(s_n \in (0,1) : n \in \mathbb{N})$, with $\lim_{n\to+\infty} s_n = 0$, $t_n + s_n < 1$ for every $n \in \mathbb{N}$, and

$$f(t_n x + s_n y) \le t_n f(x) + s_n f(y), \quad x, y \in [0, +\infty), n \in \mathbb{N};$$

so *m*-convex functions are, to some extent, quite close to convex ones.

In Section 4, assuming that 0 < m < 1, we prove the following result of a sandwich type: if $f: (0, +\infty) \to \mathbb{R}$ is m-convex, then there exists a convex function $h: I \to \mathbb{R}$ such that

$$f(x) \le h(x) \le mf\left(\frac{x}{m}\right), \quad x > 0.$$

The main result of the last section says that every *m*-convex function $f: (0, +\infty) \to \mathbb{R}$ such that $\liminf_{x\to 0+} f(x) \leq 0$, where m > 1, is a linear function.

2. Convexity with respect to a function and *m*-convexity

Let us begin with the following

PROPOSITION 2.1. Let $\alpha: [0,1] \to \mathbb{R}$ be a continuous function and $I \subset \mathbb{R}$ be an open nonempty interval such that $tI + \alpha(t)I \subset I$ for all $t \in [0,1]$. Suppose that a function $f: I \to \mathbb{R}$ is convex with respect to α , i.e., f satisfies the inequality

(2.1)
$$f(tx + \alpha(t)y) \le tf(x) + \alpha(t)f(y), \quad x, y \in I, \ t \in [0, 1].$$

- (i) If there exists $t_0 \in (0,1)$ such that $t_0 + \alpha(t_0) = 1$, then f is convex in the classical sense; moreover, if $0 \in I$, $f(0) \leq 0$ and $0 \leq t + \alpha(t) \leq 1$ for all $t \in [0,1]$, then f satisfies (2.1) if and only if it is convex.
- (ii) If there are $t_1, t_2 \in [0, 1]$ such that $t_1 + \alpha(t_1) < 1$ and $t_2 + \alpha(t_2) > 1$, then $(0, +\infty) \subset I$ and f(x) = f(1)x for all $x \in I$.

PROOF. (i) By the assumption we have

$$f(t_0x + (1 - t_0)y) \le t_0f(x) + (1 - t_0)f(y), \quad x, y \in I,$$

so f is Jensen convex [4].

Note that there are $x, y \in I$, $x \neq y$, such that the function $[0, 1] \ni t \mapsto tx + \alpha(t)y$ is not constant.

Indeed, in the opposite case, for every pair $(x, y) \in I^2$, $x \neq y$, there would exist a constant c(x, y) such that $tx + \alpha(t)y = c(x, y)$ for all $t \in [0, 1]$, whence $y \neq 0$ and

$$\alpha(t) = \frac{c(x,y)}{y} - \frac{x}{y}t, \quad t \in [0,1].$$

Since α does not depend on x and y, it follows that x = y. This contradiction proves the claim.

Take $x, y \in I$, $x \neq y$, such that the function $[0,1] \ni t \mapsto tx + \alpha(t)y$ is not constant. Since it is continuous, its range is a nontrivial interval I(x,y). Moreover, applying (2.1) and the Weierstrass Theorem for the continuous function $[0,1] \ni t \mapsto tx + \alpha(t)f(y)$, we get the boundedness from above of fon the interval I(x,y). Now, the Bernstein-Doetsch Theorem (cf. [6, Theorem 6.4.2]) implies that f is convex.

To prove the "moreover" part note first that if f is convex and $f(0) \leq 0$ then f is starshaped, i.e., $f(\lambda x) \leq \lambda f(x)$ for all $\lambda \in [0, 1]$ and $x \in I$. Indeed,

$$f(\lambda x + (1 - \lambda)0) \le \lambda f(x) + (1 - \lambda)f(0) \le \lambda f(x).$$

Hence, for all $x, y \in I, t \in [0, 1]$, we get

$$f(tx + \alpha(t)y) = f\left(\frac{t}{t + \alpha(t)}(t + \alpha(t))x + \frac{\alpha(t)}{t + \alpha(t)}(t + \alpha(t))y\right)$$

$$\leq \frac{t}{t + \alpha(t)}f((t + \alpha(t))x) + \frac{\alpha(t)}{t + \alpha(t)}f((t + \alpha(t))y)$$

$$\leq tf(x) + \alpha(t)f(y).$$

(ii) By the Darboux property of α , between t_1, t_2 there is $t_0 \in (0, 1)$ that $t_0 + \alpha(t_0) = 1$. In view of (i), the function f is convex, so the function $I \ni x \mapsto \frac{f(x)}{x}$ is either monotonic or, for some $x_0 \in I$, decreasing in $I \cap (-\infty, x_0)$ and increasing in $I \cap (x_0, +\infty)$ (see [1] where this "modality" property of convex functions, conjectured by M. Kuczma, has been proved). Since, by (2.1),

$$\frac{f((t_1 + \alpha(t_1))x)}{(t_1 + \alpha(t_1))x} \le \frac{f(x)}{x}, \quad x \in I,$$

and

$$\frac{f((t_2 + \alpha(t_2))x)}{(t_2 + \alpha(t_2))x} \le \frac{f(x)}{x}, \ x \in I,$$

the function $x \mapsto \frac{f(x)}{x}$ is non-decreasing and non-increasing, so it must be constant.

