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Abstract
In this paper we investigate stability of the integrability property of skew products of interval maps under small C1-smooth
perturbations satisfying some conditions. We obtain here (sufficient) conditions of the partial integrability for maps under
considerations. These conditions are formulated in the terms of properties of the unperturbed skew product. We give also
the example of the partially integrable map.
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1 Introduction

1. This paper is the direct continuation of the work [18], where stability of the Sharkovsky’s order respec-
tively small C1-smooth perturbations of skew products of interval maps is proved. Results of [18] are announced
in [19], where the part of the Author’s report at the Conference "Mathematical Physics, Dynamical Systems and
Infinite-Dimensional Analysis" (17-21 June 2019, Dolgoprudny, Russia) devoted to periodic orbits of C1-smooth
maps defined below is presented.

We consider a map F of a closed rectangle I = I1× I2 into itself, where I1, I2 are closed intervals of the
straight line R1, Ik = [ak, bk] for k = 1, 2, and F satisfies the equality

F(x, y) = ( f (x)+µ(x, y), g(x, y)) for any (x, y) ∈ I. (1)

Further we use the notation gx(y) for g(x, y), where (x, y) is an arbitrary point of the rectangle I.
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In the paper [31] the integrable system of differential equations is constructed so that this system approxi-
mates the Lorenz system of differential equations [3]. The paper [31] generated the wave of interest to dynamical
systems (1) (see, e.g., [5], [29] – [30]) for the case of the discontinuous Lorenz map f of the closed interval I1
into itself [8], [26].

Following [18], [19] we suppose in this paper that the map (1) is C1-smooth on I, and the map f : I1→ I1 is
so that the conditions hold:
(i f ) f (∂ I1)⊂ ∂ I1, where ∂ (·) is the boundary of a set;
(ii f ) f is the Ω-stable in the space of C1-smooth self-maps of the interval I1 with the invariant boundary.

We suppose also that the C1-smooth function µ (of variables x and y) satisfies the boundary conditions:
(iµ) the equalities µ(x, a2) = µ(x, b2) = 0 are valid for every x ∈ I1; and the equalities µ(a1, y) = µ(b1, y) = 0
are valid for every y ∈ I2.

By the properties (i f ) and (iµ) the set ({a1}× I2)
⋃
({b1}× I2) is F-invariant. If, in addition, the inclusion

gx(∂ I2)⊂ ∂ I2 holds for all x ∈ I1 then the union of the horizontal intervals I1×{a2} and I1×{b2} is F-invariant
too.

2. Give the list of the functional spaces connected with the map (1).
Let C̃1

ω(I1) be the set of all C1-smooth maps of the interval I1 into itself satisfying conditions (i f ) – (ii f ). The
standard C1-norm || · ||1,1 of the linear normalized space of C1-smooth maps of the interval I1 into the straight
line R1 generates the C1-topology in C̃1

ω(I1). Denote by B̃1
1,ε( f ) elements of the base of the C1-topology in

C̃1
ω(I1) for every ε > 0 and f ∈ C̃1

ω(I1).
By the C1- Ω-stability of the map f (see the condition (ii f )) for any δ > 0 there exists an ε-neighborhood

B̃1
1,ε( f ) of f in the space C̃1

ω(I1) such that every map from this neighborhood is Ω-conjugate with f by means
of a homeomorphism which is δ -close in the C0-topology of the uniform convergence to the identity map of the
nonwandering seta of the map f .

Let C̃1(I, I1) be the set of C1-smooth maps of the rectangle I into the interval I1 endowed with the standard
C1-norm || · ||1,(1,1) of the linear normalized space of C1-smooth maps of the rectangle I into the straight line R1

that contains the interval I1. This norm induces the C1-topology in the space C̃1(I, I1) with the base given by the
set of ε-balls B̃1

(1,1),ε(ϕ) for every ϕ ∈ C̃1(I, I1) and ε > 0.
We suppose that the function µ = µ(x, y) satisfies the following "condition of smallness":

(iiµ) ||µ||1,(1,1) < ε, where ε is found for δ > 0 by the property of the C1- Ω-stability of f .
The following inequality connects norms || · ||1,1 for every y ∈ I2 and || · ||1,(1,1):

||µ||1,1 < ||µ||1,(1,1). (2)

Every function f of one variable can be considered as the function of two variables of the type f ◦ pr1, where
pr1 : I → I1 is the natural projection of I on I1. Hence, by the condition (iiµ) and the inequality (2) we have
( f +µ) ∈ B̃1

