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Abstract
In this paper, computational algorithm with the aid of Mathematica software is specifically designed for the gravitational
two–body problem. Mathematical module is established to find the position and velocity vectors. Application of this
module for different kind of orbits (elliptic, parabolic and hyperbolic) leads to accurate results, which proved module
efficiency and to be skillful. The classical power series method is to be utilized as the methodology.
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1 Introduction

The classical two–body problem is the dynamical system which describes the motion of two objects. Of
course, it is the simplest and only integrable system within frame of the classical Newtonian potential between
two–bodies is applied. There are many applications in mathematical astronomy or in engineering and physical
sciences can be analyzed within the frame work of two–body systems, it can be used in both quantum mechanics
(particles motion) and celestial mechanics (Stars motion)

The multivariate of the perturbed forces in inner and outer space change the two–body from a simple and
integrable system to one is complex and is not integrable. Thereby the analytical solutions will be invalid in
most real applications. The analysis of two–body problem under the effect of many perturbed forces have
received a comprehensive an extended study in the literature space dynamics. For example, the perturbed two–
body problem by radiation pressure force and many types of drag forces or both together has been investigated
[6,9–12]. Furthermore, the analytical solutions of the satellite motion within frame of non– sphericity and zonal
harmonics perturbations effect have been studied by [7, 8]. [4] have studied also the dynamics of anisotropic
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Kepler problem with small anisotropy. They proved that at every energy level the anisotropic dynamical system
has two periodic orbits.

The perturbed two–body system is not limited to the perturbations of either radiation pressure and drag force
or the non–sphericity of the bodies. But the other bodies can be taken as a perturbed forces for the motion of
two–body system [5]. Another consequence of two–body problem is that the three-body problem can be reduced
to the system of two–body, if we consider either the third body has mass equals zero or if it moves to infinity
while the other primary does not. There are a considerable work have been constructed to find the periodic
solution for many perturbed two–body systems, see for details [1, 2, 13]. In addition the two–body problem
within frame of the corrections law of Newtonian inverse square law of gravitation can be studied as a perturbed
model [3].

The motion of planets and asteroids is a very important field of interest in astronomy, and space dynamics. It
can be formulated as a dynamical system of differential equations based on the Newton’s laws of gravitation [14].
The law states that everybody attracts every other body along a line intersecting the two bodies with a force
equals to F = Gm1m2/r2, where F is the force between the two bodies, G is the gravitational constant, m1 is the
mass o f the first body, m2 is the mass of the second body, and r the distance between the centres of masses of
the bodies [15].

Additionally, the Newtonian gravitation can be extended to N−bodies by simply summing the forces [16–
18]. Moreover, various analytical and numerical methods have been used to examine such problems of celestial
mechanics comprising of the two–body, three–body and the generalized N−body problem, see [19–26]. But
we aim in this paper to computationally tackle the gravitational two–body problem with the application of the
power series method [14].

2 Vector two–body equation

We start off this section by first introducing the equation of the gravitational N−body problem as [16]

r̈i =−
G
r3

i
(m0 +mi)r̈i−G

N

∑
j=1, j 6=i

m j{
ri− r j

r3
i j

+
r j

r3
j
}, i = 1,2, ...,N (1)

where r̈i is the position vector of mi relative to m0, mi and m0 are masses of ith body and central body, respectively
and G is the universal constant of gravitation. Note that if all masses are equal zero except m0,mi, then Eq. (1)
becomes

r̈+
µ

r3 r = o (2)

where µ = G(m0 +mi). The above equation is called the classical vector two–body equation.

3 Power series solution

3.1 Lagrange’s fundamental invariants

In favour of Eq. (2), the Lagrange’s fundamental invariants ε , λ and ψ are defined by [14, 27, 28]

ε =
µ

r3

λ =
1
r2 (r ·v)

ψ =
1
r2 (v ·v)

(3)
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where v = ṙ.

