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Abstract
We study the class of finite additive shift invariant measures on the real separable Hilbert space E. For any choice of such
a measure we consider the Hilbert space H of complex-valued functions which are square-integrable with respect to this
measure. Some analogs of Sobolev spaces of functions on the space E are introduced. The analogue of Gauss theorem
is obtained for the simplest domains such as the rectangle in the space E. The correctness of the problem for Poisson
equation in the rectangle with homogeneous Dirichlet condition is obtained and the variational approach of the solving of
this problem is constructed.
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1 Introduction

The studying of a random processes in infinite dimension Banach spaces and its description by a partial
differential equation for a functions on the Banach space are the important topics of contemporary mathematics
(see [4, 8, 9]). To the investigation of the above topics and to construct the quantum theory of infinite dimension
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Hamiltonian systems the analogs of the Lebesgue measure on the infinite dimension linear space are introduced
in the works [1, 10, 13, 17].

To study the random walks in the real Hilbert space E we introduce a class of measures on the Hilbert space
which are invariant with respect to a shift on an arbitrary vector of the space E (see [10, 14]). For any choice of
such measure we construct the Hilbert space H of complex-valued functions any of each is square integrable
with respect to this measure. We study operators of argument shifts on the spaces H .

We study the random shift operator on the vector whose distribution on Hilbert space E is given by a semi-
group γt , t ≥ 0, of Gaussian measures with respect to the convolution. We prove that the mean values of the
random shift operator form the one-parametric semigroup U(t), t ≥ 0, of self-adjoint contractions in the space
H . The criteria of strong continuity of this semigroup U is obtained.

We prove that if the semigroup U is strongly continuous in the space H then for any t > 0 the image U(t) f
of any vector f ∈H has the derivatives of any order in the direction of any eigenvector of covariation operator
D of Gaussian measure γ1. Therefore the space of smooth functions is defined as the image of the space H
under the actions of the operators U(t), t > 0, of semigroup U.

For any non-negative non-degenerated trace-class operator D in the space E the Sobolev space W m
2,D(E) is

defined as the space of functions u ∈H such that (∂k)
lu ∈H for any l ∈ {1, ...,m} and any k ∈ N and the

following series converges
∞

∑
k=1

dm‖(∂k)
mu‖2

H <+∞.

Here {dk} is the sequence of eigenvalues of the operator D and {ek} is the sequence of corresponding eigenvec-
tors. The function u ∈H has the derivative ∂hu ∈H in the direction of the unite vector h ∈ E if the following
equality lim

t→0
‖1

t (Sth− I)u−∂hu‖H = 0 holds.

We study the connection of the random walks in the space E with the self-adjoint analogue of Laplace
operator whose domain is the Sobolev space. We prove that the analogue of Laplace operator is the generator
of the semigroup of self-adjoint operators arising as the mean value of random shift operators. The properties
of smooth function space embedding into the Sobolev spaces are studied. The analogue of Gauss theorem
is obtained for the simplest domains such as the rectangle in the space E. The correctness of the problem for
Poisson equation in the rectangle with homogeneous Dirichlet condition is obtained and the variational approach
of the solving of this problem is constructed.

2 A class of shift invariant measures on a Hilbert space

According to A. Weil theorem there is no Lebesgue measure on the infinite dimensional separable normed
real linear space E, i.e. there is no Borel σ -additive σ -finite locally finite measure on the space E which is
translation-invariant. Therefore an analogue of the Lebesgue measure is defined as an additive function on
some ring of subsets of the space E which is translation-invariant. In this paper we present the analogue of the
Lebesgue measure which is σ -finite and locally finite but not Borel and not σ -additive measure (see [10–12]).
In the papers [1, 16, 17] the analogue of the Lebesgue measure is considered as the measure which is Borel and
σ -additive but not σ -finite and not locally finite.

We study invariant measures on a real separable Hilbert space E, which are invariant with respect to any shift.
In this article finite-additive analogues of the Lebesgue measure are constructed. The non-negative finite-additive
translation-invariant measure λ is defined on the special ring R of subsets from a space E in the work [10]. The
ring R contains all infinite-dimensional rectangles whose products of side lengths are absolutely convergent.

Now we describe some class of translation-invariant measures on separable Hilbert space E any of each is
the restriction of measure λ from the work [10] on a ring RE depending on the chois of an orthonormal basis
E = {e j} in te space E. Let S be a set of orthonormal bases in the space E. Firstly we describe a class of
measures on the space E which are invariant with respect to the shift on any vector of this space.
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Let us introduce the following family of the elementary sets. Rectangle in the real separable Hilbert space
E is the set Π⊂ E such that there is an orthonormal basis {e j} ≡ E in E and there is an elements a,b ∈ l∞ such
that

Π = {x ∈ E : (x,e j) ∈ [a j,b j) ∀ j ∈ N}. (1)

The rectangle (1) is noted by the symbol ΠE ,a,b.
The rectangle (1) is called measurable if it either empty set, or the following condition holds

∞

∑
j=1

max{0, ln(b j−a j)}<+∞. (2)

Let λ (Π) = 0 if Π =�, and let

λ (ΠE ,a,b) = exp

(
∞

∑
j=1

ln(b j−a j)

)
(3)

for any nonempty measurable rectangle ΠE ,a,b.
For any orthonormal basis F = { fk} of the space E the symbol K(F ) note the set of measurable rectan-

gles with the edges collinear to the vectors of ONB F . Let the symbol rF notes the minimal ring of subsets
containing the set of measurable rectangles K(F ).

Theorem 1. [11] For any orthonormal basis F = { fk} of the space E there exists the unique measure λF :
rF → [0,+∞) such that the equality (3) holds for any rectangle ΠF ,a,b ∈KF . The measure λF has the unique
completion onto the ring RF which is completion of the ring rF by measure λF .

Note 2. Here the ring RF consists on the sets A ⊂ E such that λF (A) = λF (A) ∈ R where λF (A) =
inf

B∈rF ,B⊃A
λF (A), λF (A) = sup

B∈rF ,B⊂A
λF (A) are external and inner measure of a set A with respect to the measure

λF .