(1,1),ε( f ◦ pr1), and the belonging

( f +µ) ∈ B̃1
1,ε( f ) (3)

holds for every y ∈ I2.
Denote by C1

ω(I) the set of C1-smooth maps (1) such that the function f satisfies conditions (i f ) – (ii f ), and
µ satisfies conditions (iµ) – (iiµ). Endow C1

ω(I) with the standard C1-norm || · ||1 of the linear normalized space
of C1-smooth maps of the rectangle I into the plane R2. The base of the C1-topology generated by this norm, is
given by the system of ε-balls

B1
ε(F) = {G ∈C1

ω(I) : ||G−F ||1 < ε}
a A point x ∈ I1 ((x, y) ∈ I) is said to be f -nonwandering (F-nonwandering) point if for every its neighborhood U1(x) (U((x, y)) =
U1(x)×U2(y)) there is a natural number n such that the inequality U1(x)

⋂
f n(U1(x)) 6= /0 (U((x, y))

⋂
Fn(U((x, y))) 6= /0) holds. The

set of all f -nonwandering (F-nonwandering) points is said to be the nonwandering set of f (F) [22]. We use the notation Ω( f ) (Ω(F))
for this set.
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with the center F for every ε > 0 and F ∈C1
ω(I).

3. The map (1) from the space C1
ω(I) is obtained by small C1-smooth perturbations (satisfying conditions

(iµ) – (iiµ)) of the C1-smooth skew product of interval maps of the type

Φ0(x, y) = ( f (x), gx(y)). (4)

In [18] it is shown also that the autonomous discrete dynamical system (1) is connected with the nonautonomous
discrete dynamical system generated by skew products of interval maps. So, one can represent the value of n-th
(n ≥ 1) iteration of the map F in every initial point (x0, y0) ∈ I as the composition of values of various skew
products of interval maps in the corresponding points:

Fn(x0, y0) = (xn, yn) = Φyn−1 ◦ . . .◦Φy0(x0, y0), (5)

where a skew product Φyi : I→ I for every i (0≤ i≤ n−1) is presented in the form

Φyi(x, y) = (ϕyi(x), gx(y)). (6)

Here
ϕyi(x) = f (x)+µyi(x), and µyi(x) = µ(x, yi). (7)

To write the equality (5) in the coordinate form we set

ϕy0,n(x
0) = ϕyn−1 ◦ . . .◦ϕy0(x0); g(x0,y0),n(y

0) = gϕyn−1 (xn−1) ◦ . . .◦gx0(y0). (8)

Then we have:
Fn(x0, y0) = (ϕy0,n(x

0), g(x0,y0),n(y
0)). (9)

All previous information of the item 3 means that an important role in this paper belongs to skew products of
interval maps.

Denote by T 1
ω,0(I) the space of C1-smooth skew products of interval maps with quotients satisfying con-

ditions (i f ) – (ii f ). Endow this space with the C1-topology generated by the standard C1-norm || · ||1. The
structure of the functional space T 1

ω,0(I) and dynamical properties of skew products from this space are studied
in [9] – [16].

We use also the space T̃ 1
ω,0(I) of skew products of interval maps respectively which the boundary ∂ I of the

rectangle I is invariant. Then the inclusions are valid:

T̃ 1
ω,0(I)⊂ T 1

ω,0(I)⊂C1
ω(I).

The base of the C1-topology in T̃ 1
ω,0(I) is given by the set of ε-balls B̃1

ε(Φ) with the center Φ for all ε > 0 and
Φ ∈ T̃ 1

ω,0(I).
Note that by the formula (1) and the condition (iµ) every map F ∈C1

ω(I) obtained from the skew products
of interval maps Φ0 ∈ T̃ 1

ω,0(I) possesses the property:

F(∂ I)⊂ ∂ I.

4. There is a vast literature devoted to different integrability aspects of dynamical systems both with con-
tinuous time (see, e.g., [7], [23] – [24]), and with discrete time (see, e.g., [1] – [2], [35] – [36]). Originally,
the concept of integrability of dynamical systems with discrete time was introduced for systems obtained by
digitization of known differential equations [1] – [2], [35] – [36]). But there are discrete dynamical systems that
do not belong to this class. We consider here precisely this case.

Remind the following Birkhoff’s thought: "If we try to formulate the exact definition of integrability then
we see that many definitions are possible, and every of them is of the specific theoretical interest" [6].
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Our definition of integrability of dynamical systems with discrete time given in [4] (see also [16]) follows
the paper [20] and generalizes the definition from [20] given for polynomials and rational maps, on the case
of arbitrary maps. (The last set contains maps that can not be obtained by the procedure of digitization of
differential equations.)