Lagrange’s invariants in Eqs.(3) satisfy the following differential equations [14, 27, 28]

ε̇ +3ελ = 0

λ̇ +2λ
2 +(ε−ψ) = 0

ψ̇ +2λψ +2λε = 0

3.2 Basic differential equations

Here, to analyze the gravitational two-body problem by formulate and examine the following nonlinear
differential equations [14, 27, 28]

q̈+ εq = 0

ε̇ +3ελ = 0

λ̇ +2λ
2 +(ε−ψ) = 0

ψ̇ +2λψ +2λε = 0

(4)

In analyzing the previous system of nonlinear differential equations, with employ the power series method [16].
Thus, leads to the power series expansion of the four dependent variables in Eqs. (4) as follows:

q(t) =
∞

∑
n=0

qn(t− t0)n

ε(t) =
∞

∑
n=0

εn(t− t0)n

λ (t) =
∞

∑
n=0

λn(t− t0)n

ψ(t) =
∞

∑
n=0

ψn(t− t0)n

(5)

Upon substitution of Eqs. (5) to Eqs. (4) and then solve for the coefficients of qn, εn, λn and ψn, we get the
following recurrence relations

qn+2 =−
1

(n+1)(n+2)

n

∑
p=0

εpqn−p

εn+1 =−
3

(n+1)

n

∑
p=0

εpλn−p

λn+1 =
1

(n+1)

(
ψn− εn−2

n

∑
p=0

λpλn−p

)

ψn+1 =−
2

(n+1)

n

∑
p=0

λp (εn−p +ψn−p)

(6)

Also with the recurrence relations above taking the following starting values

q0 ≡ q(t0), q1 ≡ q̇(t0), ε0 ≡ ε(t0), λ0 ≡ λ (t0), ψ0 ≡ ψ(t0)
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Furthermore, the values of q0 and q1 are known from the formulated problem, while ε0, λ0 and ψ0 to be deter-
mined from r0 ≡ r(t0) and v0 ≡ v(t0) as follows

ε0 =
1
r3

0
µ

λ0 =
1
r2

0
(x0ẋ0 + y0ẏ0 + z0ż0)

ψ0 =
1
r2

0
(ẋ2

0 + ẏ2
0 + ż2

0)

(7)

with r0 =
√

x2
0 + y2

0 + z2
0.

In the next section with a help of Eqs. (6,7), the computational values of qn are determined for n = 9 using a
designed algorithm which is called QPS, see Appendix A for algorithm.

3.3 f and g functions

Here, two Lagrangian coefficients functions f and g [14,27] introduced instead of one that led to the follow-
ing position vector

r = f r0 +gv0 (8)

where r0 and v0 are the initial values of the position and velocity vectors. Note also that the velocity vector is
given by

v = ḟ r0 + ġv0 (9)

Moreover, it is remarkable that Eqs. (8, 9) satisfies the first equation in Eq. (4) with the following initial condi-
tions [14, 27]

q(t0) =

{
1 q = f
0 q = g

dq(t0)
dt

=

{
0 q = f
1 q = g

As in the above, using the power series method to get the relation recursively. The power series expansion of
these functions take the form [27]

f =
∞

∑
n=0

fn(t− t0)n

g =
∞

∑
n=0

gn(t− t0)n

together with the starting values [14, 27]

f0 = 1 f1 = 0

g0 = 0 g1 = 1

Also in the next section, analytical computations determine for the values of fn and gn for n = 10 using a
designed algorithm called FGPS, see Appendix B for the algorithm.

https://www.sciendo.com


Mathematical Algorithm for Solving Two-Body Problem 221

4 Results and Discussion

In this chapter, computational values determine for the values qn+2 for n=9, fn and gn for n = 10 using
Mathematica software with designed computational algorithms QPS and FGPS are given in Appendix A and
Appendix B, respectively.

Furthermore, a mathematical modules establish to find the scalar values of the position and velocity vectors
of the two-body motion via Mathematica software with the designed computational algorithm RVPS is given in
Appendix C then we apply this module for different kinds of orbits (elliptic, parabolic and hyperbolic).