Note 3. Note that there are translation-invariant measures on the space E of another type which is countable
additive but not σ -finite (see [17]). There are measures on infinite dimensional topological vector spaces which
are translation-invariant with respect to only some subspace of acceptable vectors (see [14]).

2.1 Quadratically integrable functions

Now we define space of quadratically integrable functions with respect to λE . Since we will use it very
often, we define it concisely HE = L2(E,RE ,λE ,C).

Let S (E,RE ,C) be the linear space hull over field C of indicator functions of the sets from the ring
RE . Let βE be the sesquilinear form on the space S (E,RE ,C) which is defined by the following con-
ditions: βE (χA,χB) = λE (A

⋂
B) for any sets A,B ∈ KE ; for any functions u,v ∈ S (E,RE ,C) such that

u =
n
∑
j=1

c jχA j , v =
m
∑

k=1
bkχBk the value βE (u,v) is given by the equality

βE (u,v)≡ (u,v)H (E) =

(
n

∑
j=1

c jχA j ,
m

∑
k=1

bkχBk

)
=

m

∑
k=1

n

∑
j=1

b̄kc j(χA j ,χBk). (1)

This sesquilinear form on the space S (E,RE ,C) is Hermitian and nonnegative.
The function u ∈S (E,RE ,C) is called equivalent to the function u ∈S (E,RE ,C) iff βE (u−v,u−v) = 0.

The linear space S2(E,RE ,λE ,C) of the equivalence classes of functions of the space S (E,RE ,C) endowing
with the sesquilnear form βE is the pre-Hilbert space. The Hilbert space L2(E,RE ,λE ,C) ≡HE is defined as
the completion of the space S2(E,RE ,λE ,C).
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Thus for any ONB E in the space E there are the ring of subsets RE of λE -measurable sets, the measure
λE : RE → [0,+∞) and the Hilbert space HE of complex valued λE -measurable square integrable functions
on the space E. Since the pre-Hilbert space S2(E,RE ,λE ,C) of a simple functions is dense linear manifold in
the space HE then the Hibert space HE is the space of continuous linear functionals on the pre-Hilbert space
S2(E,RE ,λE ,C).

Lemma 4. [10] The space HE is not separable.

2.2 The products of the spaces with finite additive measures

Let E = {e1, e2, ...} be an ONB in the space E. Let E1 be the Hilbert space with the ONB E1 = {e2, e3, ...}.
Then E = R⊕E1, E 3 x = (x1,ξ ) ∈ R⊕E1, where x1 ∈ R; ξ ∈ E1.

Let J be the isomorphism of the Hilbert space E onto the Hilbert space E1 such that E1 = J (E ). Let
λE be a complete translation invariant measure on the space E such that the measure λE is defined on the ring
RE by the theorem 1. Let RE1 = J (RE ) and λE1 is the measure on the space (E1,RE1) such that λE1(A) =
λE (J

−1(A)) ∀ A ∈RE1 .
Let lR be the Jordan measure on the real line R. Let r(R) be a ring of measurable by Jordan subsets of

real line R. Remind that KE and KE1 are the collections of measurable rectangles in the spaces E and E1 whose
edges are collinear to the vectors of ONB E and E1 respectively; rE and rE1 are the minimal rings containing the
collections of sets KE and KE1 respectively.

We will use the following notations Π = Π′×Π′′ ⊂ R×E1 where Π′ the finite segment of real line and
Π,Π′′ are the measurable rectangles in the spaces E,E1 respectively.

Lemma 5. ( [2], lemma 3.3) The inner measure of the set X ⊂ E is defined by the equality

λE (X) = sup
n⋃

k=1
Qk⊆X , Qk∈KE

λE

(
n⋃

k=1

Qk

)

where supremum is defind over the set of finite union of measurable rectangles but not on the hole ring rE .

Lemma 6. ( [2], lemma 3.4). Let A = g×Π, where Π ∈KE1 and λE1(Π) 6= 0. Then A ∈RE iff g ∈ r(R). In
this case the following equality λE (A) = lR(g)λE1(Π) holds.

The collection KE of measurable rectangles is the part of the following collection of sets {A0×A1, A0 ∈
r(R),A1 ∈ RE1}; the last collection of sets is the part of the ring RE . Since the ring rE is the minimal ring
containing the collection of sets KE and the ring RE is the completion of the ring rE by the measure λE ,
then the ring RE is the comletion by measure λE of the minimal ring, containing the collection of the sets
{A0×A1, A0 ∈ r(R),A1 ∈RE1}. Hence the following statement holds.

Lemma 7. The space with finite additive measure (E,rE ,λE ) is the prodict of the spaces with finite additive
measures (R,r(R), lR) and (E1,rE1 ,λE1)

Proof. According to the lemma 1 [5] (page 222) the space with finite additive measure (E,rE ,λE ) is the
product of the spaces with the finite additive measures (R,r(R), lR) and (E1,rE1 ,λE1). In fact, since the rings
RE and RE1 is obtained by using of completions by measures λE and λE1 procedure from the rings rE and
rE1 respectively then the measure λE be a unique finite additive measure which is defined on the ring RE and
satisfies the conditions λE (A0×A1) = lR(A0)λE1(A1) ∀ A0 ∈ r(R),A1 ∈RE1 .

Definition 1. A tensor product of the finite additive measures µ = µ1⊗ µ2 on the space X = X1×X2 is the
measure µ on the space X which the completion of the measure µ1× µ2. Here µ1× µ2 is the measure which
satisfies following two conditions:

1) it is defined on the minimal ring containing the collection of sets {A1×A2, A1 ∈ R1, A2 ∈ R2},
2) it satisfies the equality µ1×µ2(A1×A2) = µ1(A1)µ2(A2) ∀ A1 ∈ R1, A2 ∈ R2.
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Lemma 8. The following equality λE = lR⊗λE1 holds in the sense of definition 1.

Proof. In fact, the procedures of definition of the measure λE and the measure lR⊗ λE1 have the following
common constructions.