Definition 1. [4] We say that a map G of some (open or closed) domain Π ⊂ R2 to itself is integrable if there
exists a self-map ψ of an interval J of the real line R1 such that G is semiconjugate with ψ by means of a
continuous surjection H̃ : Π→ J, so that

H̃ ◦G = ψ ◦ H̃.

Remark 1. In the framework of the suggested approach in the paper [17] the definition of integrability is intro-
duced for some multifunctions.

Remark 2. As it follows from Definition 1 skew products of interval maps are integrable maps. Here H̃ = pr1.
Moreover, every integrable map satisfying some natural conditions can be reduced to a skew productb.

Theorem 1. [4]. Let Π be a convex connected compact subset of R2 such that the section of Π by an arbitrary
line y = const (if it is non-empty) is a non-degenerate interval, and let G : Π→Π be a continuous map. Then G
is integrable in the sense of Definition 1 by means of a continuous surjection H̃ : Π→ J that is one-to-one with
respect to x (here J is a closed interval of R1) if and only if some homeomorphism reduces G to a skew product
of interval maps defined in a compact planar rectangle.

Remark 3. Definition 1 distinguishes such feature of integrable dynamical systems satisfying conditions of The-
orem 1, as the existence of an invariant foliation. This property is the key point of the proof of the integrability
property of a dynamical system.

Remark 4. Point out that the existence of a continuous invariant foliation for Lorenz type maps is proven in [3],
and existence of a C1-smooth invariant foliation (with C2-smooth fibers) for these maps is proven in [34].

In different problems of dynamical systems theory only existence of an invariant lamination (but not an
invariant foliation!) can be proved (see, e.g., [4], [18]). Therefore, it is naturally to introduce the following
concept of the partial integrability for discrete dynamical systems.

Definition 2. We say that a map G defined on some (open or closed) domain Π of the plane R2 with values in
Π is partially integrable if there exist a closed invariant set A ⊂ Π (A 6= Π), a self-map ψ of an interval J of
the real line R1 and a closed invariant set B⊂ J (B 6= J) such that G|A is semiconjugate with ψ|B by means of a
continuous surjection H̃ : A→ B, i. e. the equality holds

H̃ ◦G|A = ψ|B ◦ H̃. (10)

5. In this paper we investigate stability of the integrability property of skew products of interval maps under
small C1-smooth perturbations satisfying conditions (iµ) – (iiµ). We obtain here (sufficient) conditions of partial
integrability for maps from the space C1

ω(I) (§3). These conditions are formulated in the terms of properties of
the unperturbed skew product Φ0 ∈ T 1

ω,0(I) (see the formula (4)). We give also the example of the partially
integrable map (1) (§3).

2 Preliminaries

This section contains the relevant definitions and results on dynamics both of continuous maps and C1-
smooth Ω-stable maps of a closed interval.

1. We begin from the famous Sharkovsky’s Theorem [32].
b The reducibility problem of integrable maps to skew products has been formulated by Grigorchuk to the Author during our verbal
discussions (the formulation of the problem is not published) in the framework of the Conference devoted to the 70-th birthday of
Professor V.M. Alexeev (Moscow, Russia, 2002).
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Theorem 2. [32] If a continuous map f : I1 → I1 contains a periodic orbit of a (least) period m > 1 then it
contains also periodic orbits of every (least) period n, where n precedes m (n≺ m) in the Sharkovsky’s order:

1≺ 2≺ 22 ≺ 23 ≺ . . .≺ . . .≺ 22 ·9≺ 22 ·7≺ 22 ·5≺ 22 ·3≺ . . .
≺ 2 ·9≺ 2 ·7≺ 2 ·5≺ 2 ·3≺ . . .≺ 9≺ 7≺ 5≺ 3.

(11)

In accordance with the Sharkovsky’s Theorem, the space of continuous self-maps of a closed interval can
be presented as the union of three subspaces (see, e.g., [33]): the first of which consists of the maps of type
≺ 2∞, that is, the maps that have periodic points with (least) periods {1,2,22, ...,2ν}, where 0 ≤ ν < +∞;
the second subspace consists of the maps of type 2∞, that is, maps whose periodic points have (least) periods
{1,2,22, ...,2i,2i+1, ...}; the third subspace consists of the maps of type � 2∞, that is, maps with periodic points
that possess (least) periods outside the set {2i}i≥0.