It follows that in some generalizations of the convexity notion in the form (2.1) it can be reasonable to assume that (see below, Corollary 5.3)

 $t + \alpha(t) \le 1, \quad t \in [0, 1].$

Moreover, taking in this proposition $\alpha \colon [0,1] \to [0,1]$,

$$\alpha(t) := 1 - t, \quad t \in [0, 1],$$

the function f satisfies (2.1) if and only if it is convex. Since in this case we have $(\alpha \circ \alpha)(t) = t$ for all $t \in [0, 1]$, it may be sometimes convenient to assume that α is an involution.

We propose the following generalizations of the notion of m-convex function introduced by Toader [15].

DEFINITION 2.2. Let $\alpha: [0,1] \to [0,1]$ be a function and m > 0 be fixed. A subset X of a linear space is said to be *convex with respect to* α (convex wrt α), if

$$x, y \in X \implies tx + \alpha(t)y \in X;$$

m-convex wrt α , if

$$x, y \in X \implies tx + m\alpha(t)y \in X.$$

We say that a function $f: X \to \mathbb{R}$ is convex (concave, affine) wrt α , if X is convex wrt α and

$$f(tx + \alpha(t)y) \le tf(x) + \alpha(t)f(y), \quad x, y \in X, \ t \in [0, 1],$$

(respectively, if converse inequality or equality holds).

We say that a function $f: X \to \mathbb{R}$ is *m*-convex (*m*-concave, *m*-affine) wrt α , if X is *m*-convex wrt α and

(2.2)
$$f(tx + m\alpha(t)y) \le tf(x) + m\alpha(t)f(y), \quad x, y \in X, \ t \in [0, 1],$$

(respectively, if converse inequality or equality holds).

REMARK 2.3. A function $f: X \to \mathbb{R}$ is *m*-convex wrt α if and only if its epigraph

$$E(f) := \{ (x, y) \in X \times \mathbb{R} : f(x) \le y \}$$

is *m*-convex wrt α .

Indeed, assume that f is *m*-convex wrt α and take arbitrary (x_1, y_1) , $(x_2, y_2) \in E(f)$. Then $f(x_1) \leq y_1$, $f(x_2) \leq y_2$ and, for arbitrary $t \in [0, 1]$,

$$f(tx_1 + m\alpha(t)x_2) \le tf(x_1) + m\alpha(t)f(x_2) \le ty_1 + m\alpha(t)y_2.$$

Hence

$$t(x_1, y_1) + m\alpha(t)(x_2, y_2) = (tx_1 + m\alpha(t)x_2, ty_1 + m\alpha(t)y_2) \in E(f),$$

which shows that the set E(f) is *m*-convex wrt α . The converse implication is also easy to verify.

In the sequel we assume that $X = I \subset \mathbb{R}$ is a nonempty interval such that $tI + \alpha(t)I \subset I$ for every $t \in I$, i.e., I is convex wrt α (respectively, $tI + m\alpha(t)I \subset I$ for every $t \in I$).

REMARK 2.4. If $\alpha: [0,1] \to [0,1]$ is a decreasing involution, that is

$$(\alpha \circ \alpha)(t) = t, \quad t \in [0, 1],$$

then it is a continuous bijection of [0, 1]. Moreover, replacing t by $\alpha(t)$ in (2.2), we get

$$f(\alpha(t)x + mty) \le \alpha(t)f(x) + mtf(y), \quad x, y \in I, \ t \in [0, 1],$$

and repeating this procedure here, we return to (2.2), similarly as in the classical case.

If α is an involution and $m \in (0, 1)$ then the interval I must be of the form [0, b) or (0, b) for some b such that $0 < b \leq +\infty$.

EXAMPLE 2.5. For arbitrarily fixed p > 0, the function $\alpha \colon [0,1] \to [0,1]$,

$$\alpha(t) := (1 - t^p)^{1/p}, \quad t \in [0, 1],$$

is an involution. Moreover,

$$t + m(1 - t^p)^{1/p} \le 1, \quad t \in [0, 1], \quad p \in (0, 1], \quad m \le 1.$$

For p = 1 we get $\alpha(t) := 1 - t$ $(t \in [0, 1])$, and the inequality in Definition 2.2 reduces to

(2.3)
$$f(tx + m(1-t)y) \le tf(x) + m(1-t)f(y), \quad x, y \in I, t \in [0,1],$$

which means that the function f is m-convex in the sense considered by Toader [15] (see also [5, 7, 16]).

