The Impact of Variability of Selected Geological and Mining Parameters on the Value and Risks of Projects in the Hard Coal Mining Industry

Open access


The paper attempts to assess the impact of variability of selected geological (deposit) parameters on the value and risks of projects in the hard coal mining industry. The study was based on simulated discounted cash flow analysis, while the results were verified for three existing bituminous coal seams.

The Monte Carlo simulation was based on nonparametric bootstrap method, while correlations between individual deposit parameters were replicated with use of an empirical copula. The calculations take into account the uncertainty towards the parameters of empirical distributions of the deposit variables. The Net Present Value (NPV) and the Internal Rate of Return (IRR) were selected as the main measures of value and risk, respectively.

The impact of volatility and correlation of deposit parameters were analyzed in two aspects, by identifying the overall effect of the correlated variability of the parameters and the indywidual impact of the correlation on the NPV and IRR. For this purpose, a differential approach, allowing determining the value of the possible errors in calculation of these measures in numerical terms, has been used.

Based on the study it can be concluded that the mean value of the overall effect of the variability does not exceed 11.8% of NPV and 2.4 percentage points of IRR. Neglecting the correlations results in overestimating the NPV and the IRR by up to 4.4%, and 0.4 percentage point respectively. It should be noted, however, that the differences in NPV and IRR values can vary significantly, while their interpretation depends on the likelihood of implementation.

Generalizing the obtained results, based on the average values, the maximum value of the risk premium in the given calculation conditions of the „X“ deposit, and the correspondingly large datasets (greater than 2500), should not be higher than 2.4 percentage points. The impact of the analyzed geological parameters on the NPV and IRR depends primarily on their co-existence, which can be measured by the strength of correlation. In the analyzed case, the correlations result in limiting the range of variation of the geological parameters and economics results (the empirical copula reduces the NPV and IRR in probabilistic approach). However, this is due to the adjustment of the calculation under conditions similar to those prevailing in the deposit.

Berry M., McCarthy P.L., 2006. Practical consequences of geological uncertainty. [In:] Proceedings 6th International Mining Geology Conference, Melbourne: The Australasian Institute of Mining and Metallurgy, 253-258.

Cherubini U., Luciano E., Vecchiato W., 2004. Copula Methods in Finance. John Wiley & Sons Ltd, Oxford, UK.

Davis G.A., 1998. One project, two discount rates. Mining Engineering 50 (4), 70-74.

Dimitrakopoulos R., Scott J., Dunn D., 2007. Quantification of Geological Uncertainty and Risk Using Stochastic Simulation and Applications in the Coal Mining Industry. [In:] Orebody Modelling and Strategic Mine Planning – Uncertainty and Risk Management International Symposium 2004, 22-24 November 2004, 185-192.

Efron B., Tibshirani R.J., 1993. An introduction to the Bootstrap. Chapman & Hall, New York.

Gocht W.R., Zantop H., Eggert R.G., 1988. International Mineral Economics. Springer-Verlag.

Górecka M., 1981. Analiza dokładności rozpoznania złóż węgla kamiennego w wybranym rejonie GZW. Przegląd Geologiczny 29, 4, Warszawa, 162-165.

Graham J., Harvey C., 2001. The theory and practice of corporate finance: evidence from the field. Journal of Financial Economics 60, 187-24.

Grudziński Z., 2009. Propozycje struktur cenowych dla węgla kamiennego energetycznego i węgla brunatnego. Polityka Energetyczna 12 (2/2), Kraków, 159-171.

Hammond D.R., 2000. Current issues in the valuation of international mining assets. Presentation to the International Mining Professionals Society, Hammond International Group, Denver, Colorado, December 13.

Khanzode V.V., Maiti J., Ray P.K., 2001. A methodology for evaluation and monitoring of recurring hazards in underground coal mining. Safety Science 49, 8-9, 1172-1179.

Kopacz M., 2015a. Ocena kosztów gospodarki skałą płonną w funkcji zmiennego poziomu współczynnika uzysku węgla netto na przykładzie kopalni węgla kamiennego, Gospodarka Surowcami Mineralnymi 31, 3, Kraków, 121-144.