4.1 Values of qn

With the application of QPS algorithm for n = 9, the following symbolic expression of the q’s coefficients
are

q0 = q0

q1 = q1

q2 =
1
2
(−q0)ε0

q3 =
1
6
(−ε0)(q1− (3q0)λ0)

q4 =
1

24
ε0
(
(6q1)λ0 +q0

(
3
(
ψ0−5λ

2
0
)
−2ε0

))
q5 =

1
120

ε0
(
((15q0)λ0)

(
7λ

2
0 +2ε0−3ψ0

)
+q1

(
9
(
ψ0−5λ

2
0
)
−8ε0

))
q6 =

1
720

ε0
(((

30q1
)
λ0
)(

14λ
2
0 +5ε0−6ψ0

)
−q0

(
22ε

2
0 +
(
6ε0
)(

70λ
2
0 −11ψ0

)
+45

(
21λ

4
0 +ψ

2
0 −
(
14λ

2
0
)
ψ0
)))

q7 =
1

5040
(
ε0
(((

63q0
)
λ0
)(

165λ
4
0 +

(
100ε0

)
λ

2
0 +12ε

2
0 +25ψ

2
0 −
(
6
(
25λ

2
0

+6ε0
))

ψ0
)
−q1

(
172ε

2
0 +
(
36ε0

)(
70λ

2
0 −11ψ0

)
+225

(
21λ

4
0 +ψ

2
0

−
(
14λ

2
0
)
ψ0
))))

q8 =
1

40320
(
ε0
(((

126q1
)
λ0
)(

495λ
4
0 +

(
350ε0

)
λ

2
0 +52ε

2
0 +75ψ

2
0 −
(
18
(
25λ

2
0

+7ε0
))

ψ0
)
+q0

(
−584ε

3
0 +
(
36ε

2
0
)(

73ψ0−560λ
2
0
)
−
(
54ε0

)(
1925λ

4
0

+67ψ
2
0 −
(
1120λ

2
0
)
ψ0
)
−315

(
429λ

6
0 −5ψ

3
0 +
(
135λ

2
0
)
ψ

2
0

−
(
495λ

4
0
)
ψ0
))))

q9 =
1

362880
(
ε0
(((

15q0
)
λ0
)(

2368ε
3
0 +
(
444ε

2
0
)(

77λ
2
0 −24ψ0

)
+
(
18ε0

)(
7007λ

4
0 +827ψ

2
0 −
(
5698λ

2
0
)
ψ0
)
+189

(
715λ

6
0 −35ψ

3
0

+
(
385λ

2
0
)
ψ

2
0 −
(
1001λ

4
0
)
ψ0
))
−q1

(
7136ε

3
0 +
(
108ε

2
0
)(

1785λ
2
0

−232ψ0
)
+
(
432ε0

)(
1925λ

4
0 +67ψ

2
0 −
(
1120λ

2
0
)
ψ0
)
+2205

(
429λ

6
0

−5ψ
3
0 +
(
135λ

2
0
)
ψ

2
0 −
(
495λ

4
0
)
ψ0
))))
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4.2 Values of fn

With the application of FGPS for n = 10; T = 1,2, the following symbolic expressions of the f ’s are

f0 = 1

f1 = 0

f2 =−
ε0

2

f3 =
ε0λ0

2

f4 =
1
24

(−ε0)
(
15λ

2
0 +2ε0−3ψ0

)
f5 =

1
8
(ε0λ0)

(
7λ

2
0 +2ε0−3ψ0

)
f6 =

1
720

(−ε0)
(
22ε

2
0 +(6ε0)

(
70λ

2
0 −11ψ0

)
+45

(
21λ

4
0 +ψ

2
0 −
(
14λ

2
0
)

