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LINEAR DEPENDENCE OF POWERS
OF LINEAR FORMS

Andrzej Sładek

Abstract. The main goal of the paper is to examine the dimension of the
vector space spanned by powers of linear forms. We also find a lower bound
for the number of summands in the presentation of zero form as a sum of d-th
powers of linear forms.

1. Introduction and terminology

B. Reznick, in his 2003 paper [4] introduced the ticket

T (F ) = {d ∈ N : {fdj } is linearly dependent}

for any finite set of polynomials F = {fj}. If f ′j is the homogenisation of the
polynomial fj , then T (F ) = T (F ′), where F ′ = {f ′j}. Thus, examination of
tickets can be confined to forms. Observing interesting results in Reznick’s
paper one can ask about “degree” of linear dependence of the set of powers of
forms within its ticket, i.e. dim span{fdj } for d ∈ T (F ). The question seems to
be difficult in the case of any sets of forms. The ticket of a set of linear forms
is an initial segment of the set N of natural numbers (see [4, Lemma 2.2]) and
the problem has a chance for at least partial solution in this case.
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In section 2 we examine the growth of the sequence (dim span{ldj })d∈N for
a finite set {lj} of linear forms. In section 3 we find a lower bound for the
number of summands in the presentation of zero form as a sum of d-th powers
of linear forms. This is connected with a conjecture formulated by A. Schinzel.

Throughout the paper the field K is of characteristic 0, however some
obtained results hold true for fields with big enough (greater than members
of considered tickets) positive characteristic. Let LK(n) be the set of linear
forms over a field K. For any A = {l1, . . . , lr} ⊂ LK(n) and d ∈ N let Ad

denote the subset {ld1 , . . . , ldr} of the vector space FK(n, d) of homogeneous
forms in n variables of degree d over K and let wd(A) = dim span(Ad). We
need one more invariant

sd(A) = max{k : B ⊂ A,#B = k =⇒ Bd is linearly independent}.

Of course, by the definition sd(A) ≤ wd(A) ≤ #A. Throughout the paper we
consider distinct elements of LK(n) as projectively distinct, i.e. any l1, l2 ∈
LK(n), l1 6= l2, are supposed to be linearly independent. Thus, if #A ≥ 2,
then 2 ≤ s1(A) ≤ n. Let us start with a simple lemma.

Lemma 1.1. Assume l1, . . . , lr ∈ LK(n), λ1, . . . , λr ∈ K and

(1.1)
r∑

j=1

λjl
d
j = 0.

Then for every α = [a1, . . . , an] ∈ Kn, we have

(1.2)
r∑

j=1

λjlj(α)l
d−1
j = 0.

Proof. It suffices to apply the differential operator 1
d

∂
∂l to the equa-

tion (1.1), where l = a1X1 + . . .+ anXn. �

Corollary 1.2. For any finite subset A of LK(n) the sequences (sd(A))d∈N
and (wd(A))d∈N are nondecreasing.

In the next section we will show that these sequences are increasing until
the moment they stabilize.
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2. Powers of linear forms and the dimensions

Let us start this section with the main theorem.

Theorem 2.1. Assume A ⊂ LK(n), d ≥ 2, (ld−11 , . . . , ld−1wd−1(A)) is a basis
of Ad−1 and li1 , . . . , lik ∈ A satisfy the following conditions:
(a) {li1 , . . . , lik} ∩ {l1, . . . , lwd−1(A)} = ∅,
(b) li1 , . . . , lik are linearly independent,
(c) at most sd−1(A)− 1 of l1, . . . , lwd−1(A) belong to span(li1 , . . . , lik).
Then

wd(A)− wd−1(A) ≥ k.

Proof. By Corollary 1.2, the sets {ld1 , . . . , ldwd−1(A)} and {l
d
i1
, . . . , ldik} are

linearly independent. Thus, it suffices to show that

span(ldi1 , . . . , l
d
ik
) ∩ span(ld1 , . . . , l

d
wd−1(A)) = {θ}.

Suppose

(2.1) b1l
d
i1 + . . .+ bkl

d
ik

= c1l
d
1 + . . .+ cwd−1(A)l

d
wd−1(A), bi, cj ∈ K, b1 6= 0.

Let

(2.2) ld−1i1
=

wd−1(A)∑
j=1

ajl
d−1
j .

By the definition of sd−1(A), at least sd−1(A) of a1, . . . , awd−1(A) must be
different from zero. Thus by (c), there exists j0 such that aj0 6= 0 and the set
{li1 , . . . , lik , lj0} is linearly independent. We can take α ∈ Kn such that

(2.3) li1(α) 6= 0, li2(α) = . . . = lik(α) = lj0(α) = 0.