Some generalizations of the classical notion of the convex function are strictly related to the notion of mean.

Let $I \subset \mathbb{R}$ be an interval, and a function $M \colon I \times I \to I$ be a mean in I, that is

$$\min(x, y) \le M(x, y) \le \max(x, y), \quad x, y \in I.$$

Clearly, if $J \subset I \;$ is a subinterval, then $M(J \times J) \subset J$ and M is reflexive, that is

$$M(x, x) = x, \quad x \in I.$$

A lot of (already classical) generalizations of the convex function read as follows: A function $f: J \to I$ is convex (concave, affine) with respect to a mean M in the interval J (Aumann, [2]), if

$$f(M(x,y)) \le M(f(x), f(y)), \quad x, y \in J,$$

(respectively, the opposite inequality, equality) holds.

Note that this definition is correct due to the inclusion $M(J \times J) \subset J$ for every subinterval $J \subset I$, that is equivalent to the mean property of M. For $I = \mathbb{R}$ and M = A, where A is the arithmetic mean $A(x, y) := \frac{x+y}{2}$, we get the notion of Jensen convex (concave, affine) function in an interval $J \subset \mathbb{R}$; for $I = (0, +\infty)$ and M = G, where $G(x, y) = \sqrt{xy}$, we obtain the definition of Jensen geometrically convex function in an interval $J \subset (0, +\infty)$ (cf. for instance [10]).

REMARK 2.6. Let $\alpha: [0,1] \to [0,1]$ be an involution, m > 0, and an interval I be *m*-convex wrt α . For arbitrarily fixed $t \in (0,1)$ such that $\alpha(t) \neq t$, let $N: I^2 \to \mathbb{R}$ be given by

$$N(x,y) := tx + m\alpha(t)y, \quad x, y \in I.$$

Then

- (i) N is a mean in I if and only if m = 1 and $\alpha(t) = 1 t$ (in this case m-convexity with respect to α coincides with m-convexity);
- (ii) if m < 1 and $N(I \times I) \subset I$, then 0 must belong to the closure of I; in particular, if $I \subset [0, +\infty)$, then I must be of the form [0, b) or (0, b) for some b such that $0 < b \leq +\infty$.

To see (i) note that, if N is a mean then its reflexivity implies $t+m\alpha(t) = 1$. Replacing here t by $\alpha(t)$ and taking into account $\alpha(\alpha(t)) = t$ we get $\alpha(t) + mt = 1$. These equalities imply that $(1 - m)(\alpha(t) - t) = 0$, so m = 1 and, consequently, $\alpha(t) = 1 - t$. Part (ii) is obvious.

3. Some properties of *m*-convex functions and an example

In this section we consider the *m*-convex functions in the sense of Toader [15], that is, we assume in Definition 2.2 that m < 1 and $\alpha(t) = 1 - t$ for all $t \in [0, 1]$.

REMARK 3.1 ([15, 16]). Let an interval I be as in Definition 2.2 (*m*-convex wrt α).

(i) If m > 0 and $f: I \to \mathbb{R}$ is *m*-convex, then, for all $x, y, z \in I$,

$$\begin{aligned} x < z < my \implies \frac{f(x) - f(z)}{x - z} &\leq \frac{f(z) - mf(y)}{z - my}; \\ my < z < x \implies \frac{f(x) - f(z)}{x - z} \geq \frac{f(z) - mf(y)}{z - my}. \end{aligned}$$

It follows that f is continuous and locally Lipschitzian in int I. (ii) If $0 \le m_1 < m_2 \le 1$, then every m_2 -convex function is m_1 -convex.

If $f: [a, b] \to \mathbb{R}$ is convex in the classical sense in the compact real interval [a, b], then the values of f at a and b can be increased without any harm for the convexity of f, so f need not be continuous at the endpoints a, b. (Therefore, in the classical theory of convexity one assumes that the functions are defined on open convex sets.)

In general, the *m*-convex functions do not have this property, and it follows from the following

REMARK 3.2. Suppose that 0 < m < 1 and f is *m*-convex in the sense of the above definition. Then

(i) if $0 \in I$, then $f(0) \leq 0$;

(ii) if $a \in \text{int } I$ and $f(a) \leq 0$, then

$$f(x) \le 0, \quad x \in I \cap [0, a].$$

Indeed, from (2.3) with x = y = a we get $f((t + m(1 - t))a) \leq 0$ for all $t \in [0, 1]$, so $f(x) \leq 0$ in the interval [ma, a]. Now, by induction, we obtain $f(x) \leq 0$ in the interval $[m^n a, a]$ for all $n \in \mathbb{N}$.