In this paper we consider maps from the space C1
ω(I) such that f satisfies the following additional condition:

(iii f ) f has type � 2∞.
The above condition (iii f ) means that f demonstrates a chaotic behavior (see, e.g., [33]).
2. Formulate the properties of C1-smooth Ω-stable maps of a closed interval, give the definition of Σ-stability

and remind the properties of the Σ-stable maps of a closed interval.

Lemma 3. [21], [27] Let f ∈ C̃1
ω(I1) and satisfy the condition (iii f ). Then

(3.1) the nonwandering set Ω( f ) is the union of a finite number of hyperbolic periodic points (that form the
rarefied set Ωr( f )) and a finite number of locally maximal (i.e., maximal quasiminimal c sets in some their
neighborhood) hyperbolic perfect nowhere dense sets (that form the perfect set Ωp( f )));
(3.2) periodic points are everywhere dense in the set Ωp( f ); moreover, for every natural number m≥ 2 periodic
points with multiple m (least) periods are everywhere dense in Ωp( f );
(3.3) there are numbers α = α( f ) > 0 and c = c( f ) > 1 so that for every x ∈ Ωp( f ) and n ≥ 1 the inequality
|( f n(x))′|> αcn holds (that is, Ωp( f ) is the repelling hyperbolic set);
(3.4) the subspace C̃1

ω(I1) of maps satisfying condition (iii f ) is open and everywhere dense in the containing it
space of C1-smooth self-maps of the closed interval I1 of type � 2∞ with the invariant boundary.

Corollary 4. [21], [27] Let f ∈ C̃1
ω(I1) and satisfy the condition (iii f ). Then the equality holds:

Ω( f ) = Ω
s( f )

⋃
Ω

u( f ).

Here Ωs( f ) is the nonempty finite invariant set of all f -sinks. The set Ωu( f ) is invariant and equals the union of
Ωp( f ) with a finite (possibly empty) set that consists of isolated sources in the set of f -periodic points.

In the set I1 \Ω( f ) (just as in the set I1 \Ωp( f )) the points of attraction domains of f -sinks are everywhere
dense.

Point out that for the map f ∈ C̃1
ω(I1) the inclusion f−1(Ω( f )) ⊂ Ω( f ) can be false (although the equality

f (Ω( f )) = Ω( f ) holds). Here f−1(·) means the first complete preimage of a set.
Following [21] we construct the set which is invariant both with respect to f , and with respect to f−1, and

contains the set Ωu( f ) as its subset. For this goal we need the attraction domain of all f -sinks:

∆( f ) =
⋃

Orb(x, f )⊂Ωs( f )

+∞⋃
i=0

D−i(Orb(x, f )),

where Orb(x, f ) is the periodic orbit of the sink x ∈Ωs( f ), D(Orb(x, f )) is the immediate attraction domain of
the periodic orbit Orb(x, f ), D−i(Orb(x, f )) is i-th complete primage of the immediate attraction domain of the
periodic orbit Orb(x, f ).

c A quasiminimal set is the closure of an infinite recurrent trajectory (see [28]).
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Immediate attraction domain D(Orb(x, f )) of the periodic orbit Orb(x, f ) consists of m (m is the (least)
period of x) pairwise disjoint open (in the topology of the segment I1) f m-invariant intervals D f j(x) (0 ≤ j ≤
m−1) such that every of these intervals contains the point f j(x) :

D(Orb(x, f )) =
m−1⋃
j=0

D f j(x).

Complete f -invariance of the immediate attraction domaind D(Orb(x, f )) implies correctness of the defini-
tion of preimages D−i(Orb(x, f )) (D−i(Orb(x, f )) 6= /0) for every i≥ 0.

By the condition (iii f ) the set ∆( f ) is a countable union (see the claim (3.1) of Lemma 3) of pairwise disjoint
intervals (open in the topology of the closed interval I1); ∆( f ) is invariant both with respect to f , and with respect
to f−1.

We suppose further that the set Cr( f ) of f -critical points satisfies the condition
(iv f ) Cr( f )⊂ ∆◦( f ), where ∆◦( f ) is the interior of the set ∆( f ).

