

Applied Mathematics and Nonlinear Sciences 5(2) (2020) 311-316

Applied Mathematics and Nonlinear Sciences

https://www.sciendo.com

On Limit Sets of Monotone Maps on Dendroids

E.N. Makhrova[†]

Lobachevsky State University of Nizhny Novgorod, Russia

Submission Info

Communicated by Lyudmila Sergeevna Efremova Received December 24th 2019 Accepted March 14th 2020 Available online November 30th 2020

Abstract

Let X be a dendrite, $f: X \to X$ be a monotone map. In the papers by I. Naghmouchi (2011, 2012) it is shown that ω -limit set $\omega(x, f)$ of any point $x \in X$ has the next properties:

(1) $\omega(x, f) \subseteq \overline{Per(f)}$, where Per(f) is the set of periodic points of f;

(2) $\omega(x, f)$ is either a periodic orbit or a minimal Cantor set.

In the paper by E. Makhrova, K. Vaniukova (2016) it is proved that

(3) $\Omega(f) = \overline{Per(f)}$, where $\Omega(f)$ is the set of non-wandering points of f.

The aim of this note is to show that the above results (1) - (3) do not hold for monotone maps on dendroids.

Keywords: dendroid, dendrite, monotone map, periodic point, non-wandering point, *ω*-limit set **AMS 2010 codes:** 54H20, 54F50, 37B20, 37C25

1 Introduction

We use \mathbb{N} and \mathbb{C} to denote the set of natural numbers and a complex plane, respectively. The simbol **i** means an imaginary unit.

By *continuum* we mean a compact connected metric space. A topological space X is *unicoherent* provided that whenever A and B are closed, connected subsets of X such that $X = A \cup B$, then $A \cap B$ is connected. A topological space is *hereditarily unicoherent* provided that each of its closed, connected subset is unicoherent. By *a dendroid* we mean an arcwise connected hereditarily unicoherent continuum. A *dendrite* is a locally connected dendroid. Also we notice that a circle is not a unicoherent continuum. So a dendroid and a dendrite do not contain subsets homeomorphic to the circle and they are one-dimensional continua.

Let *X* be a dendroid with a metric *d*. An *arc* is any set homeomorphic to the closed interval [0, 1]. We notice that any two distinct points $x, y \in X$ can be joined by a unique arc with endpoints *x*, *y* (see, e.g., [1], [2]). We

[†]Corresponding author. Email address: elena_makhrova@inbox.ru

denote by [x,y] an arc joining *x* and *y* and containing these points, $(x,y) = [x,y] \setminus \{x,y\}$, $(x,y] = [x,y] \setminus \{x\}$ and $[x,y) = [x,y] \setminus \{y\}$.

The set $X \setminus \{p\}$ consists of one or more connected set. Each such set is called a component of a point *p*.

Definition 1. A point $p \in X$ is called to be

- an *end point of X* if the set $X \setminus \{p\}$ is connected;

- a branch point of X if the set $X \setminus \{p\}$ has at least three components.

If *X* is a dendrite then the set of branch points and the number of components of any point $p \in X$ are at most countable (see [1, §51]). These statements are not true for dendroids.

Let $f: X \to X$ be a continuous map of a dendroid X. ω -limit set of a point $x \in X$ is the set

$$\omega(x,f) = \{ z \in X : \exists n_j \in \mathbb{N}, n_j \to \infty, \lim_{j \to \infty} f^{n_j}(x) = z \}$$

Definition 2. A point $x \in X$ is said to be

- *a periodic point of f* if $f^n(x) = x$ for some $n \in \mathbb{N}$. When n = 1, we say that x is a fixed point of f; - *a recurrent point of f* if $x \in \omega(x, f)$;

- a non-wandering point of f if for any neighborhood U(x) of a point x there is a number $n \in \mathbb{N}$ so that $f^n(U(x)) \cap U(x) \neq \emptyset$.

Let Fix(f), Per(f), Rec(f), $\Omega(f)$ denote the set of fixed points of f, the set of periodic points of f, the set of recurrent points of f, the set of non-wandering points of f respectively. It is well known that

$$Fix(f) \subseteq Per(f) \subseteq Rec(f) \subseteq \bigcup_{x \in X} \omega(x, f) \subseteq \Omega(f).$$

Definition 3. [1, §46] Let $f: X \to X$ be a continuous map of a dendroid *X*. A map *f* is said to be monotone if for any connected subset $C \subset f(X)$, $f^{-1}(C)$ is connected.