ψ0
))

f7 =
1
80

(ε0λ0)
(
165λ

4
0 +(100ε0)λ

2
0 +12ε

2
0 +25ψ

2
0 −
(
6
(
25λ

2
0 +6ε0

))
ψ0
)

f8 =−
1

40320
(
ε0
(
584ε

3
0 +
(
36ε

2
0
)(

560λ
2
0 −73ψ0

)
+
(
54ε0

)(
1925λ

4
0 +67ψ

2
0

−
(
1120λ

2
0
)
ψ0
)
+315

(
429λ

6
0 −5ψ

3
0 +
(
135λ

2
0
)
ψ

2
0 −
(
495λ

4
0
)
ψ0
)))

f9 =
1

24192
((

ε0λ0
)(

2368ε
3
0 +
(
444ε

2
0
)(

77λ
2
0 −24ψ0

)
+
(
18ε0

)(
7007λ

4
0

+827ψ
2
0 −
(
5698λ

2
0
)
ψ0
)
+189

(
715λ

6
0 −35ψ

3
0 +
(
385λ

2
0
)
ψ

2
0

−
(
1001λ

4
0
)
ψ0
)))

f10 =−
1

3628800
(
ε0
(
28384ε

4
0 +
(
48ε

3
0
)(

31735λ
2
0 −3548ψ0

)
+
(
54ε

2
0
)(

245245λ
4
0 +6559ψ

2
0 −
(
126940λ

2
0
)
ψ0
)
+
(
90ε0

)(
420420λ

6
0

−3461ψ
3
0 +
(
107514λ

2
0
)
ψ

2
0 −
(
441441λ

4
0
)
ψ0
)
+14175

(
2431λ

8
0 +7ψ

4
0

−
(
308λ

2
0
)
ψ

3
0 +
(
2002λ

4
0
)
ψ

2
0 −
(
4004λ

6
0
)
ψ0
)))

4.3 Values of gn

Again with the application of FGPS for n = 10; T = 1,2, the following symbolic expressions of g’s coeffi-
cients are

g0 = 0

g1 = 1

g2 = 0

g3 =−
ε0

6

g4 =
ε0λ0

4
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g5 =
1

120
(−ε0)

(
45λ

2
0 +8ε0−9ψ0

)
g6 =

1
24

(ε0λ0)
(
14λ

2
0 +5ε0−6ψ0

)
g7 =−

ε0
(
172ε2

0 +(36ε0)
(
70λ 2

0 −11ψ0
)
+225

(
21λ 4

0 +ψ2
0 −
(
14λ 2

0
)

ψ0
))

5040

g8 =
1

320
(ε0λ0)

(
495λ

4
0 +(350ε0)λ

2
0 +52ε

2
0 +75ψ

2
0 −
(
18
(
25λ

2
0 +7ε0

))
ψ0
)

g9 =−
1

362880
(
ε0
(
7136ε

3
0 +
(
108ε

2
0
)(

1785λ
2
0 −232ψ0

)
+
(
432ε0

)(
1925λ

4
0

+67ψ
2
0 −
(
1120λ

2
0
)
ψ0
)
+2205

(
429λ

6
0 −5ψ

3
0 +
(
135λ

2
0
)
ψ

2
0

−
(
495λ

4
0
)
ψ0
)))

g10 =
1

120960
((

ε0λ0
)(

15220ε
3
0 +
(
12ε

2
0
)(

14938λ
2
0 −4647ψ0

)
+
(
81ε0

)(
7007λ

4
0

+827ψ
2
0 −
(
5698λ

2
0
)
ψ0
)
+756

(
715λ

6
0 −35ψ

3
0 +
(
385λ

2
0
)
ψ

2
0

−
(
1001λ

4
0
)
ψ0
)))

4.4 Applications on orbits

With the application of RVPS algorithm on different kinds of orbits with the initial values components for
the position and velocity vectors is given by then, we get the final scalar values of the position and velocity
vectors

5 Conclusion

The dynamical system of the two–body problem is addressed, by applying the mathematical modules, which
are established to find the scalar values of the position and velocity vectors of the two–body motion. The
Application of this module for different kinds of orbits (elliptic, parabolic and hyperbolic) leads to accurate
results, that prove module efficiency.

Appendix A: QPS

* Purpose
To generate n symbolic expressions of the q’s coefficients of the time power series solution ∑

∞
i=0 qi(t− t0)i

of the single harmonic oscillator q̈+ εq = 0.

