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Abstract
In this paper, the single center vortex method (SCVM) is extended to find some vortex solutions of finite core size for
dissipative 2D Boussinesq equations. Solutions are expanded in to series of Hermite eigenfunctions. After confirmation
the convergence of series of the solution, we show that, by considering the effect of temperature on the evolution of the
vortex for the same initial condition as in [19] the symmetry of the vortex destroyed rapidly.
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1 Introduction

The present study considers two dimensional Boussinesq equations in all of the plane, to find some exact
solution of vortex type. On the best knowledge of authors, these exact Solutions are the first solutions of vortex
type for Boussinesq equations. These equations are derived from a low degree approximation to the affiliate
between the Navier-Stokes equations and the temperature [3, 21] and perform an main pattern in the perusal of
Rayleigh-Bernard convection [4, 5]. The respective equations are as below:

∂tu+u ·∇u = −∇p+ν4u+(gαT )e2 (1)

∂tT +u ·∇T = kT4T

∇ ·u = 0,

where u is the fluid speed, T stands for temperature, g is gravitational acceleration constant, e2 is monad vector
in the x2-direction, α is thermal expansion coefficient, KT is diffusion coefficient of temperature and ν represents
the kinematic viscosity.

†Corresponding author.
Email address: raesi@shahed.ac.ir

ISSN 2444-8656 doi:10.2478/AMNS.2020.2.00014

https://www.sciendo.com
mailto:m.sharifi@shahed.ac.ir
http://dx.doi.org/10.2478/AMNS.2020.2.00014
https://www.sciendo.com
http://crossmark.crossref.org/dialog/?doi=10.2478/AMNS.2020.2.00014


68 Morteza Sharifi, Behruz Raesi Applied Mathematics and Nonlinear Sciences 5(2020) 67–84

Thermally driven convections such as Boussinesq equations, are an active area of research, at present, with
various applications from geophysics [22], ocean circulation [13] clued dynamics, inner core of the planets
to astrophysics [4, 5]. These equations are one of the most commonly used fluid models in the atmospheric
sciences to model Jet streams as a narrow fast flowing air currents, cold front (as a transition zone replacing cold
and warm air) [15], thermohaline circulation and the El Nino Southern Oscillationas [13].

For the purpose of displaying the way in wich the presence of temperature and density influence the invisible
point vortex dynamics, we concentrate on some numeric that investigate the viscous evolution of N point vortices
in the Boussinesq equations.

The vorticity, in mathematics, are studied as the curl of the flow velocity. For this purpose, suppose that the
field of vorticity ω = ∇×u is enough localized, then the Boussinesq equations for vorticity on the whole plane
are include:

∂tω +u ·∇ω = ν4ω +gα∂x1T (2)

∂tT +u ·∇T = kT4T

∇ ·ω = 0, ω = ∇×u.

We are able to restore the speed of the fluid through Biot-Savart legislation:

u(x) =
1

2π

ˆ
R2

(x− y)⊥

|x− y|2
ω(y)dy, (3)

which z = (z1,z2), z⊥ = (−z2,z1). For the sake of simplification, we focus on (2), but the overall results are
applicable to the Thermohaline equations too.

In dimension 2, the vorticity equation is reducing to a scaler. Employing the traditional method, Ting and
Tung in 1965 studied the movement of a vortex in a two dimensional incompressible flow while including the
viscous influence in the internal kernel of the vortex [14]. In 1994, F. Lingevitch and A. J. Bernoff obtained the
motion of vortex as integral of the background irrational current [2]. In 2002, Gallay and Wayne showed that the
solutions of vorticity equation tend to Oseen vortex rapidly [7]. Afterwards, Nagem and coauthors employed
the method and results of [7] to find an approximate solution for vorticity equation [18]. In the next step, they
generalized the theory of single point vortex for viscose flow in two dimensions. Finally, their theory captures
multi vortex problem for viscous two-dimensional flows [19]. Jing, Kanso and Newton, in 2010, described the
viscous progress of a collinear three-vortex structure that at first corresponds to an inviscid point vortex fixed
balance [11]. In 2011, Gallay proved that the replay of the Navier-Stockes equations converges, as ν → 0, to a
superposition of Lamb-Oseen vortices which the centers evolve at a viscous regularization of the point vortex
system [6]. After one year, Uminsky and Wayne introduced simplified and precise formulas that resulted in the
effective performance and expansion of a new multi-moment vortex method (MMVM) using Hermite extension
to resemble 2D vorticity [25]. In continue, by the use of MMVM Smith and Nagem studied vortex pairs and
dipoles [23].

The content of the paper is as follows, utilizing the method presented in [19] and [25], we offer an expansion
of solutions for the Boussinesq equations in the vorticity form. In section 2, the foundation of the theory of single
center vortex method is reviewed. In section 3, the theory is extended for Boussinesq equations and it is shown
that the series of the solution is converged. The numerical simulation of the solution of the Boussinesq equa-
tion is presented in section 4 with the same initial condition arose in [25] Then, we compare our results with [25].

https://www.sciendo.com


Vortex Theory for Two Dimensional Boussinesq Equations 69

2 Mathematical foundations of SCVM

In this section, we summarize the expansion of vorticity and temperature including the Hermite functions as
described in [19]. Let

φ00(x, t;λ ) =
1

πλ 2 e−|x|
2/λ 2

, T00(x, t;σ) =
1

πσ2 e−|x|
2/σ2

where λ 2 = λ 2
0 +4νt and σ2 = σ2

0 +4kT t. The Hermite functions of degree (k1,k2) is defined as follows:

φk1,k2(x, t;λ ) = Dk1
x1

Dk2
x2

φ00(x, t;λ ), ψk1,k2(x, t;σ) = Dk1
x1

Dk2
x2

T00(x, t;σ).