Lemma 5. [33] Let f ∈ C̃1
ω(I1) satisfy conditions (iii f ) – (iv f ). Then one of the following three cases is realized

for the boundary ∂ (D f j(x)) of every interval D f j(x) (0≤ j ≤ m−1):
(5.1) ∂ (D f j(x)) consists of two f m-fixed points;
(5.2) points of ∂ (D f j(x)) form a periodic orbit of (least) period 2 with respect to f m;
(5.3) one of the points of ∂ (D f j(x)) is f m-fixed point source, and the other is its preimage with respect to f m.

Define the closed set that is invariant with respect to f and f−1:

Σ( f ) = I1 \∆( f ). (12)

By Lemma 5 and formula (12) we have: Ωu( f )⊂ Σ( f ), and Ωs( f )
⋂

Σ( f ) = /0.

Definition 3. [21] The map f ∈ C̃1
ω(I1) is said to be Σ-stable (in the C1-topology) if for every δ > 0 there exists

an ε-neighborhood B̃1
1,ε( f ) of the map f ∈ C̃1

ω(I1) such that every map ϕ ∈ B̃1
1,ε( f ) is Σ-conjugate to f , that is,

the equality
h◦ f|Σ( f ) = ϕ|Σ(ϕ) ◦h

holds for some homeomorphism h : Σ( f )→ Σ(ϕ). Here h is δ -close to the identity map on Σ( f ) in the C0-
topology.

The following claim is the direct corollary of Definition 3.

Lemma 6. Let f ∈ C̃1
ω(I1) satisfy conditions (iii f ) – (iv f ). Then f is Σ-stable in the C1-topology.

Remark 5. By [21] the set of maps from C̃1
ω(I1) satisfying conditions (iii f ) – (iv f ) contains the open everywhere

dense subset of C2-smooth maps with nondegenerate critical points.

3 Sufficient conditions of partial integrability of the map (1)

In this section we prove the main result of the paper.

Theorem 7. Let the quotient f of the skew product of interval maps Φ0 ∈ T̃ 1
ω,0(I) satisfy conditions (iii f ) –

(iv f ). Then for any δ > 0 there exists an ε-neighborhood B1
ε(Φ0) of the map Φ0 in the space C1

ω(I) such
that every map F ∈ B1

ε(Φ0) obtained from Φ0 by means of the C1-perturbation µ = µ(x, y), where µ satisfies

d It means correctness of the equality f (D(Orb(x, f ))) = D(Orb(x, f )).
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conditions (iµ) – (iiµ), is partially integrable on the closed invariant set £(F) that consists of pairwise disjoint
curvelinear fibers. These fibers start from the points of the set Σ∗( f )×{a2} (where Σ∗( f ) = Σ( f )

⋃
Ωs( f ))

and are graphs of C1-smooth functions x = x(y) defined on the interval I2. The function H̃ : £(F)→ Σ∗( f )
that realizes the partial integrability property, is C1-smooth surjection, ε-close in the C1-norm to the natural
projection pr1 : Σ∗( f )× I2→ Σ∗( f ).

The following statement proved in [18], is the first step of the proof of Theorem 7.

Proposition 8. [18] Let Φ0 ∈ T̃ 1
ω,0(I). Then for any δ > 0 there exists an ε-neighborhood B1

ε(Φ0) of the
map Φ0 in the space C1

ω(I) such that every map F ∈ B1
ε(Φ0) obtained from Φ0 by means of the C1-perturbation

µ = µ(x, y), where µ satisfies conditions (iµ) – (iiµ), has the invariant closed set £0(F) that consists of pairwise
disjoint curvelinear fibers. These fibers start from the points of the set Ω( f )×{a2}, and are the graphs of
continuous functions x = x(y) defined on the interval I2; moreover, fibers starting from the points (x, a2), where
x is f -periodic point, are C1-smooth. Every curvelinear fiber is δ -close in the C0-norm to the vertical closed
interval that starts from the same initial point of the set Ω( f )×{a2} just as the curvelinear fiber.

Prove C1-smoothness of all fibers from the set £0(F).

Proposition 9. Let Φ0 ∈ T̃ 1
ω,0(I). Then for any δ > 0 there exists an ε-neighborhood B1

ε(Φ0) of the map Φ0 in
the space C1

ω(I) such that the closed invariant set £0(F) of every map F ∈ B1
ε(Φ0) obtained from Φ0 by means

of the C1-perturbation µ = µ(x, y), where µ satisfies conditions (iµ) – (iiµ), consists of graphs of C1-smooth
functions x = x(y) defined on the interval I2. In addition, every curvelinear fiber of the set £0(F) is ε-close in
the C1-norm to the vertical closed interval that starts from the same initial point of the set Ω( f )×{a2} just as
the curvelinear fiber.

