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Abstract
For a collection of infinite loaded graphs, random perturbations of special type are considered. It is shown that some known
classes of these graphs are stable with respect to small random perturbations of this type, while the rest are not.
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1 Introduction

A well-known classification of the infinite loaded graphs, or, which is the same, the infinite non-negative
matrices, is very close to that of the Markov chains with infinitely many states: there are recurrent and transient
loaded graphs, null recurrent and positive recurrent ones, while the latter can be stable positive and unstable
positive. Distinctions between the last two classes (for details see [1]) justify their names. The aim of this note
is to show by simple examples what happens if one deletes some edges of the graph, using a random mechanism.
It turns out that some of the above classes are stable with respect to small random perturbations, while the others
are not.

2 Basic definitions, description of the model

Consider a directed graph G = (V,E), where V =V (G) is the set of its vertices and E = E(G)⊂V ×V the
set of edges. A path of length n in G is a sequence γ = e1, . . . ,en of edges such that the beginning of the edge
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ei+1 coincides with the end of the edge ei, 1≤ i < n. Every function W : E→ (0,∞) is called a weight function,
and the pair (G,W ) is said to be a loaded graph. The weight W (γ) of a path γ is defined as the product of the
weights over the edges forming γ . The graph G is assumed to be connected: for every pair of vertices u,v∈V (G)
there exists a path from u to v.

Recall a classification of the loaded graphs (see [1], [2] for details). For every vertex v ∈ V (G), let Γv,v

denote the set of all v-cycles, i.e., the paths γ from v to v, and Γv,v|v denote the set of those γ ∈ Γv,v in which v is
only the first and last vertex. We refer to elements of Γv,v|v as primitive v-cycles.

For a fixed v∈V (G), denote by qn = qn(G,W ,v) the sum of the weights over all primitive v-cycles of length
n, and assume that qn < ∞ for all n. Introduce the generating function

Φv,v|v(G,W , t) :=
∞

∑
n=1

qntn. (1)

Let Rv = R(G,W ,v) be the radius of convergence of this power series; assume that Rv > 0.

Definition 1. A loaded graph (G,W ) is said to be stable positive, unstable positive, and null recurrent if there
is a vertex v ∈V (G) such that

Φv,v|v(G,W ,Rv)> 1, (2)

Φv,v|v(G,W ,Rv) = 1,
d
dt

Φv,v|v(G,W , t)|t=Rv < ∞, (3)

and

Φv,v|v(G,W ,Rv) = 1,
d
dt

Φv,v|v(G,W , t)|t=Rv = ∞, (4)

respectively. Stable positive and unstable positive loaded graphs form the set of positive recurrent loaded graphs,
while positive recurrent and null recurrent loaded graphs form the set of recurrent ones. The remaining loaded
graphs with Rv > 0 are said to be transient.

Since G is connected, the following is true: if Rv > 0 for some v, then Rv > 0 for all v ∈V (G), and if some
of the conditions (2)–(4) holds for a given v, then it does for all v ∈V (G).

In [1], §3 several characteristic properties of stable recurrent and unstable recurrent loaded graphs are col-
lected and this terminology is justified.

Let us now describe the loaded graphs (G,W ) that will be the subject of further studies in this paper. For
V = V (G) we take N, the set of positive integers, and for E = E(G) the union E1 ∪E2 ∪E3, where E1 is the
collection of all pairs (i, i+ 1), i ∈ N; E2 is the collection of the pairs (i,1), i ∈ N, and E3 is formed by some
pairs of the form (i, j), where i, j ∈ N, i < j−1. We will refer to such a graph as linear. Suppose the following
bounded forward jump (BFJ) condition is satisfied: there is d > 0 such that j− i≤ d for all (i, j) ∈ E3.

Notice that in [4], Example 5.6, a close class of loaded graphs was introduced in other terms and for another
purpose.

Given an arbitrary linear graph G, one can chose, for each of the above classes of loaded graphs, a weight
function W in such a way that the loaded graphs (G,W ) will fall into this class.

For a fixed loaded graph (G,W ) we consider a random loaded graph (G,W ,ξ ) that differs from (G,W )
in that the weight of every edge of the form (i,1) ∈ E2 is multiplied by a random variable ξi with values in
{0,1}, i.e., remains intact or disappears under the action of some stochastic mechanism. Let us assume that this
mechanism is described by a stationary random sequence ξ := (ξi, i∈Z) with decay of long-range dependence.

3 Classes of random linear loaded graphs

We begin with the following notion from ergodic theory.
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An invertible measure preserving transformation T (automorphism) of a probability space (Ω,F ,P) is said
to be lightly mixing (see [5]) if

liminf
n→∞

P(A∩T−nB)> 0

for all A,B ∈F with P(A) > 0, P(B) > 0. The next lemma is due to Blum, Christiansen and Quiring [6], who
used another terminology.

Lemma 1. If T is a lightly mixing automorphism of a probability space (Ω,F ,P), then for every infinite in-
creasing sequence of positive integers nk, k = 0,1, . . . , and every set F ∈F with P(F)> 0, we have

P(∪∞
k=0T−nk F) = 1. (5)

Remark 1. (see [6]) The automorphisms for which (5) holds are sometimes called sequence mixing or sweeping
out. This property is known to be equivalent to the lightly mixing one.

If the shift in the sample space of a stationary process is lightly mixing, we say that the process itself is
lightly mixing.