The definition the measure λE consists of three parts:
1. The function of a set is defined firstly on the collection of measurable rectangles KE ;
2. the function KE →R is extended onto the measure λ on the minimal ring rE containing the collection of

sets KE ;
3. the measure λ : rE → R is extended onto the ring RE which is completion of the ring rE by measure λ .
In the case of the measure lR⊗λE1 the collection of a sets {A1×A2 | A1 ∈ r(R),A2 ∈KE1} is used instead

of the collection KE on the first step. According to definition the equality lR⊗ λE1(I1×Π1) = λE (I1×Π1)
holds for any measurable rectangle I1×Π1 where I1 ∈ r(R), Π1 ∈KE1 . Therefore the inequalities λE (A) ≤
lR⊗λE1(A)≤ lR⊗λE1(A)≤ λE (A) hold for any set A⊂ E. Hence if a set A⊂ E is measurable with respect to
the measure λE then it is measurable with respect measure lR⊗λE1 and the the extensions of the measures λE

and lR⊗λE1 coincides on the ring RE .
On the other hand any set of type {A1×A2 | A1 ∈ r(R),A2 ∈KE1} belongs to the ring RE and in this case

the equality λE (A1×A2) = (lR⊗λE1)(A1×A2) holds. Since the measure λE : RE → R is complete then the
continuation of the function of a set (lR⊗λE1) : {A1×A2 | A1 ∈ r(R),A2 ∈KE1}→R by means of continuation
on the minimal ring (steps 2)) and completion (step 3)) coincides with the measure λE .

Lemma 9. The linear space span({χΠ, Π ∈KE }) is dense in the Hilbert space L2(E,RE ,λE ,C).

Proof. In fact, according to definition the Hilbert space L2(E,RE ,λE ,C) is the closure of the linear space
span({χA, A ∈RE }) endowed with the norm of the space L2(E,RE ,λE ,C). Since the ring RE is the completion
of the ring rE by the measure λE then the following equality L2(E,RE ,λE ,C) = span({χA, A ∈ rE }) holds. Note

that any set A ∈ rE is the finite union of disjoint sets A =
N⋃

k=1
Bk where Bk is the complement of a measurable

rectangle to finite union of measurable rectangles: ∀ k ∈ 1,N Bk = Πk,0\
mk⋃
j=1

Πk, j, Πk, i ∈KE ∀ i ∈ 0,mk. So,

χA ∈ span({χΠ, Π ∈KE }) for any A ∈ rE . Consequently, L2(E,RE ,λE ,C) = span({χΠ, Π ∈KE }).

Theorem 10. Morphism I mapping element of L2(R)⊗ L2(E1,RE1 ,λE1 ,C), which is limit of fundamental
sequence fk⊗vk into limit of sequence fk⊗vk in space L2(E,RE ,λE ,C) provides us with canonical isomorphism
between these two space.

Proof. Space L2(E,RE ,λE ,C) according to lemma 9 is a completion of span({χA, A ∈KE }) with respect to
norm ‖ · ‖L2(E,RE ,λE ,C), defined by sesquilinear form βE , see (1). So, L2(E,RE ,λE ,C) is completion of the
space span({χA0×A1 , A0 ∈KR, A1 ∈KE1}) with respect to norm ‖ · ‖L2(E,RE ,λE ,C), defined by sesquilinear form
βE . (Here we define by KR a set of all bounded intervals of R).

Space L2(R)⊗L2(E1,RE1 ,λE1 ,C) is completion of linear span L of elements f ⊗ v, where f ∈ L2(R), v ∈
L2(E1,RE1 ,λE1 ,C) with respect to norm ‖ · ‖⊗, defined by sesquilinear form β⊗ on L with restriction β⊗( f1⊗
v1, f2⊗ v2) = ( f1, f2)L2(R)(v1,v2)L2(E1,RE1 ,λE1 ,C)

. Note that in space L2(R) linear span L0 of set of characteristic
functions from KR is dense linear submanifold, and in space L2(E1,RE1 ,λE1 ,C) according to lemma 9 linear
span L1 of set of characteristic functions of set from KE1 is also a dense linear submanifold. That’s why space
L2(R)⊗ L2(E1,RE1 ,λE1 ,C) is exactly a comletion of linear span span{χA0 ⊗ χA1 , A0 ∈ KR, A1 ∈ KE1} with
respect to norm ‖ · ‖⊗.

Since for any interval ∆ ∈ KR and any measurable rectangle Π′ ∈ KE1 holds ‖χ∆ ⊗ χΠ′‖⊗ =
‖χΠ‖L2(E,RE ,λE ,C), where Π = ∆×Π′, then for any sets A0 ∈KR, A1 ∈KE1 holds

‖χA0⊗χA1‖⊗ = ‖χA0×A1‖L2(E,RE ,λE ,C). (2)
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Since linear span span({χA0×A1 , A0 ∈KR, A1 ∈KE1}) is dense in space L2(E,RE ,λE ,C), and linear span
span({χA0 ⊗ χA1 , A0 ∈ KR, A1 ∈ KE1}) is dense in space L2(R)⊗ L2(E1,RE1 ,λE1 ,C), then (dee equation 2)
spaces L2(E,RE ,λE ,C) and L2(R)⊗L2(E1,RE1λE1 ,C) are isometrically isomorphic and
L2(E,RE ,λE ,C) = I (L2(R)⊗L2(E1,RE1λE1 ,C)).

2.3 Partial Fourier transforms

. Fourier transform of the the space L2(R) is unitary mapping of the space L2(R) into itself. Therefore
the partial Fourier transform F1 with respect to the first coordinate is defined on the space L2(E,RE ,λE ,C) =
L2(R)⊗L2(E1,RE1 ,λE1 ,C). The partial Fourier transform F1 is defined on the linear hull of the elements of
type u1(x1)u2(ξ ), u1 ∈ L2(R), u2 ∈ L2(E1,RE1 ,λE1 ,C) by the equality

F1

(
n

∑
k=1

u1,ku2,k

)
=

n

∑
k=1

û1,ku2,

where û1,k ∈ L2(R) is Fourier transform of the function u1,k ∈ L2(R). Since the linear hull of the elements of
type u1(x1)u2(ξ ), u1 ∈ L2(R), u2 ∈ L2(E1,RE1 ,λE1 ,C) is dense in the space L2(E,RE ,λE ,C) then the partial
Fourier transform F1 has the unique continuation up to the unitary transform of the space L2(E,RE ,λE ,C) into
itself.

