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Abstract
Three main tools to study graphs mathematically are to make use of the vertex degrees, distances and matrices. The classical
graph energy was defined by means of the adjacency matrix in 1978 by Gutman and has a large number of applications in
chemistry, physics and related areas. As a result of its importance and numerous applications, several modifications of the
notion of energy have been introduced since then. Most of them are defined by means of graph matrices constructed by
vertex degrees. In this paper we define another type of energy called q-distance energy by means of distances and matrices.
We study some fundamental properties and also establish some upper and lower bounds for this new energy type.
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1 Introduction and preliminaries

Let G be a graph with n vertices and m edges and let A = (ai j) be the adjacency matrix of G. The eigenvalues
λ1,λ2, . . . ,λn of A in non-increasing order are called the eigenvalues of the graph G. As A is real symmetric, the

†mr.rajeshkanna@gmail.com
‡pradeepr.mysore@gmail.com
§ndsoner@yahoo.co.in
¶Corresponding author, cangul@uludag.edu.tr

ISSN 2444-8656 doi:10.2478/AMNS.2020.2.00017

https://www.sciendo.com
http://dx.doi.org/10.2478/AMNS.2020.2.00017
https://www.sciendo.com
http://crossmark.crossref.org/dialog/?doi=10.2478/AMNS.2020.2.00017


86 M. R. R. Kanna, R. P. Kumar, S. Nandappa and I. N. Cangul. Applied Mathematics and Nonlinear Sciences 5(2020) 85–98

eigenvalues of G are real with sum equal to zero. The energy E(G) of G is defined by I. Gutman, [7], to be the
sum of the absolute values of the eigenvalues of G, i.e.

E(G) =
n

∑
i=1
|λi|.

For details on the mathematical aspects of the theory of graph energy, see the review [9], papers [4, 5, 8] and
the references cited therein. The basic properties including various upper and lower bounds for the energy of
a graph have been established in [16, 18], and the notion of graph energy has been found to have remarkable
chemical applications in the molecular orbital theory of conjugated molecules, [6, 10]. In [11], a QSPR study is
made for the energy of certain graph theoretical matrices. In [17], some graph operations are realized.

The distance matrix of G is the square matrix of order n whose (i, j)-th entry is the distance between the
vertices vi and v j which is defined as the length of the shortest path between these two vertices. Let µ1,µ2, . . . ,µn

be the eigenvalues of the distance matrix of G. The distance energy DE is defined by

DE = DE(G) :=
n

∑
i=1
|µi|.

Detailed information on distance energy can be found in [3, 13, 14, 21]. The distance energy of the join of two
given graphs can be found in [20]. In [19], a generalization of the distance notion is given.

Recently R. B. Bapat et al., [1], defined a new distance matrix, called as the q-distance matrix denoted by

Aq(G) = (qi j).

For an indeterminate q, the entries qi j of this new matrix are defined by

qi j =

{
1+q+q2 + · · ·+qk−1, if k = di j,

0, if i = j,
where k = di j is the distance between the vertices vi and v j. Each entry of Aq(G) is a polynomial in q. Observe
that Aq(G) is an entry-wise non-negative matrix for all q≥−1.

The characteristic polynomial of Aq(G) is defined by

fn(G,µ) = det(µI−Aq(G)).

The q-distance eigenvalues of the graph G are similarly the eigenvalues of Aq(G). Since Aq(G) is real and
symmetric, its eigenvalues are also real numbers and we label them in non-increasing order µ1 ≥ µ2 ≥ ·· · ≥ µn.
The q-distance energy of G is denoted by Eq(G) and is defined by

Eq(G) =
n

∑
i=1
|µi|.

Note that the trace of Aq(G) = 0 and also if q = 1, then the q-distance energy coincides with distance energy of
a graph.