The moment expansion of functions is defined as follows:

ω(x, t) =
∞

∑
k1,k2=1

M[k1,k2; t]φk1,k2(x, t;λ ), (4)

T (x, t) =
∞

∑
k1,k2=1

I[k1,k2; t]ψk1,k2(x, t;σ).

Let (ω,T )(x, t) be the resolvent of the equation (2), then Biot-Savrat law implies that the speed field is as below:

V (x, t) =
∞

∑
k1,k2=1

M[k1,k2; t]Vk1,k2(x, t;λ ), (5)

where Vk1,k2(x, t;λ ) = Dk1
x1

Dk2
x2

V00(x, t;λ ) and V00(x, t;λ ) is the induced speed from φ00(x, t;λ ) which is deter-
mined as follows:

V00(x, t;λ ) =
1

2π

(−x2,x1)

|x|2
(1− e−|x|

2/λ 2
). (6)

Hermite polynomials are defined by their generator functions:

Hn1,n2(z,λ ) = (Dn1
t1 Dn2

t2 e(
2t·z−t2

λ2 )
)|t=0, Fn1,n2(z,σ) = (Dn1

t1 Dn2
t2 e(

2t·z−t2

σ2 )
)|t=0. (7)

Notice that the standard Hermite multinomial occur when λ = 1 and k = 1. In this case, they constitute the
orthogonal sets:

ˆ
R2

Hn1,n2(z,λ = 1)Hm1,m2(z,λ = 1)e−z2
dz = π2n1+n2(n1!)(n2!)δn1,m1δn2,m2 ,

(8)ˆ
R2

Fn1,n2(z,σ = 1)Fm1,m2(z,σ = 1)e−z2
dz = π2n1+n2(n1!)(n2!)δn1,m1δn2,m2 .

(9)

Consequently, the following projection operators determine the coefficients in the expansion (4):

M[k1,k2; t] = (Pk1,k2ω)(t) = ρ(k1,k2,λ )

ˆ
R2

Hk1,k2(z,λ )ω(z, t)dz,

(10)

I[k1,k2; t] = (Qk1,k2T )(t) = ρ(k1,k2,σ)

ˆ
R2

Fk1,k2(z,σ)T (z, t)dz,

(11)
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where

ρ(k1,k2,τ) =
(−1)(k1+k2)τ2(k1+k2)

2k1+k2(k1!)(k2!)
. (12)

Let

Lλ
φ =

1
4

λ
24φ +

1
2

∇ · (xφ), (13)

and

Φλ (x, t) = φ00(x, t;λ ), Ψσ (x, t) = T00(x, t;σ). (14)

In the [19] Nagem and coauthors proved the convergence of the expansions (4), when:ˆ
R2

Φ
−1
λ
(x)(ω(x, t))2dx < ∞,

ˆ
R2

Ψ
−1
σ (x)(T (x, t))2dx < ∞. (15)

3 Main Result

In this section, we prove the criteria (15) and obtain the ODE for M[k1,k2, t] and I[k1,k2, t]. In order the
proof of theorem 2 we say the following fundamental lemma:

Lemma 1. Suppose that (ω,T ) satisfies the equations (2), ω(x,0) = ω0(x) and T (x,0) = T0(x) then the follow-
ing assertions are true:

i) For all 1≤ p≤ ∞ and t ≥ 0, ||T (x, t)||p ≤ ||T0(x)||p
ii) There exist constant c = c(ω0,T0, t) such that for all 2≤ q < ∞ and t ≥ 0, ||ω(x, t)||q ≤ c(ω0,T0)

iii) For all t ≥ 0, ||∇u||∞ ≤ c(ω0,T0, t)

Proof. For (i) see [1] and for (ii) see [10] and for (iii) see [26].
Now we are ready to prove criteria (15).

Theorem 2. Define

ε(t) =
ˆ
R2

Φ
−1
λ
(ω(x, t))2dx,γ(t) =

ˆ
R2

Ψ
−1
σ (T (x, t))2dx. (16)

If kT < 2ν and the primary vorticity and temperature, i.e. ω0 and T0, guarantee that ε(0)< ∞ and γ(0)< ∞ for
some λ0 and σ0 respectively and ω0 and T0 are in the L3, then ε(t) and γ(t) will be finite for all times of t > 0.