Analogously, partial Fourier transform Fn with respect to first n coordinates is defined on the space
L2(E,RE ,λE ,C). According to the properties of Fourier transform of the space L2(Rn) with some n ∈ N
the following statement holds: partial Fourier transform of the space L2(E,RE ,λE ,C) with respect to first n
coordinates is unitary mapping of the space L2(E,RE ,λE ,C) into itself for any n ∈ N.

Partial Fourier transform will useful in the studying of the operators of multiplication on coordinate and
momentum operator with respect to direction of a vector e j of the basis E . It also be used further in the studying
of generators of diffusion semigroups and its fraction powers.

3 Sobolev spaces and spaces of smooth functions

3.1 Averaging of random shifts and space of smooth functions

Let D ∈ B(E) be a nonnegative trace class operator with the orthonormal basis E of eigenvectors. Any
operator D of the above class defines the centered countable additive Gaussian measure νD on the space E such
that the measure νD has the covariance operator D and zero mean value.

Shift operator on the vector h ∈ E is defined on the space HE = L2(E,RE .λE ,C) by the equality

Shu(x) = u(x−h).

It is obvious that for any h ∈ H operator Sh belongs to the Banach space B(HE ) of bounded linear operators in
the space HE endowed with the operator norm; moreover Sh is the unitary operator in the space HE . Let h be
a random vector of the space E whose distribution is given by the measure ν . Then the mean value U ∈ B(HE )
of random shift operator Sh is given by the Pettis integralˆ

E

Shdν(h) = U ⇔ (U f ,g) =
ˆ

E

(Sh f ,g)dν(h) ∀ f ,g ∈HE .

According to the paper [12] (see also [15]) the following statement holds.

Theorem 11. Let D∈ B(E) be a nonnegative trace class operator with the orthonormal basis E of eigenvectors.
Then one-parametric family of operators

Ut =

ˆ

E

ShdνtD(h), t ≥ 0,
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is a one-parametric semigroup of self-adjoint contractions in the space HE . The semigroup Ut , t ≥ 0, is strong
continuous in the space HE if and only if D

1
2 is trace class operator.

Definition 2. A function u′j ∈HE is called the derivative of the function u ∈HE in the direction of a unite
vector e j if the following equality holds lim

s→0
‖1

s (Sse j u−u)−u′j‖HE
= 0.

Lemma 12. [see [11], lemmas 7.1, 7.2]. Let {e j} ≡ E be the orthonormal basis of eigenvectors of positive
trace class operator D. If νD be a probability Gaussian measure on the space E with covariance operator D and
UD(t) =

´
E

S√thdνD(h), t ≥ 0, u ∈HE then for any l ∈ N there is the number cl > 0 such that for any u ∈HE ,

j ∈ N, t > 0 there is the derivative of the power l ∂ l
jUD(t)u ∈HE and the following estimates take place

‖∂ l
jUD(t)u‖HE

≤ cl

(
√

td j)l
‖u‖HE

. (3)

Let D be a positive trace class operator in the space E. Let C∞
D(E) be a linear hull of the following system

of elements {UD(t)u, t > 0, u ∈HE }. The linear manifold C∞
D(E) is called the space of smooth functions

according to lemma 12.

3.2 Sobolev spaces and embedding theorem

For any a > 0 the symbol W 1
2,Da(E) notes the linear space of elements u of the space HE such that the

following two condition hold
1) for any j ∈ N there is the derivative u j ≡ ∂

∂x j
u ∈HE with respect to the direction of eigenvector e j of

operator D;

2)
n

∑
j=1

da
j ‖u j‖2

HE
<+∞. (4)

The space W 1
2,Da(E) endowed with the norm ‖u‖W 1

2,Da (E) = (‖u‖2
HE

+
n
∑
j=1

da
j ‖u j‖2

HE
)

1
2 is the Hilbert space

which is continuously embedded into the space HE (see [3, 11]).
For any numbers a > 0 and any l ∈ N the symbol W l

2,Da(E) notes the linear space of elements u of the space
HE such that the following two conditions hold:

1) for any j ∈ N there is the l-order derivative ∂ 2

∂el
j
u ∈HE ;

2)
n

∑
j=1

da
j

∥∥∥∥∥ ∂ l

∂el
j
u

∥∥∥∥∥
2

HE

<+∞. (5)

Analogously, the space W l
2,Da(E) endowed with the norm

‖u‖W l
2,Da (E) = (‖u‖2

HE
+

n

∑
j=1

da
j ‖

∂ l

∂el
j
u‖2

HE
)

1
2

is the Hilbert space which is continuously embedded into the space HE (see [3, 11]).

Theorem 13. [see [11], lemmas 7.1, 7.2]. Let u ∈HE . Let D be a positive trace class operator in the space E
such that D

1
2 is the trace class operator. Then for any t > 0 the inclusion U

D
1
2
(t)u ∈W 1

2,D(E) holds.

Theorem 14. Let D be a positive trace class operator in Hilbert space E such that Dγ is trace class operator
with some γ > 0. Let l ∈ N. If b≥ lα + γ with some α ∈ [γ,+∞) then C∞

Dα (E)⊂W l
2,Db(E).

If, moreover, α ≥ 2γ then the linear manifold C∞
Dα (E) is dense in the space W l

2,Db(E).

The proof of this theorem is published in the work [3].
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3.3 The traces of a functions on the codimension 1 hyperplane

Let E be an orthonormal basis in the space E. Let e1 ∈ E and E1 = E \{e1}. Let E1 = (span(e1))
⊥ and

HE1 = L2(E1,R1,λE1 ,C). Let R(R) be a ring of Lebesgue integrable subsets of the space R with finite Lebesgue
measure. Let λL be the Lebesgue measure on the space R.

