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Abstract
Photovoltaic power system is taking a significant percentage of power system and the demands for accurate forecasting
of the power outputs is surging. In prior works, the forecasting problem was formulated as a regression problem, how-
ever, which most cannot guarantee that the forecasted outputs is nonnegative. To solve this problem, we proposed a novel
probabilistic model by using nonlinear regression and Bayesian learning method. In the paper, we present the detailed the-
oretical derivations and interpretations. The simulation results show the validity and feasibility of the proposed algorithm
by comparing with the traditional SVM algorithm.
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1 Background

Renewable energy sources are of more and more significant importance in the current and future power
supply systems [1, 2], especially, the photovoltaic(PV) power techniques has achieved tremendous progress in
the industry and research fields. In the past years, the total cumulative solar PV power capacity has reached
178GW [3, 4]. Moreover, photovoltaic(PV) power takes a percentage of 8 in the gross power consumption in
Italy and 7.1 in Germany in the year of 2015 [5,6]. The large-scale deployments of PV system brings the surging
demands for the management and scheduling operations on the PV power system, which greatly depends on the
forecasting of PV system power outputs in [7–9]. Genially, PV power outputs are determined by the randomness
of solar irradiance in the area of interest, which indicates that the power outputs are variable. Therefore, amount
of models and methods have been proposed to approximate the PV power outputs under different conditions.
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In [10], the power regression is modeled based on analysis of the images of the weather in the UC San Diego,
which provides a god tested for the solar energy. Similarly, the analysis of cloud images or weather is employed
in [11–13]. However, these methods requires expensive equipments to obtain the cloud or weather images,
which is not favorable to lower the price of PV power systems. In [14], the forecasting of PV power output is
implemented based on the real-time collection of solar irradiance through the irradiance sensor network. In [15],
the images of cloud motions are obtained through geostationary satellite to predict the medium and short-term
solar radiation. The above approaches can provide good performance in forecasting PV power outputs, which
need additional hardware or complex operations.

Besides applying equipments and complex operations, various forecasting algorithms are also proposed.
Common approaches are based on employing the machine learning classification and regression methods.
In [16], aerosol index, which has evident linear correlation with solar radiation attenuation, is used to train
the artificial neural network (ANN) and forecast the power outputs in the next 24 hours. Similarly, the ANN
method is also employed to implement the forecasting of the PV power outputs in [17, 18]. Support vector
machine(SVM) was also employed to learn and model the relationship and relevance between the input data
such as solar radiation and the output of PV power in [19–21]. In [22, 23], multiple linear regression (MLR)
modeled the power outputs of PV system based on the features of solar radiation and the weather data. In [24],
K-nearest neighbour(K-NN) was employed to build the forecast model based on the non-common data. In [25],
ANN, SVM, KNN and MLR are analyzed and the effect of selecting input data for the learning algorithms are
analyzed.

Another approach is based on the probabilistic model to forecast probability density function associated with
PV power outputs based on the features of input data in [26]. In [27], a versatile probability method based on pair
copula construction to model the PV power system. Similarly, a chronological probability is employed to model
the output of PV power system based on conditional probability and nonparametric kernel density estimation
in [28]. Moreover, the conditional probability associated with the outputs of PV power is also utilized to predict
the outputs in the future. In [29], the Bayesian sparse learning that incorporates the features of input data to learn
the likelihood function of the outputs of PV power. In the above probabilistic model, the prediction of PV power
outputs is inevitably negative, which is resulted from the models and do not follow the positivity of the outputs.
Therefore, a sparse Bayesian learning algorithm that guarantees the positivity of the outputs and approximates
the relevance between the input features and power outputs is proposed in this paper.

The rest of the paper is organized as follows. In Section II, the forecasting problem is molded as a Pois-
son regression problem and the regression problem is implemented on the basis of sparse Bayesian learning.
The simulation results of proposed algorithm for the forecasting performance are presented in Section III. The
conclusion and acknowledgement are given in Section IV and Section V, respectively.