Proof. According to lemma 2.1 in [7] we have: ||u||∞ ≤ c||ω||αp ||ω||1−α
q where 1 ≤ p < 2 < q ≤ ∞ and

α

p + 1−α

q = 1
2 , as a result according to lemma (1) we obtain: ||u||∞ ≤ c(ω0,T0). Therefore by assumption it is

concluded that ||u||∞ ≤ c(ω0,T0). Now similar to the proof of theorem 3.4 in [19] it could be proved that:

dγ(t)
dt
≤ (

4c(ω0,T0)

KT
+

4KT

σ2 )γ(t),

and this means that γ(t) is limited for each t > 0 if γ(0) is finite. Now to prove that ε(t)< ∞, differentiate ε(t),
we have:

dε(t)
dt

=
4ν

λ 2 ε(t)− 4ν

λ 4

ˆ
R2
|x|2Φ

−1
λ
(ω(x, t))2dx+2

ˆ
R2
|x|2Φ

−1
λ

ω(x, t)∂tω(x, t)dx

=
4ν

λ 2 ε(t)− 4ν

λ 4

ˆ
R2
|x|2Φ

−1
λ
(ω(x, t))2dx (17)

+ 2
ˆ
R2

Φ
−1
λ

ω(ν4ω−u ·∇ω +gα∂x1T )dx.
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Integrating by parts in the last term in (17) implies that:

2
ˆ
R2

Φ
−1
λ

ω(ν4ω)dx =−2ν

ˆ
R2

Φ
−1
λ
(x)(|∇ω|2 + 2

λ 2 ωx ·∇ω)dx, (18)

and the second item in the right side of (18) satisfies the following relation:

2ν

ˆ
R2

Φ
−1
λ
(x)(

2
λ 2 ωx ·∇ω)dx≤ ν

ˆ
R2

Φ
−1
λ
(x)|∇ω|2dx+

4ν

λ 4

ˆ
R2

Φ
−1
λ
(x)(x2

ω
2)dx. (19)

Now using ||u||∞ ≤ c(ω0,T0) and Cauchy’s inequality we have :

2
ˆ
R2

Φ
−1
λ

ω(u ·∇ω)dx≤ 2c(ω0,T0)

ˆ
R2

Φ
−1
λ
|ω(x, t)||∇ω|dx (20)

≤ c2(ω0,T0)

ν

ˆ
R2

Φ
−1
λ
(ω(x, t))2dx+ν

ˆ
R2

Φ
−1
λ
(x)|∇ω|2dx

also

2gα

ˆ
R2

Φ
−1
λ

ω(∂x1T )dx≤ 2gα

ˆ
R2

Φ
−1
λ
(ω2 +(∂x1T )2)dx (21)

= 2gα

ˆ
R2

Φ
−1
λ

ω
2(x, t)dx+2gα

ˆ
R2

Φ
−1
λ
(∂x1T )2dx

≤ 2gαε(t)+2gα||∇T ||2
λ
.

Now we bound the term ||∇T ||2
λ

. Let f (x, t) = ∇T (x, t) and define:

δ (t) =
ˆ
R2

Φ
−1
λ
(∇T (x, t))2dx.

Differentiate δ (t) obtain the following equation:

dδ (t)
dt

=
4ν

λ 2 δ (t)− 4ν

λ 4

ˆ
R2
|x|2Φ

−1
λ

f 2(x, t)dx+2
ˆ
R2

Φ
−1
λ

f (x, t)∂t f (x, t)dx

=
4ν

λ 2 δ (t)− 4ν

λ 4

ˆ
R2
|x|2Φ

−1
λ
( f (x, t))2dx (22)

+ 2
ˆ
R2

Φ
−1
λ

f ∇(KT4T −u ·∇T )dx.

Now by considering that the last term in (22) we have:

2
ˆ
R2

Φ
−1
λ

f ∇(KT4T )dx = 2KT

ˆ
R2

Φ
−1
λ

f (4 f )dx (23)

= −2KT

ˆ
R2

Φ
−1
λ
(x)(|∇ f |2 + 2

λ 2 f · x ·∇ f )dx.

The second term in the last part of the equation (23) satisfy the following inequality:

2KT

ˆ
R2

Φ
−1
λ
(x)(

2
λ 2 f · x ·∇ f )dx≤ 4ν

λ 4

ˆ
R2

Φ
−1
λ
(x2 f 2)dx+

K2
T

ν

ˆ
R2

Φ
−1
λ
|∇ f |2dx. (24)
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On the other hand inequality ||u||∞ ≤ c(ω0,T0, t) and ||∇u||∞ ≤ c(ω0,T0, t) in [10] implies that:

−2
ˆ
R2

Φ
−1
λ

f ∇(u ·∇T )dx = (25)

−2
ˆ
R2
(Φ−1

λ
f )∇u ·∇T dx−2

ˆ
R2
(Φ−1

λ
f )u ·∇(∇T )dx

≤ 2c(ω0,T0, t)
ˆ
R2

Φ
−1
λ

f 2dx+2c(ω0,T0, t)
ˆ
R2

Φ
−1
λ
| f ||∇ f |dx.

≤ 2c(ω0,T0, t)δ (t)+2c(ω0,T0, t)
ˆ
R2

Φ
−1
λ
| f ||∇ f |dx.

We now assume that KT < 2ν , then:

2c(ω0,T0, t)
ˆ
R2

Φ
−1
λ
| f ||∇ f |dx (26)

≤ νc2(ω0,T0, t)
2νKT −K2

T

ˆ
R2

Φ
−1
λ
( f 2(x, t))dx+

2KT ν−K2
T

ν

ˆ
R2

Φ
−1
λ
|∇ f |2dx.