Proof. 1. Fix a number δ > 0. We find a positive number ε > 0 for δ using the C1- Ω-stability property of the
map f ∈ C̃1

ω(I1). The neighborhood B̃1
1,ε( f ) of the map f consists of maps such that every map is Ω-conjugate

with f by means of the homeomorphism that is δ -close to the identity map of the set Ω( f ).
We use also the ε-neighborhood B1

ε(Φ0) of the map Φ0 in the space C1
ω(I). Then by formulas (1), (4) and

by the property (iiµ) the inequality
||F−Φ0||1 = ||µ||1,(1,1) < ε

is valid for any map F ∈ B1
ε(Φ0). It implies, in particular, correctness of the belonging (3) for any y ∈ I2 and

means also that the map ( f +µ) is Ω-conjugate with f for every y ∈ I2 by means of the homeomorphism that is
δ -close to the identity map of the set Ω( f ).

We need εm-neighborhoods B1
εm
(Φm

0 ) of iterations Φm
0 for any m > 1 in the space C1

ω(I) that correspond the
chosen ε-neighborhood B1

ε(Φ0) of the map Φ0. Since F ∈ B1
ε(Φ0) then Fm ∈ B1

εm
(Φm

0 ). Using formulas (8) – (9)
we obtain the inequalities

||ϕy,m− f m||1,(1,1) ≤ ||Fm−Φ
m
0 ||1 < εm;

moreover, for every y ∈ I2 the inequality holds:

||ϕy,m− f m||1,1 < ||ϕy,m− f m||1,(1,1).

Therefore,
ϕy,m ∈ B̃1

(1,1),εm
( f m ◦ pr1) and, the more so, ϕy,m ∈ B̃1

1,εm
( f m) (13)

for every y ∈ I2. Here B̃1
(1,1),εm

( f m ◦ pr1) is the εm-neighborhood of the map ( f m ◦ pr1) in the space C̃1(I, I1),

and B̃1
1,εm

( f m) is the εm-neighborhood of the map f m in the space C̃1
ω(I1). The neighborhood B̃1

1,εm
( f m) consists

of the maps, which are Ω-conjugate to f m by means of the homeomorphisms δ -close to the identity map on the
nonwandering set Ω( f m) = Ω( f ) (see Lemma 3).
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2. Let f satisfy the condition (iii f ). Denote by £u(F) (£u(F)⊂ £0(F)) the set of curvelinear fibers that start
from all points of Ωu( f ).

Prove that there is the universal natural number n∗ such that the equality

inf
(x,y)∈£u(F)

| ∂

∂x
ϕy,n∗(x)|= M∗, where M∗ > 1, (14)

holds for every y ∈ I2.
In fact, using the definition of the set £u(F) and Lemma 3 (see claims (3.1) – (3.3)) for every y∈ I2 we point

out the least natural number n∗(y) satisfying

inf
x∈(£u(F))(y)

| ∂

∂x
ϕy,n∗(y)(x)|> 1. (15)

By the claim (3.3) of Lemma 3 the inequality

inf
x∈(£u(F))(y)

| ∂

∂x
ϕy,n(x)|> 1

is valid for every n≥ n∗(y).
Since the partial derivative ∂

∂x ϕy,n∗(y)(x) is uniformly continuous on the compact

(£u(F))(y)×{y}

then by the inequality (15) there exists a θ(y)-neighborhood Uθ(y)
(
(£u(F))(y)×{y}

)
of the set (£u(F))(y)×{y}

in I such that

inf
(x,y′)∈Uθ(y)

(
(£u(F))(y)×{y}

) | ∂

∂x
ϕy′,n∗(y)(x)|> 1. (16)

Moreover, by the formula (13) n∗(y) is the least natural number for which the inequality (16) holds.
Let 2I1 be the topological space of all closed subsets of the closed interval I1 with the exponential topology.

By compactness of the closed intervals I1, I2 the set 2I1× I2 is the compact [24]. Then the closed set

£u(F) =
⋃
y∈I2

(
(£u(F))(y)×{y}

)
is the compact in 2I1 × I2. Using compactness of the set £u(F) in 2I1 × I2 we distinguish from its infinite open
cover {Uθ(y)

(
(£u(F))(y)×{y}

)
}y∈I2 the finite subcover. Let neighborhoods {Uθ(y j)

(
(£u(F))(y j)×{y j}

)
}1≤ j≤q

of the sets {(£u(F))(y j)×{y j}}1≤ j≤q form this finite subcover.
The set £u(F) consists of continuous fibers (see Proposition 8). Therefore, for every j (1 ≤ j ≤ q) there

exists j′ ( j′ 6= j, 1≤ j′ ≤ q) such that

Uθ(y j)

(
(£u(F))(y j)×{y j}

)⋂
Uθ(y j′ )

(
(£u(F))(y j′)×{y j′}

)
6= /0.