2 System Model

Generally, the basic principle for photovoltaics is the photovoltaic effect, which transform the solar energy
to the electrical energy in the semi-conductors. The output power of the photovoltaics is modeled as follows,

Pout put = PstdεT Rt , (1)

where Pt
out put is the output power at the time t and Pstd is the power output at the standard condition, Rt is the

strength of solar radiation at time t and εT is the parameters that are associated with the are PV cell temperature
in current time step and standard test conditions, which is given by

εT =
[1+ τT (Tt −T0)]

R0
, (2)

where τt is the temperature co-efficient of power and Tt and T0 are PV cell temperature in current time step and
temperature in standard test conditions respectively.
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The above model reveals the fact the output power Pt
out put of a PV cell is mainly affected by the solar

radiations Rt and the environmental temperature Tt which both directly depend on different weather types, such
as sunny days, cloudy days and rainy days. However, it is known that the outputs of the PV system are not
identical even the solar radiations and the environmental temperatures are the same, which are resulted from the
ignorance of weather types information the equation (1) and (2). Hence, an more reasonable way is to build a
model that incorporates the weather types and the strength of solar radiations to model and predict the PV cell
power outputs.

Based on previous discussions, the outputs of a PV system is nonnegative and can be regarded as inte-
gers(with low resolutions in large scale systems), and the outputs cannot be modeled by simple support vector
machine, Gaussian process or relevance vector machine, which will leads to negative outputs predictions. In
order to alleviate the problem, we employ a generalized linear model, poisson regression was built based on the
hierarchical Bayesian learning.

2.1 Poisson Regression Model

In the regression of PV power outputs, a training set
{
{xν

it ,P
ν
it }

N
i=1

}M

t=1
are given and xν

it represents the input

data xν
it and ν means solar radiations and the weather types. The variable ν is defined and quantized as

ν =


0 Pit in rainy weather
1 Pit in cloudy weather
2 Pit in sunny weather

, (3)

The index i represents the day-time step and t means the time slots in a day and Pit is the corresponding PV
power output. In the Poisson Regression, the power outputs is assumed to follow Poisson distribution as

f (Pν
it ) =

ρPν
it e−ρ

Pν
it !

, (4)

where ρ is the natural parameter of the Poisson distribution.
Assuming that the power outputs is linear combinations of the inputs vector, which is given by

Pν
it =

K

∑
k=1

ωkφ (xν
it ,xxx

ν)+ ε
ν
it , (5)

where εν
it is a Gaussian noise with zero mean and variance δ 2. ωωων = [ων

1 , ...,ω
ν
K ] is the feature weights and

φ (xν
it ,xxx

ν) is the kernel function, which is defined as follows,

φ (xν
it ,xxx

ν) =
[
ϕ

T (xν
it)ϕ (xν

11) , · · · ,ϕT (xν
it)ϕ (xν

K)
]T
, (6)

where xxxν is the set of all inputs vectors in the weather type ν , which is stacked in the time sequence and given by
xxxν = [xν

1 , · · · ,xν
K ]

T . ϕ (•) is the function that projects the input features into dimensional spaces. For example, a
universal mapping function [31, 32] is defined as

ϕ (•) = exp

(
−(xxxv−•)2

h

)
, (7)

and projects the input features into infinite dimension spaces, which is widely used in the high dimensional
regressions and classifications.

Based on (5), the likelihood function can be formulated as follows,

f (Pν
it |xν

it) = N

(
Pν

it |
K

∑
k=1

ω
ν
k φ (xν

it ,xxx
ν),δ 2

)
. (8)
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In Bayesian learning, the weight parameters ωωω is assumed to be a vector of random variables that subjects
to independent Gaussian prior distributions, which is given by

f
(
ωωω

ν |λλλ ν
)
=

K

∏
i=1

N
(
ω

ν
i |0,λ−1

i

)
, (9)

where λ
−1
i is the inverse variance of the Gaussian prior distribution and λλλ

−1 =
[
λ
−1
1 , · · · ,λ−1

NM

]T
.

By combining the equation (8) and (9), the posterior of ωωων can be formulated as follows,

f (ωωων |Pν ,xxxν ,λλλ ) ∝ f (P|xxxν ,λλλ ,ωωων) f (ωωων |λλλ ) , (10)

where Pν = [Pν
1 , · · · ,Pν

K ]
T .

By subsisting the details, the posterior distribution can be given by

f (ωωων |Pν ,xxxν ,λλλ ) = (2π)
K
2 ΛΛΛ

1
2 exp

(
−1

2
(ωωων −µµµ)

T
ΛΛΛ(ωωων −µµµ)

)
, (11)

where µµµ is the mean, which is formulated as

µµµ =
ΛΛΛ
−1MT Pν

δ 2 , (12)

where ΛΛΛ is the inverse covariance matrix of ωωω and is given by

ΛΛΛ =
MT M

δ 2 +ΛΛΛ
−1
λλλ
, (13)

where ΛΛΛ
−1
λλλ

= diag
(
λ
−1
1 , · · · ,λ−1

K

)
is a inverse diagonal covariance matrix of ωωων . M ∈ RK×K is a matrix with

(i, j)th element φ

(
xν

i ,x
ν
j

)
.