* Input
q0,q1,ε0,λ0,ψ0,n

* Output
n symbolic expressions of the q’s coefficients.
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Table
1

T
he

initialvalues
com

ponents
forthe

position
and

velocity
vectors

O
rbit

Type
x

0 (km
)

y
0 (km

)
z0 (km

)
ẋ

0 (km
/s)

ẏ
0 (km

/s)
ż0 (km

/s)
Elliptic

5096.530625
3997.328251

−
1767.35171

4.683016085
0.602386847

4.217758697

0.462581670
0.063366053

0.94365569
−

0
.386104670

0.485499770
0.538650150

0.467585950
0.060430695

0.94778613
−

0
.343550500

0.464286580
0.582594050

Parabolic

−
1616.940994

7756.699643
−

7712.188395
−

0
.6730303137

8.4349309570
0.705548375

0.201227080
−

0
.449587910

−
0.796666320

1.1039007000
0.4558421100

−
0
.841963950

0.000786356
−

0
.105595880

−
1.121732800

0.9715977800
0.4937057600

−
0
.766396930

Hyperbolic

000010000
0.0000000

0.00000000
0.00000000

0.00000000
9.20000000

−
1.61740150

−
1.0018533

−
0.62794583

0.56325092
0.19817751

−
1.37540280

−
0.66846076

−
2.0580722

−
1.96420100

0.78874624
0.74895884

−
0.78257152
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Table 2 The final scalar values of the position and velocity vectors

Orbit
Type r(km) v(km/s)

E
lli

pt
ic 1.19702000 0.64264300

1.19989670 0.66492594

0.42298299 1.87403310

Pa
ra

bo
lic 2.1706300 0.95989400

55.873377 0.18921011

55.8131610 0.18930981

H
yp

er
bo

lic 1.6526200 1.1352500

226.74156 1.1219743

213.82559 1.0585222

* Module list.

Module
[
{},Do

[{
qn+2 =−

∑
n
i=0 εiqn−i

(n+1)(n+2)
,εn+1 =−

3∑
n
i=0 εiλn−i

n+1
,

λn+1 =
−2∑

n
i=0 λiλn−i +ψn− εn

n+1
,

ψn+1 =−
2∑

n
i=0 λi

(
ψn−i + εn−i

)
n+1

,{n,0,m}
]]

Appendix B: FGPS

* Purpose
To generate n symbolic expressions of the f ’s or g’s coefficients of the time power series of the Lagrange
functions f or g.

* Input
T:A positive integer takes the value 1 or 2, such that:

• T = 1 if it is required to find the f ’s coefficients,
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• T = 2 if it is required to find the g’s coefficients,
ε0,λ0,ψ0,n

* Output
n symbolic expressions of the f ’s or g’s coefficients according to the value of T .

* Module list.

Module
[
{},Which[T == 1,Goto[1],T == 2,Goto[2]];

Label[1];q0 = 1;q1 = 0;Goto[3];

Label[2];q0 = 0;q1 = 1;

Label[3];Evaluate
[
QPS

(
q0,q1,ε0,λ0,ψ0,m

)]]
Appendix C: RVPS

* Purpose
To generate the position and velocity values for any orbit.

* Input
x0, y0, z0, ẋ0, ẏ0, ż0, µ , m, t and t0.

* Output
The position and velocity values for any orbit.

* Module list.

Module
[
{},r0 =

√
x2 + y2 + z2;ε0 =

µ

r3
0

;λ0 =
xxd+ yyd+ zzd

r2
0

;

ψ0 =
xd2 +yd2 + zd2

r2
0

;τ = t− t0;

F =
m

∑
j=0

q jτ
j;Fd =

m

∑
j=0

jq jτ
j−1;

G =
m

∑
j=0

q jτ
j;Gd =

m

∑
j=0

jq jτ
j−1;

xx = Fx+Gxd;yy = Fy+Gyd;zz = Fz+Gzd;

r =
√

xx2 +yy2 + zz2;

xxd = Fdx+Gdxd;yyd = Fdy+Gdyd;zzd = Fdz+Gdzd;

v =
√

xxd2 +yyd2 + zzd2]]
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