Example 1. Consider a crown graph S0
6 as in Fig. 1.1.
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Figure 1.1 The crown graph S6
0

As

Aq(S0
6) =



0 1+q 1+q 1+q+q2 1 1
1+q 0 1+q 1 1+q+q2 1
1+q 1+q 0 1 1 1+q+q2

1+q+q2 1 1 0 1+q 1+q
1 1+q+q2 1 1+q 0 1+q
1 1 1+q+q2 1+q 1+q 0

 ,

the characteristic polynomial of S6
0 is

(µ +q2−q+1)(µ−q2−3q−5)(µ +q2 +2q+1)2(µ−q2 +1)2.

Then the q-distance spectrum of S0
6 would be(
−q2 +q−1 q2 +3q+5 −q2−2q−1 q2−1

1 1 2 2

)
and therefore the q-distance energy of S0

6 is found as

Eq(S0
6) = |− (q2−q+1)|+ |q2 +3q+5|+2 · |− (q2 +2q+1)|+2 · |q2−1|

= q2−q+1+q2 +3q+5+2q2 +4q+2+2q2−2

= 6q2 +6q+6.

2 Properties of the q-distance eigenvalues

Here we study some fundamental properties of the q-distance eigenvalues. We start with the following
well-known lemmas:

Lemma 2. Let G be a graph with the adjacency matrix A and the spectrum spec(G) = {µ1,µ2, . . . ,µn}. Then it
is well-known that

det A =
n

∏
i=1

µi.

In addition, for any polynomial P(x), the value P(µ) is an eigenvalue of P(A) and hence

det P(A) =
n

∏
i=1

P(µi).

Lemma 3. Let B =
(

B0 B1
B1 B0

)
be a symmetric 2 × 2 block matrix. Then the spectrum of B is the union of the

spectra of B0 +B1 and B0−B1.

We can now prove the following results on q-distance eigenvalues:
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Theorem 4. Let G be an (n,m) graph of diameter 2 with the q-distance eigenvalues µ1,µ2, . . . ,µn. Then

n

∑
i=1

µi
2 = 2m+(n2−n−2m)(1+q)2.

Proof. In a q-distance adjacency matrix Aq(G), there are 2m elements equal to 1 and n2−n−2m elements equal
to (1+q). Therefore

n

∑
i=1

µ
2
i =

n

∑
i=1

n

∑
j=1

qi jq ji

=
n

∑
i=1

n

∑
j=1

(qi j)
2

= (2m)(1)2 +(n2−n−2m)(1+q)2

= 2m+(n2−n−2m)(1+q)2.

Theorem 5. Let G be an (n,m) graph of diameter 2 and let µ1 be its greatest q-distance eigenvalue. Then

µ1 ≥
n(n−1)(1+q)−2mq

n
.

Proof. Let G be a connected graph of diameter 2 with its vertices labeled as v1,v2, . . . ,vn and let di denote the
degree of vi. As G is of diameter 2, it is easy to observe that the ith row of Aq consists of di times 1s and n−di−1
times 2s. Let X = [1,1,1, . . . ,1] be a vector containing only 1s. Then by the Rayleigh principle, we have

µ1 ≥
XAqXT

XXT

=
∑

n
i=1
(
di(1)+(n−di−1)(1+q)

)
n

=
(2m+(n−1)n(1+q)−2m(1+q))

n

=
n(n−1)(1+q)−2mq

n
.

Theorem 6. Let G be an r-regular graph of diameter 2 with r,µ2, . . . ,µn as its eigenvalues. Then the q-distance
eigenvalues of G are −rq+(n−1)(1+q),−qµ2− (1+q),−qµ3− (1+q), . . . ,−qµn− (1+q).

Proof. Let G be an r-regular graph with diameter 2 and adjacency matrix A. A is the adjacency matrix of G.
Then the q-distance adjacency matrix of G will be

Aq = A+(1+q)A. (1)

If r,µ2, . . . ,µn are the eigenvalues of A with r≥ µ2 ≥ ·· · ≥ µn, then n−1− r,−µ2−1,−µ3−1, . . . ,−µn−1 are
the eigenvalues of A. By Eqn. (1), the theorem is proved.