As a consequence of (23)-(26) we obtain:

dδ (t)
dt
≤ (2c(ω0,T0, t)+

νc2(ω0,T0, t)
2νKT −K2

T
+

4ν

λ 2 )δ (t), (27)

and this means that if δ (0) is limited then δ (t) will be limited for all t > 0. So according to (17)-(21) we can
write:

dε(t)
dt
≤ (

4ν

λ 2 +
4c(ω0,T0)

ν
+2gα)ε(t)+2gαc1(ω0, t0, t), (28)

where ||∇T ||2
λ
≤ c1(ω0, t0, t). Using the Gronwall lemma if ε(0) is limited then ε(t) remains limited for all

t > 0.
In the following we look for differential equations generating the coefficient M[k1,k2; t] and I[k1,k2; t]. As-

suming that the (ω,T )(x, t) is a solution of (2) and Define

m

∑
k1,k2

f (k1,k2) :=
m

∑
i=0

n

∑
k1+k2=i

k1≥0,k2≥0

f (k1,k2), (29)

and also

ω
m(x, t) =

m

∑
k1,k2

M[k1,k2; t]φk1,k2(x, t;λ ) (30)

um(x, t) =
m

∑
k1,k2

M[k1,k2; t]Vk1,k2(x, t;λ ) (31)

T m(x, t) =
m

∑
k1,k2

I[k1,k2; t]ψk1,k2(x, t;σ) (32)

where ωm, um, and T m are Hermit approximations of order m (Glerkin approximation by Hermit functions) then
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by the use of Glerkin standard approximation for equation (2) we have:

∂tω
m =

m

∑
k1,k2

dM[k1,k2; t]
dt

φk1,k2(x, t;λ )+
m

∑
k1,k2

M[k1,k2; t]∂tφk1,k2 (33)

=
m

∑
k1,k2

M[k1,k2; t](ν4φk1,k2(x, t;λ ))

− Pm

[
(

m

∑
l1,l2

M[l1, l2; t]Vl1,l2(x, t;λ )) ·∇(
m

∑
k1,k2

M[k1,k2; t]φk1,k2(x, t;λ ))

]

+ gα∂x1(
m

∑
k1,k2

I[k1,k2; t]ψk1,k2(x, t;σ))

∂tT m =
m

∑
k1,k2

dI[k1,k2; t]
dt

ψk1,k2(x, t;σ)+
m

∑
k1,k2

I[k1,k2; t]∂tψk1,k2 (34)

=
m

∑
k1,k2

I[k1,k2; t](KT4ψk1,k2(x, t;σ))

− Pm

[
(

m

∑
l1,l2

M[l1, l2; t]Vl1,l2(x, t;λ )) ·∇(
m

∑
k1,k2

I[k1,k2; t]ψk1,k2(x, t;σ))

]
.

where Pm[·] is a projector on the subspace produced by Hermit functions of degree m or less. Noting that:

∂tφk1,k2 = ν4φk1,k2 , ∂tψk1,k2 = KT4ψk1,k2 ,

and applying the projection operators Pk1,k2 and Qk1,k2 , defined in (10) on the equation (33) and (34) we have:

(35)
dM[k1,k2; t]

dt
=

−Pk1,k2

[
(

m

∑
l1,l2

M[l1, l2; t]Vl1,l2(x, t;λ )) ·∇(
m

∑
m1,m2

M[m1,m2; t]φm1,m2(x, t;λ ))

]

−Pk1,k2

[
gα∂x1(

m

∑
m1,m2

I[m1,m2; t]ψm1,m2(x, t;σ))

]
(36)

dI[k1,k2; t]
dt

=

−Qk1,k2

[
(

m

∑
l1,l2

M[l1, l2; t]Vl1,l2(x, t;λ )) ·∇(
m

∑
m1,m2

I[m1,m2; t]ψm1,m2(x, t;σ))

]
.

Note that k1 + k2 ≤ m then

φm1,m2(x, t;λ ) = (Dm1
a1

Dm2
a2

φ00(x+a,λ ))|a=0 (37)

Vl1,l2(x, t;λ ) = (Dl1
b1

Dl2
b2

V00(x+b,λ ))|b=0 (38)

ψm1,m2(x, t;σ) = (Dm1
c1

Dm2
c2

ψ00(x+ c,σ))|c=0, (39)
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then the system of ordinary differential equations (35) and (36) become as follows:

(40)
dM[k1,k2; t]

dt
= −ρ(k1,k2,λ )

m

∑
l1,l2=1

m

∑
m1,m2=1

M[l1, l2; t]M[m1,m2; t]

×
ˆ
R2

Hk1,k2(x)(D
m1
x1

Dm2
x2

V00(x,λ )) ·∇x(Dl1
x1

Dl2
x2

φ00(x,λ ))dx

− ρ(k1,k2,λ )
m

∑
m1,m2=1

I[m1,m2; t]

×
ˆ
R2

Hk1,k2(x)(D
m1
x1

Dm2
x2

T00(x,σ))dx

(41)
dI[k1,k2; t]

dt
= −ρ(k1,k2,σ)

m

∑
l1,l2=1

m

∑
m1,m2=1

M[l1, l2; t]I[m1,m2; t]

×
ˆ
R2

Fk1,k2(x)(D
m1
x1

Dm2
x2

V00(x,λ )) ·∇x(Dl1
x1

Dl2
x2

T00(x,σ))dx.

where ρ(k1,k2,τ) is defined in (12). The first integral in (40) is calculated in [25] and the two remaining
integrals are calculated in appendix. Finally using (A.26)-(A.27) in appendix and (40)-(41) we have corrected
the differential equations for M[k1,k2, t] and I[k1,k2, t] to:

dM[k1,k2; t]
dt

= ρ(k1,k2,λ )
m

∑
l1,l2=1

m

∑
m1,m2=1

M[l1, l2; t]M[m1,m2; t]