Hence we get the following

COROLLARY 3.3. Let 0 < m < 1 and $0 < b < +\infty$. If $f: (0,b) \to \mathbb{R}$ is *m*-convex and there is a sequence $x_n \in (0,b)$ such that

$$\lim_{n \to +\infty} x_n = b; \quad f(x_n) \le 0 \quad \text{for all } n \in \mathbb{N},$$

then

$$f(x) \le 0, \quad x \in (0, b).$$

This feature is not shared by the classical convex functions, as they have, important in different applications, the "modality" property.

In the sequel, we assume that $I = (0, +\infty)$.

To show that there are common properties of convex functions and m-convex functions, we prove the following

REMARK 3.4. Let 0 < m < 1. If a function $f: (0, +\infty) \to \mathbb{R}$ is *m*-affine, then there are $a, b \in \mathbb{R}$ such that

$$f(x) = ax + b, \quad x > 0.$$

PROOF. Assume that f is m-affine, so

$$f(tx + m(1 - t)y) = tf(x) + m(1 - t)f(y), \quad x, y \in (0, +\infty), \ t \in [0, 1].$$

Taking arbitrarily fixed $x, y \in (0, +\infty)$, y < x, and setting here

 $z = tx + m(1-t)y, \quad t \in [0,1],$

we get

$$f(z) = az + b, \quad z \in [my, x],$$

where

$$a := \frac{f(x) - mf(y)}{x - my}, \quad b := m \frac{xf(y) - yf(x)}{x - my}.$$

Since x and y can be chosen arbitrarily, it follows that

$$f(z) = az + b, \quad z > 0.$$

This property is shared by the classical convex functions.

It is well known that a real function f defined in an open interval I is convex iff at every point $x_0 \in I$, the graph of f is located above a supporting straight-line passing by the point $(x_0, f(x_0))$.

The following example shows that this property is not shared by m-convex functions.

EXAMPLE 3.5. Let $a \in (0, +\infty)$ and $b \in (0, \frac{a}{2})$ be two fixed real numbers. Then, the polynomial function $h: \mathbb{R} \to \mathbb{R}$ defined by

$$h(x) := x^4 - 4(a+b)x^3 + 6a(a+2b)x^2 + a^2(11a+16b)x^2$$

has the following properties: its real roots are -a and 0; its complex roots are

$$\frac{1}{2}(5a+4b\pm i\sqrt{19a^2+24ab-16b^2});$$

 $h([0, +\infty)) = [0, +\infty); f := h|_{[0, +\infty)}$ is strictly increasing and not convex on $[0, +\infty); f$ is *m*-convex for

$$m \le m(a,b) = \frac{(a-2b)(a+2b)^3}{(a-b)^2(a^2+6ab+11b^2)}.$$

PROOF. Since

$$h(x) = x(x+a)(x^{2} - (5a+4b)x + 11a^{2} + 16ab)$$

-a and 0 are roots of h. In turn, the quadratic polynomial given above has discriminant

$$\Delta = [-(5a+4b)]^2 - 4(11a^2 + 16ab) = -19a^2 - 24ab + 16b^2$$

and $\Delta < 0$ if and only if $b \in (\frac{3-2\sqrt{7}}{4}a, \frac{3+2\sqrt{7}}{4}a)$. But, by hypothesis, b belongs to $(0, \frac{a}{2})$ which is a proper subset of $(\frac{3-2\sqrt{7}}{4}a, \frac{3+2\sqrt{7}}{4}a)$. So, the other roots of h are complex and they are of the indicated form.

The next property follows from the facts that h is continuous,

$$\lim_{x \to +\infty} h(x) = +\infty,$$

and its only root in $[0, +\infty)$ is 0. Since

$$f''(x) = 12(x^2 - 2(a+b)x + a(a+2b)) = 12(x-a)(x - (a+2b)),$$

the function f is convex in [0, a) and $(a + 2b, +\infty)$ and concave in (a, a + 2b). Consequently, h is not convex.

Since f is the product of the identity and the polynomial of degree three which is strictly increasing in $[0, +\infty)$, it is strictly increasing.