Let $f: X \to X$ be a monotone map. Denote by f^n the n-iterate of f; that is, f^0 = identity and $f^n = f \circ f^{n-1}$ if $n \ge 1$. We note that f^n is monotone for every $n \in \mathbb{N}$.

For monotone maps on dendrites the next statements are true.

Theorem 1. [3] Let $f: D \to D$ be a monotone map of a dendrite D. Then for any point $x \in D$, $\omega(x, f) \subseteq \overline{Per(f)}$.

Theorem 2. [4] Let $f: D \to D$ be a monotone map of a dendrite D. Then $\Omega(f) = \overline{Per(f)}$.

Theorem 3. [5] Let $f : D \to D$ be a monotone map of a dendrite D. Then for any point $x \in D$, $\omega(x, f)$ is either a periodic orbit or a minimal Cantor set.

In the note we show that Theorems 1 - 3 do not true for monotone maps on dendroids. Theorem 4 shows that Theorems 1, 2 do not hold for such maps.

Theorem 4. There are a dendroid X_1 and a monotone map $f_1 : X_1 \to X_1$ such that (4.1) $\omega(x, f_1) \notin \overline{Per(f_1)}$ for some point $x \in X_1$; (4.2) $\Omega(f_1) \neq \overline{Per(f_1)}$.

The next Theorem shows that Theorem 3 does not true for monotone maps on dendroids.

Theorem 5. There are a dendroid X_2 and a monotone map $f_2 : X_2 \to X_2$ such that for some point $x \in X_2$, $\omega(x, f_2)$ is a nondegenerate closed interval belonging to the set $Fix(f_2)$.

We note that there are continuous skew products of maps of an interval with a closed set of periodic points such that some their trajectories have a nondegenerate closed intervals as ω -limits sets (see, e.g., [6] – [11]).

2 Proof of Theorem 4

I. Construction of the dendroid X₁.

Let *K* be a Cantor set on the closed interval [0,1], a point $p(\frac{1}{2}, \frac{1}{2} + \mathbf{i}) \in \mathbb{C}$. We set

$$X_1 = \bigcup_{e \in K} [p, e]$$

Note that X_1 is a dendroid which is not a locally connected continuum in any point $x \in X_1 \setminus \{p\}$.

II. Construction of the map $f_1: X_1 \to X_1$.

We need the auxiliary map named binary adding machine.

Definition 4. Let $\Sigma = \{(j_1, j_2, ...)\}$ be the set of sequences, where $j_i \in \{0, 1\}$. We put a metric d_{Σ} on Σ given by

$$d_{\Sigma}((k_1, k_2, \ldots), (j_1, j_2, \ldots)) = \sum_{i=1}^{+\infty} \frac{\delta(k_i, j_i)}{2}$$

where $\delta(k_i, j_i) = 1$, if $k_i \neq j_i$ and $\delta(k_i, j_i) = 0$, if $k_i = j_i$. The addition in Σ is defined as follows:

 $(k_1, k_2, \ldots) + (j_1, j_2, \ldots) = (l_1, l_2, \ldots),$

where $l_1 = k_1 + j_1 \pmod{2}$ and $l_2 = k_2 + j_2 + r_1 \pmod{2}$, with $r_1 = 0$, if $k_1 + j_1 < 2$ and $r_1 = 1$, if $k_1 + j_1 = 2$. We continue adding the sequences in this way.

The adding machine map $\sigma : \Sigma \to \Sigma$ is defined as follows: for any $(j_1, j_2, j_3, ...) \in \Sigma$,

$$\sigma((j_1, j_2, j_3, \ldots)) = (j_1, j_2, j_3, \ldots) + (1, 0, 0, \ldots).$$

Lemma 6. [12], [13] *1*. Σ *is a Cantor set;*

- 2. $\sigma: \Sigma \rightarrow \Sigma$ is a homeomorphism;
- *3.* $Per(\sigma) = \emptyset$;
- 4. $Rec(\sigma) = \Sigma$.

To define a map $f_1: X_1 \to X_1$ we need two auxiliary maps.

1. Let $h: K \to \Sigma$ be any homeomorphism. We define a map $\tau: X_1 \to X_1$ as follows:

 $\tau: [p,e] \rightarrow [p,h^{-1} \circ \sigma \circ h(e)]$ be a linear homeomorphism so that $\tau(p) = p$, $\tau(e) = h^{-1} \circ \sigma \circ h(e)$.