Theorem 7. Let G be a connected r-regular graph of diameter one or two with the adjacency matrix A and
spec(G) = {r,µ2,µ3, . . . ,µn}. Then the product graph H = G×K2 is (r + 1)-regular and of diameter 2 or 3
with spec(H) = {−rq(1+q)+2n(1+q)+q2(n−1)−1,−qµi(1+q)− (1+2q+q2),−rq(1−q)+q2(1−n)−
1,−qµi(1−q)− (1−q2)} for i = 1,2,3, . . . ,n.

Proof. Since G is of diameter 1 or 2, its q-distance matrix is A+(1+q)A. Then the q-distance matrix of H is of
the form (

A+(1+q)A J+qA+(q+q2)A
J+qA+(q+q2)A A+(1+q)A

)
.
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By Lemma 3, the spectrum of H is the union of the spectra of (1+ q)A+(1+ 2q+ q2)A+ J and (1− q)A+
(1− q2)A− J. If r,µ2, . . . ,µn are the eigenvalues of A with r ≥ µ2 ≥ ·· · ≥ µn then n− r− 1,−µ2− 1,−µ3−
1, . . . ,−µn−1 are the eigenvalues of A. Also we know that n,0,0, . . . ,0 are the eigenvalues of J. Therefore, the
theorem follows.

3 Bounds for the q-distance energy

In this section, we find several bounds for the q-distance energy Eq(G). The first one is a sequel of the work
of McClelland’s, [18].

Theorem 8. Let G be a simple (n,m) graph with diameter 2. If P = |detAq(G)|, then√
2m+(n2−n−2m)(1+q)2 +n(n−1)P

2
n ≤ Eq(G)≤

√
n(2m+(n2−n−2m)(1+q)2).

Proof. Recall that the Cauchy-Schwarz inequality states that( n

∑
i=1

aibi

)2
≤
( n

∑
i=1

a2
i

)( n

∑
i=1

b2
i

)
.

If we substitute ai = 1 and bi =| µi |, then we obtain( n

∑
i=1
| µi |

)2
≤
( n

∑
i=1

1
)( n

∑
i=1

µ
2
i

)
.

Hence by Theorem 4, we have
E2

q (G)≤ n(2m+(n2−n−2m)(1+q)2)

and therefore we obtain
Eq(G)≤

√
n(2m+(n2−n−2m)(1+q)2).

Since the arithmetic mean is not smaller than the geometric mean, we have

1
n(n−1) ∑i 6= j | µiµ j | ≥

[
∏i 6= j | µiµ j |

] 1
n(n−1)

=
[

∏
n
i=1 | µi |2(n−1)

] 1
n(n−1)

=
[

∏
n
i=1 | µi |

] 2
n

=
[

∏
n
i=1 µi

] 2
n

= |detAq(G)| 2n
= P

2
n .

Therefore

∑
i 6= j
| µiµ j |≥ n(n−1)P

2
n .

Now consider

E2
q (G) =

(
∑

n
i=1 | µi |

)2

= ∑
n
i=1 | µi |2 +∑i 6= j | µi || µ j | .
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Therefore, by Theorem 4, we obtain

E2
q (G)≥ 2m+(n2−n−2m)(1+q)2 +n(n−1)P

2
n

and hence

Eq(G)≥
√

2m+(n2−n−2m)(1+q)2 +n(n−1)P
2
n .

Now, we find another bound for Eq(G) which is a sequel to the work of Koolen and Moulton’s, [12].

Theorem 9. If G is an (n,m) graph with diameter 2 so that

n(n−1)(1+q)−2mq
n

≥ 1,

then

Eq(G)≤ n(n−1)(1+q)−2mq
n

+

√
(n−1)

[
(2m+(n2−n−2m)(1+q)2−

(n(n−1)(1+q)−2mq
n

)2]
.