To show the last property we apply formula (3) given in [16] with m instead of p denoted by m(f); that is,

$$m(f) = \inf\left\{\frac{xf'(x) - f(x)}{yf'(x) - f(y)} : f''(x) = 0, f'(x) = f'(y), \ x, y > 0\right\}$$

First we have to check that xf'(x) - f(x) > 0 for all $x \in (0, +\infty)$ (i.e., f is strictly starshaped on $(0, +\infty)$). In fact,

$$xf'(x) - f(x) = 3x^4 - 8(a+b)x^3 + 6a(a+2b)x^2$$

= $3x^2 \left(x^2 - \frac{8}{3}(a+b)x + 2a(a+2b)\right)$
= $3x^2 \left[\left(x - \frac{4}{3}(a+b)\right)^2 + \frac{16}{9}\left(\frac{a}{2} - b\right)\left(\frac{a}{4} + b\right)\right] > 0$

for all $x \in (0, +\infty)$. We already know that f''(x) = 0 if and only if x = a or x = a + 2b. Set $x_1 = a$ and $x_2 = a + 2b$. Performing a simple calculation we get

$$f'(x_1) = 15a^3 + 28a^2b, \quad f'(x_2) = 15a^3 + 28a^2b - 16b^3.$$

Solving for y on each of the equations

$$f'(y) = 15a^3 + 28a^2b, \quad f'(y) = 15a^3 + 28a^2b - 16b^3,$$

we get the solutions $y_{11} = a + 3b$ or $y_{12} = a$ and $y_{21} = a - b$ or $y_{22} = a + 2b$, respectively. The next step consists in evaluating the function of two variables

$$\Phi(x,y) := \frac{xf'(x) - f(x)}{yf'(x) - f(y)}$$

at four points (x_1, y_{11}) , (x_1, y_{12}) , (x_2, y_{21}) and (x_2, y_{22}) . In fact,

$$\Phi(x_1, y_{11}) = \frac{a^3(a+4b)}{a^4 + 4a^3b + 27b^4}, \quad \Phi(x_2, y_{21}) = \frac{(a-2b)(a+2b)^3}{(a-b)^2(a^2 + 6ab + 11b^2)}$$

and

$$\Phi(x_1, y_{12}) = \Phi(x_2, y_{22}) = 1.$$

To conclude, we have to compare all these values. Observe that all are positive. Set

$$A = a^{3}(a+4b), \quad B = a^{4} + 4a^{3}b + 27b^{4},$$
$$C = (a-2b)(a+2b)^{3}, \quad D = (a-b)^{2}(a^{2}+6ab+11b^{2}).$$

Then,

$$\Phi(x_{11}, y_{11}) > \Phi(x_2, y_{21}) \Leftrightarrow AD - BC > 0.$$

Since $AD - BC = 432(a+b)b^7$ and $\Phi(x_2, y_{21}) < 1$, we get

$$m(f) = \min\{\Phi(x_1, y_{11}), \Phi(x_2, y_{21}), 1\} = \Phi(x_2, y_{21}),$$

which completes the proof.

PROPOSITION 3.6. For every $m \in (0,1)$ there is a polynomial h of degree 4 such that $f := h|_{[0,+\infty)}$ has the following properties:

- (i) f(0) = 0;
- (ii) f is a diffeomorphic mapping of $[0, +\infty)$;
- (iii) f is m-convex in $[0, +\infty)$, and its epigraph E(f) is an m-convex subset of \mathbb{R}^2 ;
- (iv) f is not convex, and its epigraph E(f) is not a convex subset of \mathbb{R}^2 ;
- (v) for any sequence $t_n \in (0, 1)$, $n \in \mathbb{N}$, such that

$$\lim_{n \to +\infty} t_n = 1$$

there is a sequence $s_n \in (0,1)$, $n \in \mathbb{N}$, such that

$$\lim_{n \to +\infty} s_n = 0; \quad t_n + s_n < 1 \quad for \ every \ n \in \mathbb{N},$$

and

$$f(t_n x + s_n y) \le t_n f(x) + s_n f(y), \quad x, y \in [0, +\infty), \, n \in \mathbb{N}$$

PROOF. Take arbitrarily fixed $m \in (0,1)$, a > 0 and put $b = \frac{a}{2}r$ where $r \in [0,1]$. Then, clearly, $b \in [0, \frac{a}{2}]$ and, in view of Example 3.5, we have

$$m(r) := m(a, \frac{a}{2}r) = \frac{16(1-r)(2+r)^3}{(2-r)^2(4+12r+11r^2)}, \quad r \in [0, 1],$$

(so m(r) does not depend on a). Since m(0) = 1, m(1) = 0, and the function m(r) is continuous and one-to-one in [0, 1], there exists a unique $r_0 \in (0, 1)$ such that $m(r_0) = m$. Applying the above example with $b = \frac{a}{2}r_0$ and Remark 2.3 we get the function f having properties (i)–(iv). Property (v) follows from (iii).