Then accordind to the theorem 10 HE = L2(R,R(R),λL,HE1)) where L2(R,R(R),λL,HE1)) is the space
of integrable in Bokhner sense with respect to Lebesgue measure λL mappings R→HE1 .

We define a linear space W 1
2 (R,R(R),λL,HE1) = {u ∈HE : ∂

∂e1
u ∈HE } endowed with the Sobolev norm

|u‖W 1
2 (R,R(R),λL,HE1 ))

= (‖u‖2
HE

+‖ ∂

∂e1
u‖2

HE
)

1
2 . (6)

According to the definition of partial Fourier transform

‖u‖2
W 1

2 (R,R(R),λL,HE1 )
=

ˆ

R

(1+ξ
2)‖û1(ξ )‖2

HE1
dξ

for any u ∈W 1
2 (R,R(R),λL,HE1) where û = F1(u). Hence the space W 1

2 (R,R(R),λL,HE1)) endoved with
the norm (6) is the Hilbert space.

Theorem 15. If u ∈W 1
2 (R,R(R),λL,HE1) then the equivalence class u contains the continuous function ũ ∈

C(R,HE1). Moreover, there is the constant C > 0 such that

‖ũ‖C(R,HE1 )
≤C‖u‖W 1

2 (R,R(R),λL,HE1 )
. (7)

Proof. In the case of separable space HE1 the proof of this theorem is given in the monograph [6]. In the case
under consideration the space HE1 is not separable. But according to the condition u ∈W 1

2 (R,R(R),λL,HE1)
there is the separable subspace of the space HE1 containing the values of the mapping u : R→HE1 . Therefore
the proof of the theorem 3.1 by [6] can be applied to the obtaining of the statement of theorem 15.

If u ∈W 1
2,D(E) then the function u can be considered as the function of the space W 1

2 (R,R(R),λL,HE1).
Therefore the function u ∈W 1

2,D(E) can be considered as the continuous maping ũ : R→HE1 according to
theorem 15. Hence we can use the following definition of the trace of function.

Definition 3. The trace of the function u ∈W 1
2,D(E) at the hyperplane x1 = t0, t0 ∈ R, is the value of function

ũ ∈C(R,HE1) at the point t0.

Corollary 16. If u∈W 1
2 (R,R(R),λL,HE1) then for any t0 ∈R the estimate ‖ũ(t0)‖HE1

≤C‖u‖W 1
2 (R,R(R),λL,HE1 )

holds.

Corollary 17. If u ∈W 1
2 (R,R(R),λL,HE1) and d

ds Sse1u = v ∈ L2(R,R(R),λL,HE1), then for any t1, t2 ∈R the
equality holds

u(t2)−u(t1) =

t2ˆ

t1

v(s)ds.

4 The analog of Gauss theorem for rectangle

Let E be the ONB of positive trace-class covariation operator D of Gaussian measure γ . Let Πa,b ∈K (E )
be a measurable rectangle. For any j ∈ N the equality E = R⊕E j where R = span(e j) and E j = (span(e j))

⊥.
Let E j = {e1, ...,e j−1,e j+1, ...}. Therefore the following equality Πa,b = [a j,b j)× Π̂â j,b̂ j

holds where Π̂â j,b̂ j
∈

K (E j) is the measurable rectangle in the space E j.
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Let u∈W 2
2,D(E). Then for any j ∈N and any a∈ R there is the trace u|x j=a ∈HE j of the function u according

to the theorem 3.4. Since for any j ∈ N the function ∂ ju has the derivative ∂ 2
j u ∈HE in the direction e j, then

according to the theorem 3.4 there is the trace (∂ ju)|x j=a ∈HE j .

Theorem 18. Let D be a positive trace class operator in Hilbert space E. Let u ∈W 2
2,D(E), let Πa,b ∈K (E ) be

a measurable rectangle. Then the equality
ˆ

Πa,b

∆DuφdλE =−
ˆ

Πa,b

(∇u,D∇φ)EdλE +

ˆ

∂Πa,b

(n,D∇u)φds, (8)

holds for any function φ ∈W 1
2,D(E). Here

ˆ

∂Πa,b

(n,D∇u)φds =
∞

∑
j=1

d j

ˆ

Π̂â j ,b̂ j

[(φ ∂ ju)|x j=b j − (φ ∂ ju)|x=a j ]dλE j . (9)

Proof. Since φ ∈W 1
2,D(E) then the condition φ |x j=a ∈HE| holds for any j ∈ N and any a ∈ R according to the

theorem 15, moreover

‖φx j=a‖HE j
≤C(‖φ‖2

L2(R,R(R),λL,HE j )
+‖∂ jφ‖2

L2(R,R(R),λL,HE j )
)

1
2

according to theorem 15 and corollary (16). Therefore

|
ˆ

Π̂â j ,b̂ j

[(φ ∂ ju)|x j=b− (φ ∂ ju)|x j=a]dλ j|= |(φ |x=b,∂ ju|x=b)HE j
− (φ |x=a,∂ ju|x=a)HE j

| ≤

≤ 2‖∂ ju‖C(R,HE j )
‖φ‖C(R,HE j )

for any j ∈ N. Hence the estimates

|
ˆ

Π̂â j ,b̂ j

[(φ ∂ ju)|x j=b− (φ ∂ ju)|x j=a]dλ j| ≤

≤ 2C2(‖φ‖2
HE

+‖∂ jφ‖2
HE

)
1
2 (‖∂ ju‖2

HE
+‖∂ 2

j u‖2
HE

)
1
2 ≤

≤C2(‖φ‖2
HE

+‖∂ jφ‖2
HE

+‖∂ ju‖2
HE

+‖∂ 2
j u‖2

HE
)

hold for any j ∈ N. Let us note that

∞

∑
j=1

d j(‖φ‖2
HE

+‖∂ jφ‖2
HE

) = (TrD−1)‖φ‖2
HE

+‖φ‖2
W 1

2,D(E)
.