Proof. By substituting ai = 1 and bi =| µi | in Cauchy-Schwarz inequality, we have(
n

∑
i=2
| µi |

)2

≤
n

∑
i=2

1
n

∑
i=2

µ
2
i [Eq(G)−µ1]

2 ≤ (n−1)(2m+(n2−n−2m)(1+q)2).

Hence
Eq(G)≤ µ1 +

√
(n−1)(2m+(n2−n−2m)(1+q)2−µ2

1 ).

Let
f (x) = x+

√
(n−1)(2m+(n2−n−2m)(1+q)2− x2).

Then for a decreasing function f (x), the fact f ′(x)≤ 0 implies that

1− x(n−1)√
(n−1)(2m+(n2−n−2m)(1+q)2− x2)

≤ 0.

From this we obtain

x≥
√

2m+(n2−n−2m)(1+q)2

n
.

Therefore the function f (x) is decreasing in the interval(√
2m+(n2−n−2m)(1+q)2

n
,
√

2m+(n2−n−2m)(1+q)2

)
.

Clearly the number (n(n−1)(1+q)−2mq)/n belongs to that interval and since µ1≥ (n(n−1)(1+q)−2mq)/n,
we have (n(n−1)(1+q)−2mq)/n≤ µ1≤

√
2m+(n2−n−2m)(1+q)2. By Lemma 5.3, we can write f (µ1)≤

f
(
(n(n−1)(1+q)−2mq)/n

)
. Hence

Eq(G)≤ f (µ1)≤ f
(
(n(n−1)(1+q)−2mq)/n

)
implying the result.

Bapat and Pati, [2], proved that if the graph energy is a rational number, then it is an even integer. A similar
result for q-distance energy can be given as follows:

Lemma 10. Let G be an (n,m) graph. If the q-distance energy Eq(G) of G is a rational number, then

Eq(G) ≡ | 0 | (mod 2).

Proof. Proof is similar to Theorem 5.4 of [15].
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4 Join of two graphs

One of the ways of studying graphs is to make use of smaller graphs usually those subgraphs whose own
are the components of the given graph. Similarly to this idea, many graph operations, sometimes called graph
products, are defined to make the necessary calculations on some given graphs by means of similar calculations
on some smaller graphs. In this section, we shall study one of the most practical of these products, called the
join, of two graphs and calculate the q-distance energy of it. Other operations can be applied similarly to obtain
some other properties.

Definition 1. The join of two graphs G1 and G2 denoted by G1∇G2 is a larger graph obtained from G1 and G2
by joining each vertex of G1 to all the vertices of G2.

Figure 4.1 Join of two graphs

Theorem 11. Let G1 be an r1-regular graph on n1 vertices having diam(G1) ≤ 2 and G2 be an r2-regular
graph on n2 vertices having diam(G2)≤ 2. Let further φ(G1 : µ) and φ(G2 : µ) be the q-distance characteristic
polynomials of G1 and G2, respectively. Then the q-distance characteristic polynomial of the q-distance matrix
of G1∇G2 is

(µ− (1+q)(n1−1)+ r1q)(µ− (1+q)(n2−1)+ r2q)−n1n2

(µ− (1+q)(n1−1)+ r1q)(µ− (1+q)(n2−1)+ r2q)
φ(G1 : µ)φ(G2 : µ). (2)

Proof. Let us assume that v1, v2, . . . , vn1 be the vertices of the graph G1 and u1, u2, . . . , un2 be the vertices of
the graph G2. Let qi j denote the q-distance between the vertices vi and v j in G1 and q

′
i j denote the q-distance

between the vertices ui and u j in G2. In G1, every vertex is at distance 1 from r1 vertices and at distance 1+q
from the remaining n1−1− r1 vertices. Therefore for i = 1, 2, 3, . . . , n1, we can write

n1

∑
j=1

qi j = 1(r1)+(1+q)(n1−1− r1)

= r1 +(1+q)(n1−1)− r1− r1q

= (1+q)(n1−1)− r1q

and similarly, for i = 1,2,3, . . . ,n2, we have

n2

∑
j=1

q
′
i j = (1+q)(n2−1)− r2q.