4. A result of a sandwich type

Now we shall prove a result of a sandwich type. But first notice that

REMARK 4.1. If I is $(0, +\infty)$ or $[0, +\infty)$ and $f: I \to \mathbb{R}$ is m-convex, then

$$f(mx) \le mf(x), \quad x \in I.$$

THEOREM 4.2. Let I be $(0, +\infty)$ or $[0, +\infty)$, and 0 < m < 1. Assume that $f: I \to \mathbb{R}$ is m-convex. Then

(i) there exists a convex function $h: I \to \mathbb{R}$ such that

$$f(x) \le h(x) \le mf\left(\frac{x}{m}\right), \quad x \in I,$$

or, equivalently,

$$\frac{1}{m}h(mx) \le f(x) \le h(x), \quad x \in I.$$

(ii) If

$$mf(x) \le f(mx), \quad x \in I,$$

then

$$f(x) = f(1)x, \quad x \in I.$$

PROOF. (i) Replacing y in (2.3) by $\frac{y}{m}$ we obtain

(4.1)
$$f(tx + (1-t)y) \le tf(x) + m(1-t)f\left(\frac{y}{m}\right), \quad x, y \in I, \ t \in [0,1].$$

Hence,

$$f(tx + (1-t)y) \le tmf\left(\frac{x}{m}\right) + (1-t)mf\left(\frac{y}{m}\right), \quad x, y \in I, \ t \in [0,1],$$

whence, setting

$$g(x) := mf\left(\frac{x}{m}\right), \quad x \in I,$$

we get

$$f(tx + (1-t)y) \le tg(x) + (1-t)g(x), \quad x, y \in I, \ t \in [0,1].$$

Applying the sandwich theorem [3] we conclude that there exists a (classical) convex function $h: I \to \mathbb{R}$ such that

$$f(x) \le h(x) \le g(x), \quad x \in I,$$

i.e., that

$$f(x) \le h(x) \le mf\left(\frac{x}{m}\right), \quad x \in I.$$

Since it is obvious that these inequalities are equivalent to

$$\frac{1}{m}h(mx) \le f(x) \le h(x), \quad x \in I,$$

the proof of (i) is complete.

(ii) In this case, by Remark 4.1, we have

$$f(mx) = mf(x), \ x \in I,$$

and,

$$f(tx + (1-t)y) \le tf(x) + m(1-t)f\left(\frac{y}{m}\right) = tf(x) + (1-t)f(y),$$

which means that f is convex. Moreover,

$$f(0+) = 0.$$

Now the convexity of f implies that the function

$$(0, +\infty) \ni x \mapsto \frac{f(x)}{x}$$
 is increasing.

But then for any $x, y \in I$ arbitrary with 0 < x < y,

$$\frac{f(x)}{x} \le \frac{f(y)}{y}.$$

We assure f is a constant function. Indeed, if this is not the case we can find x_1 , y_1 with $0 < x_1 < y_1$ and positive integer n such that $m^n y_1 < x_1$, consequently

$$\frac{f(m^n y_1)}{m^n y_1} = \frac{f(y_1)}{y_1} \le \frac{f(x_1)}{x_1} < \frac{f(y_1)}{y_1}$$

which is impossible.

In [12] it has been shown that an analogue of the sandwich theorem for convex functions (see [3]) is not true in the class of *m*-convex functions with $m \in (0, 1)$.

EXAMPLE 4.3 ([12]). Let us fix $m \in (0, 1)$. For arbitrary fixed $a \in \mathbb{R}$ define the functions $f: [0, +\infty) \to \mathbb{R}$ and $g: [0, +\infty) \to \mathbb{R}$ by

$$f(x) := ax + 1, \quad g(x) := ax + \frac{1}{m}.$$

Then, for all $x, y \in [0, +\infty)$ and $t \in [0, 1]$, we have

$$f(tx + m(1 - t)y) \le tg(x) + m(1 - t)g(y),$$

and, of course, $f(x) \leq g(x)$ for all $x \in [0, +\infty)$. However, there is no *m*-convex function $h: [0, +\infty) \to \mathbb{R}$ such that

$$f(x) \le h(x) \le g(x), \quad x \ge 0.$$

5. Remarks on *m*-convex functions in the case m > 1

In this case the class of *m*-convex functions $f: (0, +\infty) \to \mathbb{R}$ such that $f(0+) \leq 0$ is rather poor. Namely the following holds true.

PROPOSITION 5.1. Let m > 1 be fixed. If $f: (0, +\infty) \to \mathbb{R}$ is m-convex and

$$\liminf_{x \to 0+} f(x) \le 0,$$

then f is a linear function, i.e., f(x) = f(1)x for all x > 0.