Since partial Fourier transform with respect to coordinate x j is unitary operator in the space HE and accord-
ing to the inequality k2 ≤ 1+ k4, k ∈ R, we obtain

∞

∑
j=1

d j‖∂ ju‖2
HE
≤

∞

∑
j=1

d j(‖u‖2
HE

+‖∂ 2
j u‖2

HE
)

Hence
∞

∑
j=1

d j(‖∂ ju‖2
HE

+‖∂ 2
j u‖2

HE
)≤ 2‖u‖2

W 2
2,D(E)

+(TrD−2)‖u‖2
HE

.
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Therefore the series in the right hand side (9) converges.
Since

∂ j(φd j∂ ju) = d j∂ jφ∂ ju+d j∂
2
j uφ ,

then according to the corollary 17 the equality
ˆ

∂Πa,b

(n,e jd j∂ ju)φds =
ˆ

Πa,b

d j∂
2
j uφdλ +

ˆ

Πa,b

d j∂ ju∂ jφdλ . (10)

holds for any j ∈ N. As it shown above, under the summation of the equalities (10) by j ∈ N the series of
left hand side absolutely converges. The series of first components in right hand side absolutely converges by
definition of the space W 2

2,D(E). Hence the series in right hand side of (10) absolutely converges and the equality
(8) takes place.

5 Dirichlet problem for Poisson equation

Let us consider the unique rectangle Π0,1 ∈KE . Let symbol L2(Π0,1) notes the subspace of the space HE

with the support in the set Π0,1. Let us note that f = χΠ0,1 f for any f ∈ L2(Π0,1).
Let symbol Ẇ 1

2,D(Π0,1) notes the space of function W 1
2,D(E)

⋂
L2(Π0,1) with the support in the set Π0,1. It

should be note that for any u ∈ Ẇ 1
2,D(Π0,1) the following statement holds:

u|∂Π0,1 = 0; ∂xk u ∈ L2(Π0,1) ∀ k ∈ N.

We also introduce the space Ẇ 2
2,D(Π0,1) of functions u ∈ Ẇ 1

2,D(Π0,1) such that

∃g jk ∈ L2(Π0,1) : (D∂ku,∂ jφ) =−(g jk,φ) ∀ φ ∈ Ẇ 1
2,D(Π0,1), ∀ j,k ∈ N;

∞

∑
j=1
‖g j j‖2

HE
<+∞.

We pose the following problem. For a given function f ∈ L2(Π0,1) and a given number a≥ 0 we should find
a function u ∈ Ẇ 2

2,D(Π0,1) such that
∆Du = au+ f , (11)

u|∂Π0,1 = 0. (12)

To investigate the above problem we apply the variation approach (see [7]). At first we study the space
Ẇ 1

2,D(Π0,1).
Let us introduce the trapezoid-like function ψδ : R→ R which is given by the equalites ψδ (x) = 0, x ∈

(−∞,0]
⋃
[1,+∞); ψδ (x) = 1, x ∈ [δ ,1−δ ]; ψδ (x) = 1

δ
x, x ∈ (0,δ ); ψδ (x) =− 1

δ
(x−1), x ∈ (1−δ ,1) for any

δ ∈ (0, 1
2). Then ψδ ∈ Ẇ 1

2 ([0,1]), ‖ψδ‖L2([0,1]) ∈ [1−2δ ,1], ‖∂xψ‖L2([0,1]) =
√

2/δ .
Let D a the nonnegative trace-class operator such that D

1
2 is trace-class operator. Let {e j} be the ONB

of eigenvectors of the operator D and {d j} be the corresponding sequence of eigenvalues. For any sequence
{δk} : N→ (0, 1

2) the function Ψ{δ}(x) = Π∞
j=1ψδ j(x j) is defined.

Lemma 19. If {δk} :N→ (0, 1
2) and

∞

∑
j=1

δ j <+∞ then Ψ{δ} ∈HE and the estimates Π∞
k=1(1−2δk)≤‖Ψδ‖L2 ≤

1 hold.
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Proof. The inclusion Ψ{δ} ∈HE for the nonnegative function Ψ{δ} is equivalent to the condition

∀ ε > 0 ∃g,G ∈HE : g≤Ψ{δ} ≤ G and ‖G−g‖HE
< ε.

Let us define
Gn(x) = Π

n
k=1ψδk(xk)Π

∞
k=n+1χ[0,1](xk)

and gn(x) = Πn
k=1ψδk(xk)Π

∞
k=n+1χ[δk,1−δk](xk) for some n ∈ N. Then gn ≤ Ψ{δ} ≤ Gn and ‖Gn− gn‖H < 1−

exp(
∞

∑
k=n+1

ln(1−2δk)) for any n ∈ N. Since lim
n→∞

∞

∑
k=n+1

δk = 0 then lim
n→∞
‖Gn−gn‖H = 0. Therefore Ψ{δ} ∈H .

2

Let us note that 0 ≤ χΠδ ,1−δ
≤Ψδ ≤ χΠ0,1 . Hence λE (Πδ ,1−δ ) ≤ ‖Ψδ‖2

H ≤ λE (Π0,1). Therefore the state-
ments of the 19 are proved. 2

Note that λ (Πδ ,1−δ ) = exp(
∞

∑
k=1

ln(1−2δk)). Since δk ∈ (0, 1
2) for any k ∈ N then the series

∞

∑
k=1

ln(1−2δk)

converges if and only if the series
∞

∑
k=1

δk converges. In this case λ (Πδ ,1−δ )> 0. In the other case λ (Πδ ,1−δ ) = 0.

Lemma 20. The condition
∞

∑
k=1

dk
δk
<+∞ is necessary and sufficient to the inclusion Ψ{δ} ∈ Ẇ 1

2,D(Π0,1).

Proof. We should proof that ∂ jΨ{δ} ∈HE for any j ∈ N and the series

∞

∑
j=1

d j‖∂ jΨ{δ}‖2
HE

converges. Note that Ψ{δ}(x) = ψδ j(x j)Ψ{δ̂}(x̂), x ∈ E, for any j ∈ N where x̂ = {x1, ...,x j−1,x j+1, ...} and

δ̂ = {δ1, ...,δ j−1,δ j+1, ...}. Therefore for any j ∈ N the following equality holds

∂ jΨ{δ}(x) = ∂ jψδ j(x j)Ψ{δ̂}(x̂), x ∈ E.