Let Eq(G1∇G2) be the q-distance adjacency matrix of the join graph G1∇G2. Then this matrix Aq(G1∇G2)
has the form
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v1 v2 v3 . . . vn1 u1 u2 u3 . . . un2

v1
v2
v3
...

vn1

u1
u2
u3
...

un1



0 q12 q13 . . . q1n1 1 1 1 . . . 1
q21 0 q23 . . . q2n1 1 1 1 . . . 1
q31 q32 0 . . . q3n1 1 1 1 . . . 1

...
...

...
. . .

...
...

...
...

. . .
...

qn11 qn12 qn13 . . . 0 1 1 1 . . . 1
1 1 1 . . . 1 0 q

′
12 q

′
13 . . . q

′
1n2

1 1 1 . . . 1 q
′
21 0 q

′
23 . . . q

′
2n2

1 1 1 . . . 1 q
′
31 q

′
32 0 . . . q

′
3n2

...
...

...
. . .

...
...

...
...

. . .
...

1 1 1 . . . 1 q
′
n21 q

′
n22 q

′
n23 . . . 0


(n1+n2)×(n1+n2)

.

Let φ(G1∇G2 : µ) denote the q-distance characteristic polynomial of G1∇G2; i.e.,

φ(G1∇G2 : µ) = |µ−Eq(G1∇G2)|.

This polynomial is equal to the following determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ −q12 −q13 . . . −q1n1 −1 −1 −1 . . . −1
−q21 µ −q23 . . . −q2n1 −1 −1 −1 . . . −1
−q31 −q32 µ . . . −q3n1 −1 −1 −1 . . . −1

...
...

...
. . .

...
...

...
...

. . .
...

−qn11 −qn12 −qn13 . . . µ −1 −1 −1 . . . −1
−1 −1 −1 . . . −1 µ −q

′
12 −q

′
13 . . . −q

′
1n2

−1 −1 −1 . . . −1 −q
′
21 µ −q

′
23 . . . −q

′
2n2

−1 −1 −1 . . . −1 −q
′
31 −q

′
32 µ . . . −q

′
3n2

...
...

...
. . .

...
...

...
...

. . .
...

−1 −1 −1 . . . −1 −q
′
n21 −q

′
n22 −q

′
n23 . . . µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n1+n2)×(n1+n2)

.

Applying the row operations R
′
n1+2 = Rn1+2−Rn1+1; R

′
n1+3 = Rn1+3−Rn1+1; · · · ;R

′
n1+n2

= Rn1+n2−Rn1+1 to
the above determinant, we see that the determinant becomes

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ −q12 −q13 . . . −q1n1 −1 −1 −1 . . . −1
−q21 µ −q23 . . . −q2n1 −1 −1 −1 . . . −1
−q31 −q32 µ . . . −q3n1 −1 −1 −1 . . . −1

...
...

...
. . .

...
...

...
...

. . .
...

−qn11 −qn12 −qn13 . . . µ −1 −1 −1 . . . −1
−1 −1 −1 . . . −1 µ −q

′
12 −q

′
13 . . . −q

′
1n2

0 0 0 . . . 0 −q
′
21−µ µ +q

′
12 −q

′
23 +q

′
13 . . . −q

′
2n2

+q
′
1n2

0 0 0 . . . 0 −q
′
31−µ −q

′
32 +q

′
12 µ +q

′
13 . . . −q

′
3n2

+q
′
1n2

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 . . . 0 −q
′
n21−µ −q

′
n22 +q

′
12 −q

′
n23 +q

′
13 . . . µ +q

′
1n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Applying the column operation C
′
n1+1 = Cn1+1 +Cn1+2 + · · ·+Cn1+n2 , using the fact that q

′
i j = q

′
ji and the

equations above, the same determinant becomes

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ −q12 . . . −q1n1 −n2 −1 −1 . . . −1
−q21 µ . . . −q2n1 −n2 −1 −1 . . . −1
−q31 −q32 . . . −q3n1 −n2 −1 −1 . . . −1

...
...