Kopacz M., 2015b. The impact assessment of quality parameters of coal and waste rock on the value of mining investment projects – hard coal deposits. Mineral Resources Management 31, 4, Krakow, 161-188.

Kopacz M., 2016. Ocena wpływu miąższości, gęstości przestrzennej oraz przerostów w pokładzie węgla na wartość górniczych projektów inwestycyjnych w metodzie symulacyjnej. Przegląd Górniczy 5, Katowice, 63-78.

Kozubski F., 1962. Zagadnienie dokładności rozpoznania tektoniki złóż za pomocą wierceń w świetle potrzeb projektowania górniczego, Przegląd Geologiczny 12, 629-632.

Lattanzi Ch.R., 2000. Discounted cash flow analysis-input parameters and sensitivity. Special session on valuation of mineral properties – Mining Millennium 2000, Toronto, access online on 15.03.2017:

Le Bel G., 1994. Determination of the Optimum Lifetime of a Mining Project Using Discounted Cash Flow and Option Pricing Techniques by B. Cavender-Discussion. Mining Engineering, 1994, access online on 15.03.2017:

Li S., Knights P., Dunn D.J., 2008. Geological uncertainty and risk: implications for the viability of mining projects. Journal of Coal Science and Engineering (China) 14, 2, 176-180.

Mucha J., Nieć M., Saługa P., Sobczyk E.J., Wasilewska M., 2008. Ryzyko inwestycji w górnictwie węgla kamiennego jako funkcja dokładności oszacowań parametrów złożowych. Gospodarka Surowcami Mineralnymi 24, 2, Kraków, 161-173.

Mucha J., Nieć M., Wasilewska M., Sobczyk E.J., Saługa P., 2007. Dokładność szacowania zasobów węgla kamiennego jako element oceny ryzyka inwestycyjnego. Wyd. AGH, Kraków.

Nieć M., 1990. Geologia kopalniana. Wydawnictwa Geologiczne, Warszawa.

Pera K., 2010. Zintegrowana ocena efektywności finansowej surowcowego projektu inwestycyjnego. wyd. Akademii Ekonomicznej, Katowice.

Roberts C., 2000. The Valuation of Advanced Mining Projects and Operating Mines: Market Comparable Approaches. Mineral Economics Society, Special Session on Valuation of Mineral Properties Mining Millennium 2000, Toronto, Ontario, access online on 15.03.2017:

Saługa P., 2009. Ocena ekonomiczna projektów i analiza ryzyka w górnictwie. Studia, Rozprawy, Monografie, nr 152, IGSMiE PAN, Kraków.

Simonsen H., Perry J., 1999. Risk identification, assessment and management in the mining and metallurgical industries. Journal of the South African Institute of Mining and Metallurgy, 321-332. access online on 15.03.2017:

Smith L.D., 1994. Discount rates and risk assessment in mineral project evaluations. Transactions, Mining industry section; Institution of mining and metallurgy, access online on 15.03.2017:

Smith L.D., 2000. Discounted cash flow analysis and discount rates. Special session on valuation of mineral properties mining millennium 2000, Toronto, Ontario, access online on 15.03.2017:

Sobczyk E.J., 2009. Uciążliwość geologiczno-górniczych warunków eksploatacji węgla kamiennego i jej wpływ na gospodarkę złożem. Studia, Rozprawy i Monografie, nr 150, wyd. IGSMiE PAN, Kraków.

Uberman R., Uberman R., 2008. Podstawy wyceny wartości złóż kopalin. Teoria i praktyka, wyd. IGSMiE PAN, Kraków.

Vose D., 2008. Risk analysis. A quantitative guide. John Wiley&Sons Ltd.: 3rd edition, Chichester, West Sussex, England.

Wasilewska M., Mucha J., 2006. Dokładność szacowania średnich wartości parametrów pokładów węgla kamiennego w blokach obliczeniowych metodą krygingu zwyczajnego. Przegląd Górniczy 62, 11, 10-17.

Zhu B., 2011. Quantitative evaluation of coal-mining geological condition. Procedia Engineering 26, 630-639.

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 246 181 6
PDF Downloads 102 91 3