If α = [a1, . . . , an] and l = a1X1+ . . .+ anXn, then after applying differential
operator 1

d
∂
∂l to both sides of the equation (2.1) we get

b1li1(α)l
d−1
i1

=

wd−1(A)∑
i=1,i6=j0

cili(α)l
d−1
i ,

which is in contradiction with (2.2). �
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Corollary 2.2. Suppose A ⊂ LK(n),#A = r <∞, d ≥ 2. Then
(a) wd(A)− wd−1(A) ≥ min{s1(A)− 1, r − wd−1(A)};
(b) if r − wd−1(A) ≥ s1(A)− 1, then wd(A) ≥ (d− 1)(s1(A)− 1) + w1(A);
(c) if s1(A) = n and r = d(n− 1) + 1, then Ad is linearly independent;
(d) the sequence (wd(A))d∈N) is increasing untill the d for which Ad is linearly

independent, wd(A) = r for d ≥ r − 1;
(e) the sequence (sd(A))d∈N) is increasing untill the d for which Ad is linearly

independent, sd(A) = r for d ≥ r − 1;
(f) sd(A) ≥ min{s1(A) + d− 1, r}.

Proof. (a) Let k = min{s1(A)−1, r−wd−1(A)} and let (ld−11 , . . . , ld−1wd−1(A))

be a basis of Ad−1. Any linearly independent subset {li1 , . . . , lik} of A which
is disjoint with {l1, . . . , lwd−1(A)} satisfies assumptions of Theorem 2.1. Thus,
wd(A)− wd−1(A) ≥ k.

(b) If r − wd−1(A) ≥ s1(A) − 1, then r − wk(A) ≥ s1(A) − 1 for every
k ≤ d− 1 and by (a)

wd(A) =

d∑
k=2

(wk(A)− wk−1(A)) + w1(A) ≥ (d− 1)(s1(A)− 1) + w1(A).

(c) If s1(A) = n, then w1(A) = n and the statement results immediately
from (b).

(d) It follows easily from (a).
(e) If r > sd(A) = sd−1(A), then there exists B ⊂ A,#B = sd(A)+1 such

that Bd is linearly dependent. Take B1 ⊂ B,#B1 = sd(A). Then

sd(A) + 1 > dim spanBd ≥ dim spanBd−1

≥ dim spanBd−1
1 = sd−1(A) = sd(A)

and wd(B) = dim spanBd = dim spanBd−1 = wd−1(B). By (d) the set Bd is
linearly independent and we obtained a contradiction.

(f) We perform an induction on d. For obvious reasons the inequality is
also true for d = 1. Suppose d ≥ 2 and sd−1(A) ≥ min{s1(A) + d − 2, r}.
If sd(A) ≥ r, then sd(A) = r and we are done. Suppose r > sd(A) and
s1(A) + d − 1 > sd(A). Since the sequence (sd(A))d∈N is nondecreasing, we
have

s1(A) + d− 1 > sd(A) ≥ sd−1(A) ≥ s1(A) + d− 2.

Thus, r > sd(A) = sd−1(A) which by (e) is impossible. �
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Remark. The statement (c) in Corollary 2.2 was proved by A. Białynicki-
Birula and A. Schinzel [1, Theorem 2] for fields of characteristic 0 or greater
than d. Moreover, they showed an example that the statement is no longer
true when r = d(n− 1) + 2 ≤ #K + 1.

The lower bound for the difference of two consecutive elements of the
sequence (wd(A))d∈N in Theorem 2.1 does not exceed the number of variables.
It is not hard to show examples that this bound is strict. However, there are
examples of sets of linear forms for which wd(A) − wd−1(A) is much bigger.
For example, if

A = {a1X1 + . . .+ anXn : a1, . . . , an ∈ N ∪ {0},
n∑

i=1

ai = d}

then Ad is a basis for FR(n, d) (see [3, Proposition 2.11]) and

wd(A)− wd−1(A) ≥ dimFR(n, d)− dimFR(n, d− 1) =

(
n+ d− 2

n− 2

)
.

The statement (c) in 2.2 indicates that wd(A) strongly depends on the con-
figuration of the linear forms in A, so it is natural to ask what can we say
about wd(A) if we have information on linearly independent subsets of A. We
conclude this section with citing two interesting results due to A. Chlebowicz
and M. Wołowiec-Musiał [2] which shed light on this problem.

Lemma 2.3 ([2, Lemma 2.4]). Let A = {l1, . . . , lm} ⊂ LK(n). Suppose
there exists a number k and subsets Ai1, . . . , Aik of A for i = 1, . . . ,m such
that
(a) A =

⋃k
j=1Aij , i = 1, . . . ,m,

(b) li 6∈ span(Aij \ {li}), i = 1, . . . ,m, j = 1, . . . , k.

Then Ak is linearly independent.

The proof of this lemma based on very useful criterion due to P. Serret (see
[3, Proposition 2.6]). Actually the original Serret’s Theorem refers to the field
R, but one can check that its proof holds true for any field of characteristic 0.
The following theorem is an easy consequence of the above lemma.

Theorem 2.4 ([2, Theorem 2.5]). If A ⊂ LK(n) can be decomposed into
a union of s subsets, which are disjoint and linearly independent, then A2s−1

is linearly independent.
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Remark. B. Reznick (see [4, Lemma 3.2]) proved inequality #T (A) <
#A − 1 for any finite subset A of LK(n). If A is as in Lemma 2.3, then
we have the better bound #T (A) < k. If A is a disjoint union of s linearly
independent subsets, then #T (A) < 2s− 2.