PROOF. By the assumption there is a positive decreasing sequence $(z_n : n \in \mathbb{N})$ such that $\lim_{n\to\infty} z_n = 0$ and $\lim_{n\to\infty} f(z_n) \leq 0$. Let $(x_n : n \in \mathbb{N})$ be an arbitrary positive sequence such that $\lim_{n\to\infty} x_n = 0$. Without loss of generality, we can assume that $x_1 \leq z_1$. Since $\lim_{n\to\infty} z_n = 0$, for every $n \in \mathbb{N}$, there exist $k_n, l_n \in \mathbb{N}, k_n < l_n$, such that

$$mz_{l_n} \le x_n \le z_{k_n}, \quad \lim_{n \to \infty} k_n = \infty.$$

Note that

$$t_n := \frac{x_n - mz_{l_n}}{z_{k_n} - mz_{l_n}} \in [0, 1], \quad n \in \mathbb{N},$$

and

$$x_n = t_n z_{k_n} + m(1 - t_n) z_{l_n}, \quad n \in \mathbb{N}.$$

Hence, by the m-convexity of f, we have

$$f(x_n) = f(t_n z_{k_n} + m(1 - t_n) z_{l_n}) \le t_n f(z_{k_n}) + m(1 - t_n) f(z_{l_n})$$

for every $n \in \mathbb{N}$. Letting here $n \to \infty$ we get

$$\limsup_{n \to \infty} f(x_n) \le 0,$$

which proves that

$$\limsup_{x \to 0+} f(x) \le 0.$$

Since m > 1, we can choose $t \in (0, 1)$ such that the numbers

$$\alpha := t, \quad \beta := m(1-t),$$

fulfill the inequalities

$$0 < \alpha < 1 < \alpha + \beta,$$

and f satisfies the linear functional inequality

(5.1)
$$f(\alpha x + \beta y) \le \alpha f(x) + \beta f(y), \quad x, y \in (0, +\infty).$$

Since $\limsup_{x\to 0+} f(x) \leq 0$, the result follows from [11, Theorem 1] (see also [9, 10, 14]).

REMARK 5.2. If, in the proposition above, $f: [0, +\infty) \to \mathbb{R}$ is *m*-convex and f(0) = 0, one can also apply a simple direct reasoning.

First, let us observe that, by *m*-convexity where m > 1, there exist real numbers α, β such that $0 < \alpha < 1 < \alpha + \beta$, $\frac{\log \beta}{\log \alpha}$ is an irrational number and (5.1) holds. Taking y = x in (5.1), we have

$$f((\alpha + \beta)x) \le (\alpha + \beta)f(x), \quad x \in (0, +\infty),$$

whence, by induction,

$$f((\alpha + \beta)^k x) \le (\alpha + \beta)^k f(x), \quad x \in (0, +\infty), \ k \in \mathbb{N}.$$

Choose $k \in \mathbb{N}$ such that $\overline{\beta} := \beta(\alpha + \beta)^k > 1$. Hence, by (5.1), for all $x, y \in (0, +\infty)$,

$$f(\alpha x + \bar{\beta}y) = f(\alpha x + \beta(\alpha + \beta)^k y)$$

$$\leq \alpha f(x) + \beta f((\alpha + \beta)^k y)$$

$$\leq \alpha f(x) + \beta(\alpha + \beta)^k f(y) = \alpha f(x) + \bar{\beta} f(y).$$

So, if $\beta < 1$ we can replace it by $\overline{\beta}$.

Setting y = 0 and then x = 0, yields

$$f(\alpha x) \le \alpha f(x), \quad f(\beta x) \le \beta f(x), \quad x \in (0, +\infty),$$

that is, f satisfies the simultaneous system of two inequalities. Hence, by induction, we obtain

$$f(\alpha^k x) \le \alpha^k f(x), \quad f(\beta^n x) \le \beta^n f(x), \quad x \in (0, +\infty), \ k, n \in \mathbb{N},$$

whence

$$f(\alpha^k \beta^n x) \le \alpha^k \beta^n f(x), \quad x \in (0, +\infty), \ k, n \in \mathbb{N}.$$

Now, by the continuity of f in $(0, +\infty)$ (see Remark 3.1 (i)) and the Kronecker theorem on the density of the set $\{\alpha^k \beta^n : k, n \in \mathbb{N}\}$, one gets

$$f(rx) \le rf(x), \quad r, x > 0.$$

Replacing here x by $\frac{x}{r}$ we hence get $\frac{1}{r}f(x) \leq f(\frac{1}{r}x)$ for all r, x > 0, whence

$$rf(x) \le f(rx), \quad r, x > 0,$$

and, consequently,

$$f(rx) = rf(x), \quad r, x > 0.$$

Taking here x = 1 we get f(r) = f(1)r for all r > 0, which completes the proof.

From Proposition 5.1 we immediately get the following

COROLLARY 5.3. Let $\alpha : [0,1] \to [0,1]$ and m (in Definition 2.2) be such that for some $t \in (0,1)$,

$$\min\{t, m\alpha(t)\} < 1 < t + m\alpha(t).$$

If $f: (0, +\infty) \to \mathbb{R}$ is m-convex wrt α , and $\liminf_{x\to 0+} f(x) \leq 0$, then f(x) = f(1)x for all x > 0.