Thus, using the above considerations of this item 2 we obtain from here that the equalities hold

n∗(y1) = . . .= n∗(y j) = . . .= n∗(yq).

Set n∗ = n∗(y j) (1≤ j ≤ q). Using continuity of the partial derivative ∂

∂x ϕy,n∗(x) on I we verify that the equality
(14) holds.

Hence, without loss of generality we will suppose further that n∗ = 1. In fact, if n∗ 6= 1 then we get over
consideration of the map Fn∗ and use the claim (3.2) of Lemma 3.
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3. Prove that every curvelinear fiber is ε-close in the C1-norm to the vertical closed interval that starts from
the same initial point (x, a2) of the set Ω( f )×{a2} just as the curvelinear fiber.

3.1. Begin from the curvelinear fibers γx0 that start from all points (x0, a2), where x0 ∈ Per( f )
⋂

Ωu( f ). By
Proposition 8 every this fiber is the graph of the C1-smooth implicit function x = x(y) defined on the interval I2.
Moreover, x = x(y) satisfies the initial conditions

x(a2) = x(b2) = x0

and the equation
ϕy,m(x) = x [18], (17)

where m is the least period of the initial f -periodic point x0. By the theorem about the C1-smooth implicit
function and the equation (17) we have

d
dy

x(y) =−
∂

∂y ϕy,m(x)
∂

∂x ϕy,m(x)−1
(18)

in any point (x, y) ∈ γx0 .
Note that by the item 2 the sequence {εm}m≥1 is increasing. Therefore, we construct the special δ -trajectory

for the real trajectory {F j(x, y)} j≥0. Denote by lx the vertical closed interval that starts from the point (x, a2).
Choose the points

z0 = (x0, y), z1 = (x1, y1), . . . , zi = (xi, yi), . . . , zm−1 = (xm−1, ym−1) . . . ,

zrm+i = (xrm+i, yrm+i) (r ≥ 0, 0≤ i≤ m−1),

where
xrm+i = f rm+i(x0) = f i(x0),

yrm+i = g(x,y),rm+i(y) (here 1≤ i≤ m−1, m≥ 2).

Then (xrm+i, yrm+i) ∈ lxi . Since

Frm+i(x, y) = (ϕy,rm+i(x), g(x,y),rm+i(y)),and Frm+i(x, y) ∈ γxi ,

then {zrm+i}r≥0,0≤i≤m−1 is δ -trajectory for the real trajectory of the point (x, y). Moreover,

| f j(x0)−ϕy, j(x)|< δ .

It implies, in particular, correctness of the inequality

| ∂

∂y
ϕy, j(x)|< ε

for every j ≥ 1. Therefore, using (18) we have

| d
dy

x(y)|< ε

Mm
∗ −1

. (19)

Since M∗ > 1 then the equality holds:
lim

m→+∞
Mm
∗ =+∞.

Then there exists m0 ≥ 1 such that the inequality

| d
dy

x(y)|< ε (see the inequality (19)) (20)
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is valid for every m≥ m0.
3.2. As it follows from the item 3.1, the set of C1-smooth functions {x = x(y)} that start from the points

{(x0, a2)}, where x0 ∈ Per( f )
⋂

Ωp( f ), m(x0) ≥ m0 (here m(x0) is the (least) period of x0), is dense in itself in
the C1-topology. It implies, in particular, that for every C1-smooth function x = x(y) that starts from a point
(x0, a2) for x0 ∈ Per( f )

⋂
Ωp( f ), m(x0)< m0, the inequality holds

| d
dy

x(y)| ≤ ε. (21)

In addition, for every nonperiodic point x0 ∈Ω( f ) there exists the unique C1-smooth function x = x(y) : I2→ I1
with the graph that starts from the point (x0, a2) and with the derivative satisfying the inequality (21) (see the
inequality (20)). Proposition 9 is proved.

Extend the lamination £0(F) up to the lamination £(F), where £(F) consists of C1-smooth fibers that start
from the points of the set Σ∗( f )×{a2}.