× Γ̃[k1,k2, l1, l2,m1,m2;λ ]+
m

∑
m1,m2

I[m1,m2; t]B[k1,k2,m1,m2;λ ,σ ]

(42)

dI[k1,k2; t]
dt

= ρ(k1,k2,σ)
m

∑
l1,l2=1

m

∑
m1,m2=1

M[l1, l2; t]I[m1,m2; t]

× θ̃ [k1,k2, l1, l2,m1,m2;λ ,σ ], (43)

where B and θ̃ is introduced in appendix, Γ̃ is introduced in [19] and

θ̃ [k1,k2, l1, l2,m1,m2;λ ,σ ] = θ
1[k1,k2, l1, l2,m1,m2;λ ,σ ]+θ

2[k1,k2, l1, l2,m1,m2;λ ,σ ].

4 Numerical Simulation

In this section, some numerical examples of the equation (2) are presented. Moreover, the effect of α

(thermal expansion coefficient) and KT (diffusion coefficient of temperature) on these solutions are investigated.

First, we present an example with zero temporal expansion, i.e. α = 0. Wayne and Uminsky, in [25] have
shown that if we start with an initial vorticity of the following equation, where δ = 0.1 and core size λ0 = 2,

ω(x,0) = φ00(x,0)+4δ (φ20 +φ02), (44)
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then it will become quickly axisymmetric in the absence of temperature (see Figure.2 in [25]). In this section,
the initial vorticity would be considered as (44) which leads to elliptical deformations of the Lamb-Oseen vortex
as shown in Figure.1, and the initial temperature with k0 = 1 is as follows:

T (x,0) = ψ00(x,0)+4δ (ψ20 +ψ02). (45)

Now we present some examples with different values of α .

4.1 Zero thermal expansion coefficient α = 0

In the differential equations (42) and (43) put α = 0, m = 4, ν = 1/500, and KT = 1/500. As you can see in
Figure 1.b, at time t = 400, the axisymmetric is increased. In this case, this result is similar to the result obtained
by Nagem and coauthors in [25]. The enstrophy E of the vortex which is a criterion for axisymmetry of the
vortex is defined as follows:

E =

ˆ
R2
(ω(x)−< ω(|x|)>)2dx, < ω(|x|)>=

1
2π

ˆ 2π

0
ω(x)dθ . (46)

The values of E shows the nonaxisymmetric portion in L2 norm. As shown in Figure 2 the values of E are
decreased in time and the solution goes rapid axisymmetrization. In continue, we present two examples for

Fig. 1 a) Initial perturbation with δ = 0.1 and b) Vorticity distribution at t = 400 with m = 4 and values of α = 0,
ν = 1/500, and KT = 1/500.

high and low values of α and the effect of α on the vorticity is investigated.

4.2 Nonzero thermal expansion coefficient (small values of α).

In this subsection, we assume that α = 69×10−6 (k−1) (thermal expansion coefficient of water in 20 degrees
centigrade) and other parameters are considered as follows:

m = 4, ν =
1

500
(m2/s), KT =

1
500

,
1

800
,

1
1500

(m2/s).

As it is displayed in Figure 3, at time t = 8, the portion begins to increase. For the large KT nonaxisymmetric is
increased rapidly. These results reveal two important feature of the equation (1). First, unlike the case of zero
thermal expansion coefficient (α = 0) the solution tends to be nonaxisymmetric in time and the monopole state
of the vorticity breaks down. Second, as KT decrease, the symmetry of the solution breaks faster in time. This
is due to the fact that the effect of temperature on the vorticity decreases when KT increased.(see Figure 4).
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Fig. 2 the graph of the nonaxisymmetric portion (E) with m = 4 and α = 0.

Fig. 3 The graph of the nonaxisymmetric portion (E) with m = 4 and α = 69×10−6.

4.3 Nonzero thermal expansion coefficient (great values of α).

Now let α = 69× 10−4 (k−1) (suitable thermal expansion coefficient for gases), and other parameters are
given as below

m = 4, ν =
1

500
(m2/s), KT =

1
500

,
1

800
,

1
1500

(m2/s).

Then, as can be seen in Figure 5, the results are as same as the results of the previous subsection with this
difference that the nonsymmetrization process occurs faster in time.( You may see Figure 6)
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Fig. 4 Vorticity distribution for small values of α where a) at time t = 15, KT = 1/500, ν = 1/500, and m = 4, b) at time
t = 15, KT = 1/1500, ν = 1/500, and m = 4.

Fig. 5 The graph of the nonaxisymmetric portion (E) with m = 4 and α = 69×10−4.