. . .
...

...
...

...
. . .

...
−qn11 −qn12 . . . µ −n2 −1 −1 . . . −1
−1 −1 . . . −1 µ− (1+q)(n2−1)− r2q −q

′
12 −q

′
13 . . . −q

′
1n2

0 0 . . . 0 0 µ +q
′
12 −q

′
23 +q

′
13 . . . −q

′
2n2

+q
′
1n2

0 0 . . . 0 0 −q
′
32 +q

′
12 µ +q

′
13 . . . −q

′
3n2

+q
′
1n2

...
...

. . .
...

...
...

...
. . .

...
0 0 . . . 0 0 −q

′
n22 +q

′
12 −q

′
n23 +q

′
13 . . . µ +q

′
1n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ −q12 −q13 · · · −q1n1 −n2
−q21 µ −q23 · · · −q2n1 −n2

−q31 −q32 µ · · · −q3n1 −n2

...
...

...
...

...
...

−qn11 −qn12 qn13 · · · µ −n2

−1 −1 −1 · · · −1 µ− (1+q)(n2−1)+ r2q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|B|,

where

|B|=

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ +q
′
12 −q

′
23 +q

′
13 · · · −q

′
2n2

+q
′
1n2

−q
′
32 +q

′
12 µ +q

′
13 · · · −q

′
3n2

+q
′
1n2

...
...

...
...

−q
′
n22 +q

′
12 −q

′
n23 +q

′
12 · · · µ +q

′
1n2

∣∣∣∣∣∣∣∣∣∣∣∣∣
(n2−1)×(n2−1)

.

Applying the row operations R
′
2 = R2−R1, R

′
3 = R3−R1, · · · , R

′
n1
= Rn1−R1, the above determinant transforms

to

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ −q12 −q13 · · · −q1n1 −n2
−q21−µ µ +q12 −q23 +q13 · · · −q2n1 +q1n1 0
−q31−µ −q32 +q12 µ +q13 · · · −q3n1 +q1n1 0

...
...

...
...

...
...

−qn11 −µ −qn12 +q12 −qn13 +q13 · · · µ +q1n1 0
−1 −1 −1 · · · −1 µ− (1+q)(n2−1)+ r2q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|B|.

Applying the column operation C
′
1 =C1+C2+ · · ·+Cn1 and using the above equations, the determinant becomes
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ− (1+q)(n1−1)+ r1q −q12 −q13 · · · −q1n1 −n2
0 µ +q12 −q23 +q13 · · · −q2n1 +q1n1 0
0 −q32 +q12 µ +q13 · · · −q3n1 +q1n1 0
...

...
...

...
...

0 −qn12 +q12 −qn13 +q13 · · · µ +q1n1 0
−n1 −1 −1 · · · −1 µ− (1+q)(n2−1)+ r2q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|B|.

Expanding it along the first column C1, we obtain

φ(G1∇G2 : µ) =
{
(µ− (1+q)(n1−1)+ r1q)∆1− (−1)n1n1∆2

}
|B|, (3)

where

∆1 =

∣∣∣∣∣∣∣∣∣∣∣

µ +q12 −q23 +q13 · · · −q2n1 +q1n1 0
−q32 +q12 µ +q13 · · · −q3n1 +q1n1 0

...
...

...
...

...
−qn12 +q12 −qn13 +q13 · · · µ +q1n1 0
−1 −1 · · · −1 µ− (1+q)(n1−1)+ r2q

∣∣∣∣∣∣∣∣∣∣∣
= (µ− (1+q)(n1−1)+ r2q)|A|(−1)n1+n2

= (µ− (1+q)(n1−1)+ r2q)|A|

and

∆2 =

∣∣∣∣∣∣∣∣∣∣∣

−q12 −q13 · · · −q1n1 −n2
µ +q12 −q23 +q13 · · · −q2n1 +q1n1 0
−q32 +q12 µ +q13 · · · −q3n1 +q1n1 0

...
...