According to lemma 6 we get the next properties of τ :

- 1.1. τ is a homeomorphism;
- 1.2. $Per(\tau) = Fix(\tau) = \{p\};$
- 1.3. $x \in Rec(\tau) \setminus Per(\tau)$ for any point $x \in X_1 \setminus \{p\}$.

2. Let *e* be any point from *K* and $\varphi : [p, e] \to [0, 1]$ be any linear homeomorphism so that $\varphi(p) = 1$, $\varphi(e) = 0$. We define a second auxiliary map $g : X_1 \to X_1$ by the following way: for any point $e \in K$

 $g: [p,e] \to [p,e]$ be a homeomorphism such that $g(x) = \varphi^{-1} \circ x^2 \circ \varphi(x)$ for any point $x \in [p,e]$. Then a map g has the next properties:

2.1. g is a homeomorphism;

2.2. $Per(g) = Fix(g) = \{p\} \cup K;$

2.3. for any point $e \in K$ and an arbitrary point $x \in (p, e]$, $\omega(x, g) = \{e\}$.

Now we set $f_1 = g \circ \tau : X_1 \to X_1$. By properties of maps τ and g, we get the following statements:

1) f_1 is a homeomorphism and so f_1 is a monotone map;

2) $Per(f_1) = Fix(f_1) = \{p\};$

3) for any point $x \in X_1 \setminus \{p\}$, $\omega(x, f_1)$ is a minimal Cantor set *K*, that is $\omega(x, f_1) = K$. Hence, $\omega(x, f_1) \notin \overline{Per(f_1)}$. 4) $\Omega(f_1) = \{p\} \cup K$. So $\Omega(f_1) \neq \overline{Per(f_1)}$.

Theorem 4 is proved.

3 Proof of Theorem **5**

I. Construction of the dendroid X₂.

We define a sequence $\{s_k\}_{k\geq 1}$ by the following way:

$$s_0 = 0, s_k = s_{k-1} + 2(2^k - 1),$$
for $k \ge 1.$ (1)

We set

$$I_j = \left[\frac{1}{2^j}; \frac{1}{2^j} + \mathbf{i}\right], \text{ for } j \in \{s_k\}_{k \ge 0}.$$

$$(2)$$

For any number $n \in \mathbb{N} \setminus \{s_k\}_{k \ge 1}$ there is a natural number $k \ge 0$ such that $s_k < n < s_{k+1}$. It follows from (1) that for any $k \ge 0$ every interval $(s_k; s_{k+1})$ contains $2^{k+2} - 3$ natural numbers. For every $k \ge 0$ and any number $1 \le j \le 2^{k+2} - 3$ we define a vertical segmet I_{s_k+j} by the following way:

$$I_{s_{k}+j} = \begin{cases} \left[\frac{1}{2^{s_{k}+j}}; \frac{1}{2^{s_{k}+j}} + (1-\frac{j}{2^{k+1}})\mathbf{i} \right], & \text{if } 1 \le j \le 2^{k+1} - 1; \\ \left[\frac{1}{2^{s_{k}+j}}; \frac{1}{2^{s_{k}+j}} + \frac{j+2-2^{k+1}}{2^{k+1}}\mathbf{i} \right], & \text{if } 2^{k+1} \le j \le 2^{k+2} - 3. \end{cases}$$
(3)

It follows from (2) and (3), that for any number $n \in \mathbb{N} \cup \{0\}$ we defined a segment I_n . Now we set

$$X_2 = [0,1] \cup [0,\mathbf{i}] \cup \bigcup_{n=0}^{\infty} I_n.$$

A continuum X_2 is a dendroid, but it is not a dendrite because X_2 is not a locally connected continuum in any point $x \in (0, \mathbf{i}]$. You can see a dendroid homeomorphic to X_2 on figure 1.

Fig. 1 Dendroid homeomorphic to X_2 .

II. Construction of the map $f_2: X_2 \to X_2$.

We define a monotone map $f_2: X_2 \to X_2$ as follows:

(i) $f_2(z) = z$, if $z \in [0, \mathbf{i}]$;

(ii) $f_2(z) = z/2$, if $z \in [0, 1]$;

(iii) $f_2: I_j \to I_{j+1}$ be a linear homeomorphism such that $f_2(I_j) = I_{j+1}$ for any number $j \ge 0$.