APPENDIX

The two remaining integrals in (40) and (41) are

1)
ˆ
R2

Hk1,k2(x)(D
m1
x1

Dm2
x2

T00(x,σ))dx (A1)

2)
ˆ
R2

Fk1,k2(x)(D
m1
x1

Dm2
x2

V00(x,λ )) ·∇x(Dl1
x1

Dl2
x2

T00(x,σ))dx. (A2)

Using the fact that:

∂x1Hn,m = (
2n
λ 2 )Hn−1,m(x), ∂x2Hn,m = (

2m
λ 2 )Hn,m−1(x) (A3)
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Fig. 6 Vorticity distribution for great values of α where a) at time t = 6, KT = 1/500, ν = 1/500, and m = 4, b) at time
t = 6, KT = 1/1500, ν = 1/500, and m = 4, c) at time t = 7, KT = 1/500, ν = 1/500, and m = 4, d) at time t = 7,
KT = 1/1500, ν = 1/500, and m = 4.

we have: ˆ
R2

Hk1,k2(x)(D
m1
x1

Dm2
x2

T00(x,σ))dx = (A4)

(−1)k1+k2

ˆ
R2

φ
−1
00 (x)Dk1

x1
Dk2

x2
φ00Dm1

x1
Dm2

x2
T00dx =

(−1)k1+k2Dk1
b1

Dk2
b2

Dm1
a1

Dm2
a2

ˆ
R2

φ
−1
00 (x)φ00(x+b; t)T00(x+a; t)dx

where the first equality comes from the below equality:

Hn,m = (−1)n+m
φ
−1
00 Dn

x1
Dm

x2
φ00,

and the secondary equality is an outcome of applying integration by parts. But to calculate the last integral of
(A4) note that: ˆ

R2
φ
−1
00 (x)φ00(x+b; t)T00(x+a; t)dx =

ˆ
R2

πλ
2e

x2
1+x2

2
λ2 · 1

πλ 2 e
−x2

1−2b1x1−b2
1−x2

2−2b2x2−b2
2

λ2

· 1
πσ2 e

−x2
1−2a1x1−a2

1−x2
2−2a2x2−a2

2
σ2 dx|a=0,b=0 =

1
πσ2 · e

−b2
1−b2

2
λ2 · e

−a2
1−a2

2
σ2 ×

ˆ
R2

e
−2b1x1−2b2x2

λ2 · e
−x2

1−2a1x1−x2
2−2a2x2

σ2 dx

= β1β2

ˆ
R2

e
−(x1+σ2b1+λ2a1)

2

λ2σ2 dx1 ·
ˆ
R2

e
−(x2+σ2b2+λ2a2)

2

λ2σ2 dx2 = β1β2 ·πσ
4,

where

β1 =
1

πσ2 e
−b2

1−b2
2

λ2 · e
−a2

1−a2
2

σ2 , β2 = e
(σ2b1+λ2a1)

2

λ4σ2 · e
(σ2b2+λ2a2)

2

λ4σ2
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and this implies that:
ˆ
R2

Hk1,k2(x)(D
m1
x1

Dm2
x2

T00(x,σ))dx = (A5)

(−1)k1+k2Dk1
b1

Dk2
b2

Dm1
a1

Dm2
a2
[β1β2.πσ

4].

To calculate the integral in (A2) by use of the integration by parts we have:
ˆ
R2

Fk1,k2(x)(D
m1
x1

Dm2
x2

V00(x,λ )) ·∇x(Dl1
x1

Dl2
x2

T00(x,σ))dx = (A6)

−
ˆ
R2

∇xFk1,k2(x)(D
m1
x1

Dm2
x2

V00(x,λ )) · (Dl1
x1

Dl2
x2

T00(x,σ))dx =

−(θ 1[k1,k2, l1, l2,m1,m2;λ ,σ ]+θ
2[k1,k2, l1, l2,m1,m2;λ ,σ ]),

where

θ
1 =

ˆ
R2

Dm1
x1

Dm2
x2

V 1
00 ·Dx1Fk1,k2(x) ·D

l1
x1

Dl2
x2

T00(x,σ)dx (A7)

θ
2 =

ˆ
R2

Dm1
x1

Dm2
x2

V 2
00 ·Dx2Fk1,k2(x) ·D

l1
x1

Dl2
x2

T00(x,σ)dx. (A8)

Using repeated integration by parts from (A7) l1 times toward x1 and l2 times toward x2 conclude that:

θ
1 =

l1

∑
i=0

l2

∑
j=0

(
i
l1

)(
j

l2

)
(−1)l1+l2

ˆ
R2

T00Di+1
x1

D j
x2

Fk1,k2(x)D
l1+m1−i
x1

Dm2+l2− j
x2

V 1
00dx

=
min(l1,k1−1)

∑
i=0

min(l2,k2)

∑
j=0

(
i
l1

)(
j

l2

)
(−1)l1+l2(

2i+1k1!
σ2(i+1)(k1− i−1)!

)(
2 jk2!

σ2( j)(k2− j)!
)

×
ˆ
R2

T00Fk1−i−1,k2− j(x)Dl1+m1−i
x1

Dm2+l2− j
x2

V 1
00dx, (A9)

where in the secondary equality we used the following equation:

∂x1Fn,m = (
2n
σ2 )Fn−1,m(x), ∂x2Fn,m = (

2m
σ2 )Fn,m−1(x).