Hence ∂ jΨ{δ} ∈HE for any j ∈ N and

‖∂ jΨ{δ}‖HE
= ‖∂ jψδ j‖L2(R)‖Ψ{δ̂}‖HE j

≤ (2/δ j)
1
2 .

Therefore the series
∞

∑
j=1

d j‖∂ jΨ{δ}‖2
H converges if and only if the series

∞

∑
j=1

d j
δ j

converges. 2

Note 21. Let D be a positive operator in the space E such that
√

D is trace class operator. Then there is

the sequence {δk} : N→ (0, 1
2) such that

∞

∑
j=1

δ j < +∞ and the condition
∞

∑
k=1

dk
δk

< +∞ satisfies. For example,

δk =
√

dk, k ∈ N.

Lemma 22. Let f ∈W 1
2,D(E). Let the sequence {δk} : N→ (0, 1

2) satisfies the condition
∞

∑
k=1

dk
δk

< +∞. Then

Ψ{δ} f ∈ Ẇ 1
2 (Π0,1).

Proof. In fact, ‖Ψ{δ} f‖HE
≤ ‖ f‖HE

according to Cauchy inequality and lemma 1. Since ∂ j(Ψ{δ} f ) =
∂ jΨ{δ}) f +Ψ{δ}∂ j f then

‖∂ j(Ψ{δ} f )‖2
HE
≤ 2sup

x∈E
|Ψ{δ}(x)|‖ f‖2

W 1
2,D

+
1
δ j
(

δ jˆ

0

+2

1ˆ

1−δ j

)

ˆ

Ê j

| f (x)|2dλE j(x̂ j)dx j ≤
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≤ 2‖ f‖2
W 1

2,D
+

2
δ j
‖ f‖2

HE
.

Therefore
∞

∑
j=1

d j‖∂ j(Ψ{δ} f )‖2
HE
≤ 2[Tr(D)‖ f‖2

W 1
2,D

+
∞

∑
j=1

d j

δ j
‖ f‖2

HE
].

Thus we obtain that Ψ{δ} f ∈W 1
2,D(E). Since (Ψ{δ} f )|∂Π0,1 = Ψ{δ}|∂Π0,1 f |∂Π0,1 then (Ψ{δ} f )|∂Π0,1 = 0 and

Ψ{δ} f ∈ Ẇ 1
2,D(E).

Lemma 23. Let f ∈W 1
2,D(E) and

∞

∑
k=1

dk
δk
<+∞. Then lim

ε→+0
‖ f −Ψε{δ} f‖L2(Π0,1) = 0.

Proof. In fact,

‖ f (1−Ψε{δ})‖2
L2(Π0,1)

=

ˆ

Π0,1

| f (x)|2(1−Ψε{δ})
2dλE ≤

ˆ

Π0,1\Πε{δ},1−ε{δ}

| f (x)|2dλE .

Since {δ} ∈ l1 then lim
ε→0

λE (Π0,1\Πε{δ},1−ε{δ}) = lim
ε→0

λE (Π0,1\Π0,1−2ε{δ}) = 0 according to the theorem ? in

[10]. Since f ∈H then for any σ > 0 there is the simple function g∈ S2(E,RE ,λE ,C) such that ‖ f −g‖H <σ .
Since the function g has the finite number of values then M = sup

x∈E
|g(x)| ∈ [0,+∞). Therefore

ˆ

Π0,1\Πε{δ},1−ε{δ}

| f (x)|2dλE ≤

‖ f −g‖2
HE

+

ˆ

Π0,1\Πε{δ},1−ε{δ}

|g(x)|2dλE ≤ ‖ f −g‖2
HE

+M2
λE (Π0,1\Πε{δ},1−ε{δ}).

Hence for any σ > 0 there is a number ε0 > 0 such that
´

Π0,1\Πε{δ},1−ε{δ}

| f (x)|2dλE ≤ 2σ for any ε ∈ (0,ε0).

Therefore lim
ε→+0

‖ f −Ψε{δ} f‖L2(Π0,1) = 0. 2

The consequence of the lemma 4 is the following statement.

Theorem 24. Let D be a nonnegative operator in the space E such that
√

D is trace class operator. Then the
set of functions

S1 = {Ψε{δ} f , f ∈ f ∈W 1
2,D(E), δ ∈ (0,

1
2
), {δ} :

∞

∑
k=1

dk

δk
<+∞}

is dense in the space L2(Π0,1).

Let a≥ 0 and f ∈ L2(Π0,1). Let the functional J f : Ẇ 1
2,D(Π0,1)→ R be defined by the equality

Ja, f (u) =
1
2

ˆ

Π0,1

[(∇ū,D∇u)E +a|u|2 + ū f +u f̄ ]dλ , u ∈W 1
2,D(Π0,1). (13)

Theorem 25. Let a≥ 0 and f ∈ L2(Π0,1). Let u ∈ Ẇ 2
2,D(Π0,1) be a stationary point of the functional Ja, f . Then

u is the solution of Dirichlet problem (11), (12).
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Proof. Let u ∈ Ẇ 2
2,D(Π0,1) be a stationary point of the functional (13). Then the function Ja, f (u+ tφ), t ∈ R

satisfies the equality d
dt Ja, f (u+ tφ) = 0 for any φ ∈ S1. Thereforeˆ

Π0,1

[(∇φ̄ ,D∇u)E +aφ̄u+ φ̄ f ]dλ +

ˆ

Π0,1

[(∇ū,D∇φ)E +aūφ + f̄ φ ]dλ = 0

for any φ ∈ S1. Hence
´

Π0,1

[φ̄(∆Du− f −au)]dλE = 0 for any φ ∈ S1 according to the theorem 24. Since the set

S1 is dense in the space H then the function u satisfies Poisson equation (11). Since u ∈ Ẇ 2
2,D(Π0,1) then the

equality (12) is satisfied. 2

Theorem 26. Let u ∈ Ẇ 2
2 (Π0,1) be the solution of Dirichlet problem (11), (12). Then it is the critical point of

the functional (13).