Similarly, the posterior distribution f
(
λλλ ,δ 2|Pν ,xxxν

)
can be formulated as

f
(
λλλ ,δ 2|Pν ,xxxν

)
∝ f

(
P|xxxν ,λλλ ,δ 2) f (λλλ ) f

(
δ

2) , (14)

By assuming that λλλ and δ 2 follows the uniform prior distribution, then f
(
λλλ ,δ 2|Pν ,xxxν

)
can reformulated as

f
(
λλλ ,δ 2|P,xxx

)
∝ f

(
P|xxx,λλλ ,δ 2) . (15)

By following the results in [33], ωωων and δ 2 can be updated as follows,

λ
(η+1)
k =

θi

µk
, (16)

δ
(η+1) =

√
‖Pν −Mµµµ‖

K−θiΛi
. (17)

where θi = 1−λ
(η)
k Λi, Λi is the ith diagonal element of inverse covariance matrix ΛΛΛ and µµµk is the ith element

of the posterior mean of µµµ .
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2.2 Poisson Regression of PV System Power based on SBL: Bayesian Estimation

In this subsection, the Sparse Bayesian Learning method is proposed for the Poisson regression of PV system
power outputs.

Given the equation (4) and (5), we redefine the natural parameter ρ as follows,

ρit = exp
(
ωωω

T
φ (xν

it ,xxx
ν)
)
. (18)

So the Poisson distribution can be reformulate as

f (Pν |xxxν ,ωωων)

=
K

∏
i=1

ρPν
it e−ρ

Pν
it !

=
K

∏
i=1

exp
(
eφ(xν

it ,xxx
ν )+Pν

it φ (xν
it ,xxx

ν)
)

Pν
it !

,
(19)

which can be expressed as follows

f (Pν |xxxν ,ωωων)

=
K

∏
i=1

1
Pν

it !

K

∏
i=1

1
Γ(Pν

it )

exp
(
eφ(xν

it ,xxx
ν )+Pν

it φ (xν
it ,xxx

ν)
)

Pν
it !

,
(20)

where Γ(Pν
it ) is a Gamma function. By applying an approximation in, the above result can be approximated as

follows,

f (Pν |xxxν ,ωωων)≈
K

∏
i=1

1
Pν

it
N
(
logPν

it ,P
−1
it

)
= (2π)

K
2 Λ
− 1

2
P

exp

−1
2

(
K

∑
i=1

ω
ν
k φ (xν

it ,xxx
ν)− logPν

)T


exp

(
−1

2
Λ
−1
P

(
K

∑
i=1

ω
ν
k φ (xν

it ,xxx
ν)− logPν

))
,

(21)

where ΛP = diag(P1, · · · ,PK) is the covariance matrix.
Taking logarithm to both sides of (21),the log-posterior of ωωω can be rewritten as

log f (ωωων |Pν ,xxxν ,λλλ ) ∝ log p(ωωων |λλλ )+ log f (Pν |xxxν ,ωωω)

≈
K

∑
i=1

logN
(

ωωω
ν |0,λλλ−1

i

)
+ log [ f (Pν |xxxν ,ωωων)] .

(22)

By simple manipulations, the above complicated posterior formulation can be rewritten as

log f (ωωων |Pν ,xxxν ,λλλ ) ∝−1
2

(
K

∑
i=1

ω
ν
k φ (xxxν

it ,xxx
ν)− logPν

)T

Λ
−1
P

(
K

∑
i=1

ω
ν
k φ (xν

it ,x
ν)− logPν

)

− 1
2
[ων ]T Λ

−1
P ω

ν .

(23)

Hence, the posterior distribution can be formulated as

f (ωωων |Pν ,xxxν ,λλλ ) = N
(
ωωω

ν |µ̃µµ, Λ̃ΛΛ
)
, (24)
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where µ̃µµ is given by
µ̃µµ = Λ̃ΛΛMT

ΛΛΛP logPν , (25)

where Λ̃ΛΛ is the inverse variance matrix, which given by

Λ̃ΛΛ = MT
ΛΛΛPM+ΛΛΛλλλ . (26)

So the Bayesian estimation of ωωων can be obtained from the mean Λ̃ΛΛ.