Use conditions (iii f ) – (iv f ), definition of the set ∆( f ), Lemma 5 and Proposition 9. Then we obtain the
following statement.

Corollary 10. Let the quotient f of the skew product of interval maps Φ0 ∈ T̃ 1
ω,0(I) satisfy conditions (iii f )

– (iv f ). Then for any δ > 0 there exists an ε-neighborhood B1
ε(Φ0) of the map Φ0 in the space C1

ω(I) such
that every map F ∈ B1

ε(Φ0) obtained from Φ0 by means of the C1-perturbation µ = µ(x, y), where µ satisfies
conditions (iµ) – (iiµ), has the closed invariant set £(F) that consists of pairwise disjoint curvelinear fibers.
These fibers start from the points of the set Σ∗( f )×{a2}, and are graphs of C1-smooth functions x = x(y)
defined on the interval I2. Every curvelinear fiber of the set £(F) is ε-close in the C1-norm to the vertical closed
interval that starts from the same initial point of the set Σ∗( f )×{a2} just as the curvelinear fiber.

Remark 6. The set £(F) constructed in the Corollary 10 is the C1-smooth lamination, i.e. the set

£(F) = {x0, x, y}, where x0 ∈ Σ
∗( f ), x = x(y),

depends C1-smoothly on the variables x0, x, y.

Let conditions of Theorem 7 be fulfilled, and F ∈ B1
ε(Φ0) be given by the formula (1), where µ depends on

x and y. Let γx0 be the curvelinear fiber from £(F) that starts from an arbitrary point (x0, a2), where x0 ∈ Σ∗( f ).
We set

H̃(x, y) = x0 (22)

for any point (x, y) ∈ γx0 , that is H̃(γx0) = x0, and H̃(£(F)) = Σ∗( f ). It means that the curvelinear projection H̃
is the surjection of the set £(F) on the set Σ∗( f ).

By the equality (22) we have
H̃(x, y) = pr1(x, y)− xx0(y)+ x0, (23)

where x = xx0(y) is the function with the graph γx0 .

Remark 7. As it follows from the equality (23) and Corollary 10, the curvelinear projection H̃ is C1-smooth on
the lamination £(F). Moreover, surjection H̃ : £(F)→ Σ∗( f ) is ε-close in the C1-norm to the natural projection
pr1 : Σ∗( f )× I2→ Σ∗( f ).

Remark 8. F-invariance of the lamination £(F) and the formula (22) imply the equality

H̃ ◦F|£(F) = f|Σ∗( f ) ◦ H̃. (24)

Comparison of the equalities (24) and (10) shoes that F is partially integrable map (see Definition 2). It
completes the proof of Theorem 7.

In the end of the paper we give the example of the partially integrable map.
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Example 11. Let F(x, y) = ( f (x)+λx(1− x)y(1− y), g(x, y)), where F ∈C1
ω([0, 1]2), λ > 0.

The condition "F ∈C1
ω([0, 1]2)" implies " f ∈ C̃1

ω([0, 1])". We use here the model C1-smooth Ω-stable map
f of type � 2∞ from the paper [16]:

f (x) =


h̃(x), if x ∈ [0, 1

4);
9(1

4 − x)(x− 3
4)+

1
4 , if x ∈ [1

4 ,
3
4);

h̃(1− x), if x ∈ [3
4 , 1];

where h̃ is so that f (0) = f (1) = 0, f : [0, 1/4]→ [0, 1/4] is increasing bijection, f : [3/4, 1]→ [0, 1/4] is
decreasing bijection. Let M = sup{ f (x)} satisfy the inequality 3/4 < M < 1, and the point xM such that the
equality f (xM) = M holds, be the unique. Then the equality is valid:

Ω( f ) = {0}
⋃

K( f ),

where K( f ) is the unique locally maximal quasiminimal set of f , K( f ) = Ωp( f )⊂ [1
4 ,

3
4 ], and xM ∈ ∆◦( f ).

Let λ be so small that the function µ(x, y) = λx(1− x)y(1− y) satisfies the condition (iiµ). We have also
µ(0, y) = µ(1, y) = µ(x, 0) = µ(x, 1) = 0 for all x, y ∈ [0, 1]. Hence, the condition (iµ) is valid. It means that
conditions of Theorem 7 are fulfilled, and there exists the invariant lamination £(F) over the points of the set
Ω( f ) = {0}

⋃
K( f ). It implies the semiconjugacy of F|£(F) and f|Ω( f ). Therefore, F is the partially integrable

map (see Definition 2).
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