...
...

...
−qn12 +q12 −qn13 +q13 · · · µ +q1n1 0

∣∣∣∣∣∣∣∣∣∣∣
= (−1)−n1+1(−n2)|A|

= n2(−1)n1 |A|.

Therefore we have

φ(G1∇G2 : µ) = ((µ− (1+q)(n1−1)+ r1q)(µ− (1+q)(n2−1)+ r2q)|A|)
− (−1)n1n1n2(−1)n1 |A|)|B|,

i.e.
φ(G1∇G2 : µ) = |A||B|[(µ− (1+q)(n1−1)+ r1q)

·(µ− (1+q)(n2−1)+ r2q)−n1n2]

where

|A|=

∣∣∣∣∣∣∣∣∣
µ +q12 −q23 +q13 · · · −q2n1 +q1n1

−q32 +q12 µ +q13 · · · −q3n1 +q1n1
...

...
...

...
−qn12 +q12 −qn13 +q13 · · · µ +q1n1

∣∣∣∣∣∣∣∣∣ .
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Clearly

|A| = 1
(µ− (1+q)(n1−1)+ r1q)

×

∣∣∣∣∣∣∣∣∣∣∣

µ− (1+q)(n1−1)+ r1q −q12 −q13 · · · −q1n1

0 µ +q12 −q23 +q13 · · · −q2n1 +q1n1

0 −q32 +q12 µ +q13 · · · −q3n1 +q1n1
...

...
...

...
...

0 −qn12 +q12 −qn13 +q13 · · · µ +q1n1

∣∣∣∣∣∣∣∣∣∣∣
.

Applying the operation C
′
1 =C1− (C2 +C3 + · · ·+Cn1), the determinant becomes

|A| = 1
µ− (1+q)(n1−1)+ r1q

×∣∣∣∣∣∣∣∣∣∣∣

µ −q12 −q13 · · · −q1n1

−µ−q21 µ +q12 −q23 +q13 · · · −q2n1 +q1n1

−µ−qn31 −q32 +q12 µ +q13 · · · −q3n1 +q1n1
...

...
...

...
...

−µ−qn11 −qn12 +q12 −qn13 +q13 · · · µ +q1n1

∣∣∣∣∣∣∣∣∣∣∣
.

Applying the operations R
′
= R2 +R1; R

′
3 = R3 +R1; · · · ;R

′
n = Rn1 +R1, we have

|A| = 1
µ− (1+q)(n1−1)+ r1q

×

∣∣∣∣∣∣∣∣∣∣∣

µ −q12 −q13 · · · −q1n1

−q21 µ −q23 · · · −q2n1

−q31 −q32 µ · · · −q3n1
...

...
...

...
−qn11 −qn12 −qn13 · · · µ

∣∣∣∣∣∣∣∣∣∣∣
=

1
µ− (1+q)(n1−1)+ r1q

φ(G1; µ).

Similarly,

|B|= 1
µ− (1+q)(n2−1)+ r2q

φ(G2; µ).

By substituting these values in the above equation, we have the required result.

Theorem 12. Let G1 and G2 be r1− and r2−regular graphs with n1 and n2 vertices, respectively. If diam(G1)≤
2 and diam(G2)≤ 2, then

Eq(G15G2) =

{
Eq(G1)+Eq(G2), if RK ≥ n1n2,

Eq(G1)+Eq(G2)− (R+K)+
√

(R+K)2−4(RK−n1n2), if RK < n1n2,

where R = (1+q)(n1−1)− r1q and K = (1+q)(n2−1)− r2q.