314

III. Properties of f_2 .

- 1. f_2 is a homeomorphism.
- 2. $Per(f_2) = Fix(f_2) = [0, \mathbf{i}].$

3. We show that f_2 is a continuous map.

It is evident that f_2 is a continuous map in any point $z \in X_2 \setminus [0, \mathbf{i}]$. We'll prove a continuity of f_2 in any point $z \in [0, \mathbf{i}]$. Let U(z) be an arbitrary neighborhood of a point z and let $\varepsilon > 0$ be a diameter of U(z). We take any number $k \ge 1$ so that $I_{s_k} \cap U(z) \ne \emptyset$. Then by (3) and (iii) for any $j \ge s_k$ and for any point $x \in I_j$

$$|\operatorname{Im} f_2(x) - \operatorname{Im} x| \le \frac{1}{2^{k+1}},$$
(4)

where Im * is the imaginary part of a complex number *. By (ii) and (iii),

$$|\operatorname{Re} f_2(x) - \operatorname{Re} x| = \frac{1}{2^{j+1}} \le \frac{1}{2^{k+1}},$$
(5)

where Re * is a the real part of a complex number *.

It follows from (4) and (5) that for any $j \ge s_k$ and any point $x \in I_i$

$$|f_2(x) - x| \le \sqrt{\frac{1}{2^{2(k+1)}} + \frac{1}{2^{2(k+1)}}} = \frac{1}{2^{2k+1}}.$$
(6)

Let $U_1(z) \subset U(z)$ be a neighborhood of a point x with diameter $\varepsilon/2^{k+1}$. Then by (6) $f_2(U_1(z)) \subseteq U(z)$, that is f_2 is a continuous map in a point z.

4. We show that $\boldsymbol{\omega}(1+\mathbf{i}, f_2) = [0, \mathbf{i}]$.

Let z be any point from [0,i] and U(z) be an arbitrary neighborhood of a point z of diameter d. We take any natural number k_1 so that

$$\frac{1}{2^{k_1}} < \frac{d}{2}$$

Now we take any natural number $K \ge k_1$ such that $I_{s_K} \cap U(z) \ne \emptyset$. According to the choice of k_1 and (4) there is a natural number j > 1 so that

$$\operatorname{Im} f_2^j\left(\frac{1}{2^{s_{K}}}+\mathbf{i}\right)\in\left(\operatorname{Im} z-\frac{d}{2},\operatorname{Im} z+\frac{d}{2}\right).$$

It follows from here that $f_2^{s_K+j}(1+\mathbf{i}) \in U(z)$. So, $z \in \omega(1+\mathbf{i}, f_2)$. Thus, $\omega(1+\mathbf{i}, f_2) = [0, \mathbf{i}] = Fix(f_2)$. Theorem 5 is proved.

References

- [1] Kuratovski K. (1968) Topology, vol.2 (New York: Academic Press).
- [2] Nadler S. B. (1992) Continuum Theory: An Introduction (Monographs and Textbooks in Pure and Applied Mathematics, 158). Marcel Dekker, New York.
- [3] Naghmouchi I. (2011) Dynamics of monotone graph, dendrite and dendroid maps International Journal of Bifurcation & Chaos 21 3205-3215.
- [4] Makhrova E. N., Vaniukova K. S. (2016) On the set of non-wandering of monotone maps on local dendrites Journal of Physics: Conference Series 692, 012012.
- [5] Naghmouchi I. (2012) Dynamical properties of monotone dendrite maps Topology and its Applications 159 144–149.
- [6] Balibrea F., García Guirao J.L., Muñoz Casado J.I. (2001) Description of ω -limit sets of a triangular map on I^2 Far East J. Dyn. Syst. 3 87-101.
- [7] Balibrea F., García Guirao J.L., Muñoz Casado J.I. (2002) A triangular map on I^2 whose ω -limit sets are all compact interval of 0 × I Discrete Contin. Dyn. Syst. 8 983–994.
- [8] Efremova L.S. (2017) Dynamics of skew products of interval maps Russian Math. Surveys 72 101–178.

- [9] Efremova L. S. (2010) Differential properties and attracting sets of a simplest skew product of interval maps *Sb. Math.* 201 873–907.
- [10] Kočen Z. (1999) The problem of classification of triangular maps with zero topological entropy *Ann. Math. Sil.* **13** 181–192.
- [11] Kolyada S.F. (1992) On dynamics of triangular maps of the square Ergodic Theory Dynam. Systems 12 749–768.
- [12] Buescu J., Stewart I. (1995) Liapunov stability and adding machines Ergodic Theory and Dynamical Systems 15 271– 290.
- [13] Block L., Keesling J. (2004) A characterization of adding machine maps Topology and its Applications 140 151-161.

316