In the last integral of (A9) using the relation Fn,m = (−1)n+mT−1
00 Dn

x1
Dm

x2
T00 arrive at the following formula:

ˆ
R2

T00Fk1−i−1,k2− j(x)Dl1+m1−i
x1

Dm2+l2− j
x2

V 1
00dx = (A10)

(−1)k1−i−1+k2− j
ˆ
R2

Dk1−i−1
x1

Dk2− j
x2

T00Dl1+m1−i
x1

Dm2+l2− j
x2

V 1
00dx =

(−1)k1−i−1+k2− j(−1)k1−i−1+k2− j
ˆ
R2

T00Dm1+k1−i−1+l1−i
x1

Dm2+k2− j+l2− j
x2

V 1
00dx

=

ˆ
R2

T00Dm1+k1−i−1+l1−i
x1

Dm2+k2− j+l2− j
x2

V 1
00dx,

where the secondary equality is captured from an integration by parts. On the other hand:
ˆ
R2

T00Dα1
x1

Dα2
x2

V 1
00dx =

ˆ
R2

T00Dα1
d1

Dα2
d2

V 1
00(x+d)dx|d=0, (A11)
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and by the use of Biot-Savart law and by re-write the speed V00 in item of the vorticity φ00 :

V00(x+d;λ ) =−∇
∗
d(4d)

−1
φ00(x+d), (A12)

where ∇∗d f = (∂x2 f ,−∂x1 f ). Thus we can obtain:
ˆ
R2

T00Dα1
x1

Dα2
x2

V00dx = Dα1
d1

Dα2
d2

ˆ
R2

T00V00(x+d)dx|d=0 = (A13)

−Dα1
d1

Dα2
d2

∇
∗
d(4d)

−1
ˆ
R2

T00φ00(x+d)dx|d=0,

and finally for the last integral in (A13) we have:

(A14)ˆ
R2

T00φ00(x+d)dx|d=0 =

ˆ
R2

1
πσ2 e

−x2
1−x2

2
σ2 · 1

πλ 2 e
−x2

1−2d1x1−d2
1−x2

2−2d2x2−d2
2

λ2 dx|d=0 =

(
1

πσλ
)2 · e

−d2
1−d2

2
λ2

ˆ
R

e
−(λ2+σ2)x2

1−2σ2d1x1
λ2σ2 dx1|d=0

×
ˆ
R

e
−(λ2+σ2)x2

2−2σ2d2x2
λ2σ2 dx2|d=0 = (

1
πσλ

)2e
−d2

1−d2
2

λ2 · eξ1 · eξ2

×
ˆ
R

e
−(λ2+σ2)(x1+ξ1)

2

λ2σ2 dx1|d=0×
ˆ
R

e
−(λ2+σ2)(x2+ξ2)

2

λ2σ2 dx1|d=0

=
2λ 2σ2

π(λ 2 +σ2)2 (e
−d2

1−d2
2

λ2 · eξ1 · eξ2)|d=0,

where

ξ1 =
σ4

(λ 2 +σ2)2 d2
1 , ξ2 =

σ4

(λ 2 +σ2)2 d2
2 .

Replacing ξ1 and ξ2 in (A14), implies that:
ˆ
R2

T00φ00(x+d)dx|d=0 =
2λ 2σ2

π(λ 2 +σ2)
e
−( 1

λ2−
σ4

(λ2+σ2)2
)(d2

1+d2
2)|d=0. (A15)

As a result ˆ
R2

T00Dα1
x1

Dα2
x2

V00dx =− 2λ 2σ2

π(λ 2 +σ2)
Dα1

d1
Dα2

d2
∇
∗
d(4d)

−1(e
−(d2

1+d2
2 )

ε )|d=0, (A16)

where

ε =
1

1
λ 2 − σ4

(λ 2+σ2)2

=
λ 2(λ 2 +σ2)2

(λ 2 +σ2)2−λ 2σ4 .

And so
ˆ
R2

T00Dα1
x1

Dα2
x2

V00dx = ε
2λ 2σ2

(λ 2 +σ2)
Dα1

d1
Dα2

d2
V00(d,ε)|d=0

= ζ Dα1
d1

Dα2
d2

V00(d,ε)|d=0, (A17)

where

ζ = ε
2λ 2σ2

(λ 2 +σ2)
=

2λ 4σ2

(λ 2 +σ2)2−λ 2σ4 . (A18)
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According to the above computing for (A7) and similar computation for (A8) the following equalities are ob-
tained:

1)
ˆ
R2

T00Dα1
x1

Dα2
x2

V 1
00dx = ζ Dα1

d1
Dα2

d2
V 1

00(d,ε)|d=0 (A19)

2)
ˆ
R2

T00Dα1
x1

Dα2
x2

V 2
00dx = ζ Dα1

d1
Dα2

d2
V 2

00(d,ε)|d=0.

To simplify equation (A5), note that:

(A20)

β1β2 =
1

πσ2 · e
− |b|

2

λ2 · e−
|a|2

σ2 · e−
σ2 |b|2

λ4 · e−
|a|2

σ2 · e−
2λ2σ2a1b1

σ2λ4 .e−
2λ2σ2a2b2

σ2λ4

=
1

πσ2 e
1

λ2 [(−1+ σ2

λ2 )|b|2+
2(a1b1+a2b2)

λ2 ]
,

so

(A21)ˆ
R2

Hk1,k2(x)(D
m1
x1

Dm2
x2

T00(x,σ))dx =

(−1)k1+k2(
1

πσ
)2

πσ
4Dk1

b1
Dk2

b2
Dm1

a1
Dm2

a2
[e

1
λ2 [(−1+ σ2

λ2 )|b|2+
2(a1b1+a2b2)

λ2 ]
]|a=0,b=0

= (−1)k1+k2
σ2

π
Dk1

b1
Dk2

b2
Dm1

a1
Dm2

a2
[e

1
λ2 [(−1+ σ2

λ2 )|b|2+
2(a1b1+a2b2)

λ2 ]
]|a=0,b=0,

but

e
1

λ2 [(−1+ σ2

λ2 )|b|2+
2(a1b1+a2b2)