Proof. Let φ ∈ Ẇ 1
2,D(Π0,1). Then the function Ja, f (u+ tφ), t ∈ R, has the derivative

dJa, f (u+ tφ)
dt

|t=0 =

ˆ

Π0,1

[(∇φ̄ ,D∇u)E +aφ̄u+ φ̄ f ]dλ +

ˆ

Π0,1

[(∇ū,D∇φ)E +aūφ + f̄ φ ]dλ . (14)

Then according to the theorem 18

d
dt

Ja, f (u+ tφ)|t=0 =−
ˆ

Π0,1

[φ̄(∆Du−au− f )]dλ −
ˆ

Π0,1

[φ(∆Dū−aū− f̄ )]dλ .

Since u ∈ Ẇ 2
2 (Π0,1) be the soluion of Dirichlet problem (11), (12) then the equality d

dt Ja, f (u+ tφ)|t=0 = 0 holds
for any φ ∈ Ẇ 1

2,D(Π0,1) and the function u is the stationary point of the functional Ja, f . 2
The inequality ‖u‖H ≤ ‖u‖Ẇ 1

2
holds according to the definition of the space Ẇ 1

2 . Let f ∈ H. Then for any
u ∈ Ẇ 1

2 the inequality |( f ,u)| ≤ c‖u‖Ẇ 1
2

take place where c≤ ‖ f‖H . Then according to R theorem there is the
element v ∈ Ẇ 1

2 such that ( f ,u)H = (v,u)Ẇ 1
2
∀ u ∈ Ẇ 1

2 .
Let us endow the space Ẇ 1

2,D(Π0,1) with the equivalent norm

‖u‖Ẇ 1
2,D,a

= (a‖u‖2
HE

+
∞

∑
k=1

dk‖∂ku‖2
HE

)
1
2 (15)

for arbitrary a > 0. The space Ẇ 1
2,D(Π0,1) endowed with the equivalent norm (15) is noted by Ẇ 1

2,D,a(Π0,1). The
inequalities

1
1+a

‖u‖2
Ẇ 1

2,D,a
≤ ‖u‖2

Ẇ 1
2,D
≤ (1+

1
a
)‖u‖2

Ẇ 1
2,D,a

holds according to the definition of the space Ẇ 1
2,D(Π0,1). Therefore the space Ẇ 1

2,D,a(Π0,1) is the Hilbert space.

Theorem 27. Let a > 0 and f ∈ L2(Π0,1). Then the functional (13) has the unique point of the minimum in the
space Ẇ 1

2,D(Π0,1).

Proof. Let f ∈HE . Then for any u ∈ Ẇ 1
2,D,a(Π0,1) the inequality |( f ,u)| ≤ c‖u‖Ẇ 1

2,D,a
take place where c ≤

‖ f‖HE
. Then according to Riesz theorem for any a> 0 there is the element va ∈Ẇ 1

2,D,a(Π0,1) such that ( f ,u)H =

(v,u)Ẇ 1
2,D,a
∀ u ∈ Ẇ 1

2,D,a(Π0,1).

Therefore for any u ∈ Ẇ 1
2,D(E) the following equality holds

Ja, f (u) =
1
2
(u,u)Ẇ 1

2,D,a
− 1

2
(v,u)Ẇ 1

2,D,a
− 1

2
(u,v)Ẇ 1

2,D,a
=

1
2
(u− v,u− v)Ẇ 1

2,D,a
− 1

2
(v,v)Ẇ 1

2,D,a
.

Therefore the functional Ja, f has the unique point of the minimum in the space Ẇ 1
2,D which coincides with the

element v ∈ Ẇ 1
2,D,a. 2
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Definition 4. The function v∈ Ẇ 1
2,D(Π0,1) is called the generalized solution of the equation (11) with the Dirich-

let condition (12) if the equality

(v,φ)Ẇ 1
2,D,a(Π0,1)

+(a+ f ,φ)L2(Π0,1) = 0 (16)

satisfies for any φ ∈ Ẇ 1
2,D,a(Π0,1).

Theorem 28. Let a> 0 and f ∈ L2(Π0,1). Then the function u∈ Ẇ 1
2,D(Π0,1) is point of minimum of the functional

(13) if and only if it is the generalized solution of Dirichlet problem (11), (12).

Proof. If the function u ∈ Ẇ 1
2,D(Π0,1) is point of minimum of the functional (13) then d

dt Ja, f (u+ tφ)|t=0 = 0
for any φ ∈ Ẇ 1

2,D,a(Π0,1). Hence the equality (16) satisfies for any φ ∈ Ẇ 1
2,D,a(Π0,1) according to the expression

(14). Therefore u is is the generalized solution of Dirichlet problem (11), (12).
Let u is is the generalized solution of Dirichlet problem (11), (12). Then the right hand side of the expression

(14) is equal to zero. Therefore for any φ ∈ Ẇ 1
2,D,a(Π0,1) the folowing equality holds

Ja, f (u+φ)− J(u) =
1
2
‖φ‖2

Ẇ 1
2,D,a(Π0,1)

.

Hence the function u ∈ Ẇ 1
2,D(Π0,1) is point of strong minimum of the functional (13).2

6 Conclusions

In this paper we show that the theory of Sobolev spaces and its application to partial differential equation can
be constructed for the function on domains in infinite dimension Hilbert space endowing with finite additive shift
invariant measures. We study the class of finite additive shift invariant measures on the real separable Hilbert
space E. For any choice of such a measure we consider the Hilbert space H of complex-valued functions which
are square-integrable with respect to this measure. Some analogs of Sobolev spaces of functions on the space
E are introduced. The analogue of Gauss theorem is obtained for the simplest domains such as the rectangle in
the space E. The correctness of the problem for Poisson equation in the rectangle with homogeneous Dirichlet
condition is obtained and the variational approach of the solving of this problem is constructed.
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