Proof. From Theorem 2, we have

φ(G1∇G2; µ) =
((µ− (1+q)(n1−1)+ r1q)(µ− (1+q)(n2−1)+ r2q)−n1n2))

(µ− (1+q)(n1−1)+ r1q)(µ− (1+q)(n2−1)+ r2q)
φ(G1; µ)φ(G2; µ)

implying that

φ(G1∇G2; µ) =
((µ−R)(µ−K)−n1n2)φ(G1; µ)φ(G2; µ)

(µ−R)(µ−K)
,
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where R = (1+q)(n1−1)− r1q and K = (1+q)(n2−1)− r2q; i.e.,

(µ−R)(µ−K)φ(G1∇G2; µ) = ((µ−R)(µ−K)−n1n2)φ(G1; µ)φ(G2; µ).

That is,
(µ−R)(µ−K)φ(G1∇G2; µ) = (µ2− (R+K)µ +RK−n1n2)φ(G1; µ)φ(G2; µ).

Let
P1(µ) = (µ−R)(µ−K)φ(G1∇G2; µ)

and
P2(µ) = (µ2− (R+K)µ +RK−n1n2)φ(G1; µ)φ(G2; µ).

The roots of the equation P1(µ) = 0 are R,K and q−distance eigenvalues of G1∇G2. Therefore, the sum of the
absolute values of the roots of P1(µ) = 0 is

R+K +Eq(G1∇G2) (4)

and similarly the roots of the equation P2(µ) = 0 are q−distance eigenvalues of G1 and G2 and hence

R+K +
√

(R+K)2−4(RK−n1n2)

2
,

R+K−
√
(R+K)2−4(RK−n1n2)

2
.

Therefore, the sum of the absolute values of the roots of P2(µ) = 0 is

Eq(G1)+Eq(G2)+

∣∣∣∣R+K +
√
(R+K)2−4(RK−n1n2)

2

∣∣∣∣
+

∣∣∣∣R+K−
√
(R+K)2−4(RK−n1n2)

2

∣∣∣∣.
Since P1(µ) = P2(µ), from above equations, we get,

R+K +Eq(G1∇G2) = Eq(G1)+Eq(G2)

+

∣∣∣∣R+K +
√
(R+K)2−4(RK−n1n2)

2

∣∣∣∣
+

∣∣∣∣R+K−
√
(R+K)2−4(RK−n1n2)

2

∣∣∣∣.
Case 1: If RK ≥ n1n2, the last equation reduces to

R+K +Eq(G1∇G2) = Eq(G1)+Eq(G2)

+
R+K +

√
(R+K)2−4(RK−n1n2)

2

+
R+K−

√
(R+K)2−4(RK−n1n2)

2
,

and therefore
R+K +Eq(G1∇G2) = Eq(G1)+Eq(G2)+R+K

implying that
Eq(G1∇G2) = Eq(G1)+Eq(G2).
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Case 2: If RK < n1n2, this time the last equation above reduces to

R+K +Eq(G1∇G2) = Eq(G1)+Eq(G2)

+
R+K +

√
(R+K)2−4(RK−n1n2)

2

+
R+K−

√
(R+K)2−4(RK−n1n2)

2
.

Hence we get

R+K +Eq(G1∇G2) = Eq(G1)+Eq(G2)+
√

(R+K)2−4(RK−n1n2)

and finally

Eq(G1∇G2) = Eq(G1)+Eq(G2)− (R+K)+
√

(R+K)2−4(RK−n1n2).

5 Brief summary and conclusion

Energy is a very important subject of graph theory with many applications in physics and chemistry. Sim-
ilarly to the classical graph energy, there are a few other types of energy in graphs which are similarly defined
by means of some other matrices. In this paper, we have defined a new type of energy called q-distance energy.
As the distances are calculated between the vertices of the graph representing the atoms in the corresponding
molecule, the q-distance energy is expected to have applications in chemistry due to its effect on the intermol-
cecular forces which affect the graph energy. The q-distance energy has been obtained for the join of two graphs.
Similar studies can be made for other graph operations. Also, we have established lower and upper bounds for
this new energy.
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