Lemma 2.3 and Theorem 2.4 turn out to be very useful in constructing
examples.

Example. Let A = {l1, . . . , ln, l1 + ln, . . . , ln−1 + ln} ⊂ LK(n), where
l1, . . . , ln are linearly independent. The sets

Ai1 = {l1, . . . , li−1, li+1, . . . , ln}, Ai2 = {l1 + ln, . . . , ln−1 + ln, li}

satisfy conditions (a) and (b) from Lemma 2.3. Thus, A2 is linearly indepen-
dent and w1(A) = n,wd(A) = 2n− 1 for d ≥ 2.

We may generalize this example. Let B0 = {l1, . . . , ln} ⊂ LK(n), where
l1, . . . , ln are linearly independent, Bj = {lj + li : j = 1, . . . , n, j 6= i} and

A =
n⋃

j=0

Bj . The sets Ai0 = B0 \ {li}, Aij = Bj ∪ {li} for j = 1, . . . , n, satisfy

conditions (a) and (b) from Lemma 2.3. Thus, An+1 is linearly independent
and w1(A) = n,wd(A) = n+ n(n− 1) for d ≥ n+ 1.

3. Schinzel’s Conjecture

In this section we will show one more application of Theorem 2.4. A. Schin-
zel, during his lecture at 18th Czech and Slovak International Conference on
Number Theory (2007, Smolenice, Slovakia), presented the following conjec-
ture.

Conjecture. Let K be a field of characteristic 0 or greater than d. If
l1, . . . , lr ∈ LK(n), dim span(l1, . . . , lr) = n and

∑r
i=1 l

d
i = 0, but no proper

subsum is 0, then r ≥ d(n− 1) + 2.

In [1] it was shown that the conjecture holds true for n ≤ 4 and any d. We
shall show that a weaker version of this conjecture holds true.

Lemma 3.1. Let l1, . . . , lk,m1, . . . ,ms ∈ LK(n) be pairwise projectively
distinct. If

(3.1) ld1 + . . .+ ldk = md
1 + . . .+md

s ,



Linear dependence of powers of linear forms 137

dim span(l1, . . . , lk) = n and the set {ld−11 , . . . , ld−1k } is linearly independent,
then dim span(m1, . . . ,ms) = n.

Proof. Suppose that dim span(m1, . . . ,ms) < n. Then there exists α =
[a1, . . . , an] ∈ Kn, α 6= θ, such that mi(α) = 0 for i = 1, . . . , s. Let us take
l = a1X1 + . . . + anXn and apply the differential operator 1

d
∂
∂l to both sides

of equation (3.1). We have

k∑
j=1

lj(α)l
d−1
j =

s∑
i=1

mi(α)m
d−1
i = 0.

Since dim span(l1, . . . , lk) = n, there exists j0 ∈ {1, . . . , k} such that lj0(α) 6=
0. We get a contradiction with linear independence of {ld−11 , . . . , ld−1k }. �

Theorem 3.2. If l1, . . . , lr ∈ LK(n), dim span(l1, . . . , lr) = n and

r∑
i=1

ldi = 0,

but no proper subsum is 0, then r ≥ n(d+1)
2 , if d is odd and r ≥ n(d+2)

2 , if d is
even.

Proof. First we show that for any t ≤ d
2 +1 we may find disjoint linearly

independent subsets A1, . . . At of {l1, . . . , lr}, the number of elements of each
is n, and such that (after reindexing elements of {l1, . . . , lr})

A1 ∪ . . . ∪At = {l1, . . . , lnt} ⊂ {l1, . . . , lr}.

By the assumptions, we may find linearly independent subset A1⊂ {l1, . . . , lr}.
Take the maximal t for which there exist A1, . . . , At satisfying the above
requirement. If t ≤ d

2 + 1 and t+ 1 > d
2 + 1, then we are done. Thus, suppose

t+1 ≤ d
2 +1. Then 2t−1 ≤ d−1 and by Theorem 2.4, the set {ld−11 , . . . , ld−1nt }

is linearly independent. Let α = d
√
−1. We have

ld1 + . . .+ ldnt = (α lnt+1)
d + . . .+ (α lr)

d

and by Lemma 3.1, applied over the fieldK(α), the set {lnt+1, . . . , lr} contains
at least one more linearly independent subset with n elements. We obtained
a contradiction with the choice of t.

Now, for even d we may take t = d
2 + 1, and then r ≥ nt = n(d+2)

2 . If d is
odd, then t = d−1

2 + 1 is possible and r ≥ nt = n(d+1)
2 . �
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Remark. From the above Theorem it follows that Schinzel’s conjecture is
true for d = 2 and any n, since then n(d+2)

2 = d(n−1)+2. Unfortunately, our
lower bound for r is the worst the bigger d is. It seems that to prove Schinzel’s
conjecture one should use other tools. It would be interesting to check this
conjecture for d = 3 and any n.
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