REMARK 5.4. In this corollary we need not to assume that a function α is continuous as we do in Proposition 2.1 (ii).

It follows that considering the functions which are *m*-convex wrt α , it is rational to assume that either $t + \alpha(t) \leq 1$ for all $t \in [0, 1]$ or $t + \alpha(t) \geq 1$ for all $t \in [0, 1]$.

Acknowledgement. The authors are indebted to the Reviewers for their valuable remarks.

References

- Aczél J., Ng C.T., A lemma on the angles between a fixed line and the lines connecting a fixed point on it with the points of a convex arc, Internat. Ser. Numer. Math. 103 (1992), 463–464.
- [2] Aumann G., Konvexe Funktionen und Induktion bei Ungleichungen zwischen Mittelverten, S.-B. math.-naturw. Abt. Bayer. Akad. Wiss. München 1933, pp. 405–413.
- [3] Baron K., Matkowski J., Nikodem K., A sandwich with convexity, Math. Pannonica 5 (1994), no. 1, 139–144.
- [4] Daróczy Z., Páles Zs., Convexity with given infinite weight sequences, Stochastica 11 (1987), 5–12.
- [5] Dragomir S.S., Toader G.H., Some inequalities for m-convex functions, Studia Univ. Babes-Bolyai Math. 38 (1993), no. 1, 21–28.
- [6] Kuczma M., An introduction to the theory of functional equations and inequalities, Cauchy's equation and Jensen's inequality, Państwowe Wydawnictwo Naukowe and Uniwersytet Śląski, Warszawa-Kraków-Katowice, 1985; Second edition (edited by A. Gilányi), Birkhäuser, Basel, 2008.
- [7] Lara T., Sánchez J.L., Rosales E., New properties of m-convex functions, Internat. J. Math. Anal. 9 (2015), no. 15, 735–742.
- [8] Lara T., Merentes N., Quintero R., Rosales E., On strongly m-convex functions, Math. Aeterna 5 (2015), no. 3, 521–535.
- Matkowski J., A functional inequality characterizing convex functions, conjugacy and a generalization of Hölder's and Minkowski's inequalities, Aequationes Math. 40 (1990), 169–180.
- [10] Matkowski J., L^p-like paranorms, in: Selected topics in functional equations and iteration theory, Proceedings of the Austrian-Polish Seminar, Universität Graz, October 24-26, 1991 (edited by D. Gronau, L. Reich), Grazer Math. Ber., 316, Karl-Franzens-Univ. Graz, Graz, 1992, pp. 103–139.
- [11] Matkowski J., Pycia M., Convex-like inequality, homogeneity, subadditivity, and a characterization of L^p-norm, Ann. Polon. Math. 60 (1995), 221–230.
- [12] Matkowski J., Wróbel M., Remark on m-convexity and sandwich theorem, J. Math. Anal. Appl. 451 (2017), 924–930.
- [13] Mocanu P.T., Serb I., Toader G.H., Real star-convex functions, Studia Univ. Babes-Bolyai Math. 42 (1997), no. 3, 65–80.
- [14] Pycia M., Linear functional inequalities a general theory and new special cases, Dissertationes Math. 438 (2006), 62 pp.
- [15] Toader G.H., Some generalizations of the convexity, Proc. Colloq. Approx. Optim. Cluj-Napoca (Romania) 1984, pp. 329–338.
- [16] Toader S., The order of a star-convex function, Bull. Appl. Comp. Math. 85 (1998), 347–350.

Teodoro Lara	Janusz Matkowski
Departamento de Física y Matemáticas	Faculty of Mathematics,
Universidad de los Andes	Computer Science and Econometrics
N. U. RAFAEL RANGEL	University of Zielona Góra
Trujillo	Szafrana 4A
Venezuela	65-516 Zielona Góra
e-mail: tlara@ula.ve	Poland
	e-mail: J.Matkowski@wmie.uz.zgora.pl

126 Teodoro Lara, Janusz Matkowski, Nelson Merentes, Roy Quintero, Małgorzata Wróbel

Nelson Merentes Escuela de Matemáticas Universidad Central de Venezuela Caracas Venezuela e-mail: nmerucv@gmail.com

Małgorzata Wróbel Institute of Mathematics Czestochowa University of Technology al. Armii Krajowej 21 42-200 Częstochowa Poland e-mail: malgorzata.wrobel@im.pcz.pl Roy Quintero Departamento de Física y Matemáticas Universidad de los Andes N. U. Rafael Rangel Trujillo Venezuela e-mail: rquinter@ula.ve