2.3 Bayesian Learning: Bayesian Estimation

Based on Bayesian rule, the posterior distribution of λλλ can be given by

f (λλλ |xxxν ,Pν) ∝ f (Pν |xxxν ,λλλ ) f (λλλ ) . (27)

Without any extra information of λλλ , it is assume that the prior distribution of λλλ is uniform distribution. Hence,

f (λλλ |xxxν ,Pν) ∝ f (Pν |xxxν ,λλλ ) . (28)

Then, the above likelihood can be given by

f (Pν |xxxν ,λλλ ) =

ˆ

ωωων

f (Pν |xxxν ,ωωων) f (ωωων |λλλ )dωωω
ν . (29)

By using the approximation results in (21) , it yields

f (Pν |xxxν ,λλλ )≈(2π)−
K
2

K

∏
i=1

√
λλλ iλλλ

− 1
2

P

exp
(
[logPν ]

T
ΛΛΛP [logPν ]− µ̃µµ

T
λ̃λλ µ̃µµ

)
.

(30)

By taking log operation with respect to both sides of (30), taking derivatives with respect to λλλ i and setting it to
zero, it leads to

λλλ
(η+1)
i =

1−λλλ
(η)
i ΛΛΛ

−1
i

µµµ2
i

, (31)

where ΛΛΛi is the ith element of the ΛΛΛ and µµµ i is the ith element of µµµ .

2.4 Prediction of New Inputs Based on Poisson Regression Model

Given the estimation results of ωωω and λλλ , the prediction of new input xxx∗ can be formulated as follows

f (P∗|xxx∗,xxx,P) =
´

f (P∗|x∗,ωωων) f (ωωων |xxxν ,Pν ,λλλ )dωωων

=
´

f (P∗|x∗,ϑϑϑ ∗) f (ϑϑϑ ∗|xxxν ,Pν ,λλλ )dϑϑϑ
∗

=
´

f (P∗|x∗,θθθ ∗) f (θθθ ∗|xxxν ,Pν ,λλλ )dθθθ
∗,

(32)

where θθθ
∗ = exp(ϑϑϑ ∗) = exp

(
φ T (x∗,xxx) µ̃µµ

)
and due to the linear transformation ϑϑϑ

∗ = φ T (x∗,xxx) µ̃µµ , it can be
obtained

f (ϑϑϑ ∗|xxxν ,Pν ,λλλ ) = N
(

µ̃µµϑϑϑ , δ̃
2
ϑϑϑ

)
, (33)

where
µ̃µµϑϑϑ = φ

T (x∗,xxx)
(
MT

ΛΛΛPM+ΛΛΛλλλ

)
MT

ΛΛΛP logPν , (34)

δ̃
2
ϑϑϑ
= φ

T (x∗,xxx)
(
MT

ΛΛΛPM+ΛΛΛλλλ

)
φ (x∗,xxx) . (35)
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Due to θθθ
∗ = exp(ϑϑϑ ∗), it is obtained that

f (θθθ ∗|xxxν ,Pν ,λλλ )≈ Gamma(m,n) , (36)

where

m =
1

δ̃ 2
ϑ

, (37)

n = δ̃
2
ϑϑϑ

eµ̃ϑϑϑ . (38)

Following the results in [34], the likelihood function of prediction can be approximated as

f (P∗|xxx∗,xxxν ,Pν)

=
Γ(m+P∗)

Γ(1+P∗)Γ(m)

(
1

1+n

)m( n
1+n

)P∗

.
(39)

So the closed-form prediction can be obtained by maximizing the likelihood function.
Based on the above derivations, the detailed algorithm can be formulated as Algorithm 1 as

Algorithm 1 Poisson Kernel Regression Based Sparse Bayesian Learning

1: Input the training set
{
{xν

it ,P
ν
it }

N
i=1

}M

t=1
;

2: Set the convergence criterion for ωωω by using the difference between the current estimation and the next
estimation;

3: Set η = 1 and the maximum iteration number to be ηmax = 50;
4: Initialize the parameter ωωω;
5: Initialize the threshold value ωωω th;
6: Initialize the RVs matrix by setting PRV = P;
7: while Maximum iteration or convergence criteria is reached do
8: Creating the kernel matrix according to (6);
9: Calculate the inverse covariance matrix of ωωω according to (26);

10: Calculate the mean vector according to (25);

11: Updating the hyper-paramter as λλλ
(η+1)
i =

1−λλλ
(η)
i ΛΛΛ

−1
i

µµµ2
i

;
12: Eliminate the ωωω i and the samples Pi with ωωω i > ωωω th;
13: Updating kernel matrix by using the eliminated samples;
14: end while
15: Output the estimation of ωωω and λλλ

2.5 Summary and Analysis

Based on combination of Poisson regression and SBL, the power output of PV system can be formulated as a
regression problem. Based on the strength of solar radiations in different type weathers, the regression problem
can can be classified into three sub-problems.