λ2 ]
=

∞

∑
n=0

1
λ 2n ·

1
n!

n

∑
r=0

(
n
r

)
2r · (−1+

σ2

λ 2 )
n−r(a1b1 +a2b2)

r|b|2(n−r)

∞

∑
n=0

1
λ 2n ·

1
n!

n

∑
r=0

(
n
r

)
2r · (−1+

σ2

λ 2 )
n−r

(
r

∑
h1=0

(
r
h1

)
(a1b1)

h1(a2b2)
r−h1

)

×

(
n−r

∑
h2=0

(
n− r

h2

)
(b1)

2h2(b2)
2(n−r−h2)

)
=

∞

∑
n=0

1
λ 2n ·

1
n!

n

∑
r=0

(
n
r

)
2r · (−1+

σ2

λ 2 )
n−r

r

∑
h1=0

n−r

∑
h2=0

(
r
h1

)(
n− r

h2

)
(a1)

h1(a2)
r−h1(b1)

h1+2h2(b2)
2(n−r−h2)+r−h1 ,

so

(A22)

Dk1
b1

Dk2
b2

Dm1
a1

Dm2
a2
(e

1
λ2 [(−1+ σ2

λ2 )|b|2+
2(a1b1+a2b2)

λ2 ]
)|a=0,b=0 =[

∞

∑
n=0

1
λ 2n .

1
n!

n

∑
r=0

(
n
r

)
2r.(−1+

σ2

λ 2 )
n−r

r

∑
h1=0

n−r

∑
h2=0

(
r
h1

)(
n− r

h2

)
× h1!
(h1−m1)!

(a1)
h1−m1 .

(r−h1)!
(r−h1−m2)!

.(a1)
(r−h1−m2).

(h1 +2h2)!
(h1 +2h2− k1)!

.(b1)
h1+2h2−k1

×. (2(n− r−h2)+ r−h1)!
(2(n− r−h2)+ r−h1− k2)!

.(b2)
2(n−r−h2)+r−h1−k2

]∣∣∣∣∣
a=0,b=0

.
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Assume h1 = m1, r = m1 +m2, h2 =
k1−m1

2 , n = m1+k1+m1+k2
2 , and define:

B[k1,k2,m1,m2;λ ,σ ] =



σ2gα

π
. 2m1+m2−k1−k2

λ (m1+m2−k1−k2+2) if k1−m1

×(−1+ σ2

λ 2 )
k1+k2−m1−m2

2 and k2−m2

× 1
(

k1−m1
2 )!( k2−m2

2 )!
is positive and even

0 otherwise

the last term in (40) takes the form:

m

∑
m1,m2

I[m1,m2; t]B[k1,k2,m1,m2;λ ,σ ]. (A23)

According to equations (A.18) to (A.21) of appendix (A) in the [25], we have:

θ
1[k1,k2, l1, l2,m1,m2;λ ,σ ] = (A24)

min(l1,k1−1)

∑
i=0

min(l2,k2)

∑
j=0

σ2

πλ 2 ε

(
i
l1

)(
j

l2

)
(−1)l1+l2(

2i+1k1!
σ2(i+1)(k1− i−1)!

)

×( 2 jk2!
σ2( j)(k2− j)!

)

ˆ
R2

φ00Dm1+k1−i−1+l1−i
x1

Dm2+k2− j+l2− j
x2

V 1
00dx

=
min(l1,k1−1)

∑
i=0

min(l2,k2)

∑
j=0

σ2

πλ 2 ε

(
i
l1

)(
j

l2

)
(−1)l1+l2(

2i+1k1!
σ2(i+1)(k1− i−1)!

)

×( 2 jk2!
σ2( j)(k2− j)!

)R1(m1 + k1− i−1+ l1− i,m2 + k2− j+ l2− j)

θ
2[k1,k2, l1, l2,m1,m2;λ ,σ ] = (A25)

min(l1,k1)

∑
i=0

min(l2,k2−1)

∑
j=0

σ2

πλ 2 ε

(
i
l1

)(
j

l2

)
(−1)l1+l2(

2ik1!
σ2i(k1− i)!

)

×( 2 j+1k2!
σ2( j+1)(k2− j−1)!

)

ˆ
R2

φ00Dm1+k1−i−1+l1−i
x1

Dm2+k2− j+l2− j
x2

V 1
00dx

=
min(l1,k1−1)

∑
i=0

min(l2,k2)

∑
j=0

σ2

πλ 2 ε

(
i
l1

)(
j

l2

)
(−1)l1+l2(

2ik1!
σ2i(k1− i)!

)

×( 2 j+1k2!
σ2( j+1)(k2− j−1)!

)R2(m1 + k1− i+ l1− i,m2 + k2− j−1+ l2− j).

And R1 and R2 the similar computation in appendix (A) in the [25] give rise to the following :

R1(α1,α2) =


η(α1,α2,ε)

( α1+α2−1
2

α1
2

)
if α1 even and α2 is odd

0 otherwise
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R2(α1,α2) =


η(α1,α2,ε)

( α1+α2−1
2

α1−1
2

)
if α1 odd and α2 is even

0 otherwise

where η(α1,α2,δ ) =− 1
2π
( 1

2δ
)

α1+α2+1
2

(−1)(α1+α2−1)/2

((α1+α2+1)/2)!(α1)!(α2)! .
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