Corollary 2. If a stationary random process ξ = {ξi, i ∈ Z+} with values 0 and 1 is lightly mixing, then for
every increasing infinite sequence of positive integers ri and every r ∈N, there exists with probability 1 an i such
that ri > r and ξri = 1.

Proof. Let Ω be the sample space of the process ξ (Ω consists of the double-sided infinite sequences of zeroes
and ones), T the one step left shift in Ω, F the cylinder σ -algebra in Ω and P the probability measure on (Ω,F )
induced by the process ξ . Let us assume the process ξ is defined on (Ω,F ,P) as follows: if ω = (ωi, i∈Z)∈Ω,
then ξn(ω) = ωn, n ∈ Z. Put F := {ω ∈Ω : ω0 = 1}. Suppose that the automorphism T of the space (Ω,F ,P)
is lightly mixing. Then the desired statement follows from Lemma 1 applied to F and the numbers nk := ri0+k,
where i0 = min{i : ri > r}.

We now come back to the random linear loaded graph described in Section 2. For such a graph we will write
Φ

(ξ )
v,v|v(G,W ), R(ξ )

v , and qn(ξ ) instead of Φv,v|v(G,W ), Rv and qn, respectively. Below it is assumed that v = 1.

Theorem 3. Let 1) a linear graph G satisfies the BFJ condition, 2) a weight function W is bounded, and 3) a
stationary random process ξ with values 0,1 induces a lightly mixing shift. Then for the random linear loaded
graph (G,W ,ξ ) we have P(R(ξ )

v = Rv) = 1.

Proof. Let us first consider the linear loaded graph (G,W ). By the Cauchy-Hadamard formula there is a
sequence of positive integers nk such that

1/Rv = limsup
n→∞

(qn)
1/n = lim

k→∞

(qnk)
1/qnk . (6)

The last expression will not change if we take an arbitrary infinite subsequence of {nk} instead of {nk} itself. By
Corollary 2 there exists with probability one an infinite subsequence {n′k} such that ξn′k

= 1 for every k. Hence,
by (6), with probability one

1/R(ξ )
v = limsup

k→∞

(qn(ξ ))
1/n ≥ 1/Rv.

But it is clear that the converse inequality holds, since qn(ξ )≤ qn for all n. Hence R(ξ )
v = Rv with probability 1,

which proves the theorem.
Let us now find out how Φ

(ξ )
v,v|v(G,W ,R(ξ )

v ) behaves when the process ξ can be treated as a small random
perturbation of the process that identically equals one. Consider a sequence of stationary random processes
ξ (k) = {ξ (k)

i , i ∈ Z} defined on the above-described sequence space (Ω,F ), and for k = 1,2, . . . , introduce the
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probability measure P(k), corresponding to ξ (k). Assume that there exists an increasing sequence of positive
integers rk such that

lim
k→∞

P(k)(ξ
(k)
1 = · · ·= ξ

(k)
rk = 1) = 1. (7)

This will be referred to as the dominating 1 (D 1) condition. If ξ
(k)
i , for every k, are independent random variables

such that ξ
(k)
i = 1 with probability pk and ξ

(k)
i = 0 with probability 1− pk, then the D 1 condition is satisfied

when limk→∞ pk=1. It is easy to define a sequence of stationary Markov chains for which it is also obeyed. But
there are Markov chains, even mixing ones, without this property. On the other hand, it is obeyed by some
non-Markovian stationary processes.

Theorem 4. Let (G,W ) be a stable positive loaded graph, where G is a linear graph defined in § 2, {ξ (n)}
a sequence of lightly mixing stationary random processes with values 0 and 1 satisfying the D 1 condition,
and {(G,W ,ξ (n)‘)} the corresponding sequence of random loaded graphs. Then the random loaded graph
(G,W ,ξ (n)) is stable positive with probability one as n is large enough.

Proof. In what follows we mean that all relations between random variables hold with probability one. Since
(G,W ) is stable positive, we have ∑

∞
n=1 qn · (Rv)

n > 1 (see (1) and Definition 1), and one can choose an n0 ∈ N
such that ∑

n0
n=1 qn · (Rv)

n > 1. The D 1 condition enables one to find k with rk ≥ n0 (see (7)). Then qn(ξ
(k)) = qn

for all n≤ n0, and hence ∑
n0
n=1 qn(ξ

(k)) · (Rv)
n > 1. From Theorem 3 we know that R(ξ (k))

v = Rv. Therefore,

Φv,v|v(G,W ,R(ξ (k))
v ) =

∞

∑
n=1

qn(ξ
(k)) · (R(ξ (k))

v )n > 1,

i.e., the random loaded graph (G,W ,ξ (k)) is stable positive with probability one.

Remark 2. It is easy to see that if (G,W ) is unstable positive, null recurrent, or transient, while ξ = (ξi, i∈Z) is
a lightly mixing stationary random process with values 0 and 1 such that P(ξi = 0)> 0, then the random loaded
graph (G,W ,ξ ) is transient with probability one (in view of Theorem 3). Thus among the linear loaded graphs
we defined in Section 2 only the stable positive and transient classes are stable with respect to the small random
perturbations of the above type.

The author is indebted to V.I. Oseledets and V.V. Ryzhikov for critical information relating to Lemma 1 and
thanks the referee for useful suggetions.
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