In each regression problem, the weights of input vectors are dominated by independent zero-mean Gaussian
distribution, which is different form the Bayesian prior with identical Gaussian distributions. Meanwhile, the
sparsity of the weights are guaranteed by the zero mean and the variance parameter λ , which will alleviate
training complexity and time.

On one hand, the complexity of the proposed algorithm is dominated by the step 9 in Algorithm 1 which
requires a matrix inverse operation. In the step 9, the complexity is scale with the order of N (PRV ). Furthermore,
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Table 1 The detailed RMSE of three different situations in two regression methods
Situations Sunny Sunny/Cloudy Rainy/Cloudy

RMSE of PR-SBL 1.145 11.861 8.343
RMSE of SVM 22.290 22.281 18.715

according to Algorithm 1, the number of PRV will decrease with the iteration process, which means that the
complexity decreases in each iteration.

On the other hand, the complexity of prediction is proportional to the number of RV samples. By compar-
ing the analysis results of complexity to other algorithms, it is concluded that the proposed algorithm is less
than the related kernel count data regression model including Kernel Probabilistic Regression and Probabilistic
Regression [35].

3 Numerical Results

In the section, the data collected from the real PV power system in Anhui Polytechnic University PV power
platform will be applied. The installed capacity of the platform reaches 100 kWh, which is deployed on the roof
of main administration building in the campus. PV power data and corresponding weather data are collected in
a season. Fig.1 shows the collected PV power data in seven different days.

In order to make the weather data clear, the data is shifted by one unit in vertical orientation, which is shown
in Fig.2. The RMSE results are obtained through 1000 times Monte Carlo independent experiments, and is

defined as RMSE = 1
N

N
∑

i=1

(
P̂it −Pit

)2
, where P̂it is the forecasted PV power output and Pit is the true PV power

output. N is the number of the true data.
In Fig.3, the data is collected in the sunny data and the forecasting values based on Poisson regression is

closed to true data and has no negative outputs while SVM regression poses negative outputs and has larger error
in table I.

Fig.4 and Fig.5 show the simulation results in hybrid weather. In both situations, the Poisson regression
based on SBL algorithm can achieve better performance in forecasting and nonnegativity.

In simulation results, the PV power regression is more complicated under the hybrid weather conditions.
In super short-term regression, the other factors, such as environmental temperature and wind speed, can be
regarded as stable and unchanged in a sole weather type. Thus just the time sequence correlation is consid-
ered. The proposed Poisson regression based on SBL can also incorporate the environmental temperature and
wind speed to the input data, then the input data forms a vector and the SBL algorithm can still provide good
performance, which can be found in [35].

By combining all the simulation results, the proposed PR-SBL algorithm can provide accurate and nonneg-
ative forecasting values of PV power, which outperforms the SVM algorithm in both aspects. The superiorities
is resulted from the Poisson distribution assumption and statistical learning mechanism. Specifically, SBL is a
data-driven iterative algorithm and updates the hyper-parameters in a hierarchical way, which prevails over the
SVM. Moreover, the assumption that the outputs of PV power subjects to Poisson distribution guarantees the
nonnegativity of the predicted data. Furthermore, the assumption can be used by adopting the maximum entropy
principle according to the physical situations.

4 Conclusion

The forecasting problem is of vital significance for the management and schedules in the renewable energy
sources,such as the PV power system. The traditional nonparametric regression methods cannot guarantee
the nonnegativity of the output. In this paper, a regression model based on Poisson distribution and sparse
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Fig. 1 The collected PV power outputs data
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Fig. 2 The collected Quantized weather data
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Fig. 3 The forecasting PV power outputs in sunny days
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Fig. 4 The forecasting PV power outputs in sunny/cloudy days
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Fig. 5 The forecasting PV power outputs in rainy/cloudy days

Bayesian learning algorithm is proposed to solve the nonnegative PV power forecasting problem. The detailed
principles of PR-SBL algorithm and the simulation results are illustrated. The simulation results demonstrate
the superiorities and accuracies of the proposed algorithm. Moreover, the proposed algorithm is feasible to other
exponential family distribution other than Poisson distribution, which deserves more investigations in the future.
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