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Abstract

In the present manuscript, Crank Nicolson finite difference method is going to be applied to get the approximate solutions
for the fractional Burgers equation. The fractional derivative used in this equation is going to be taken into consideration
in the Caputo sense. The L1 type discretization formula is going to be applied to this equation. For checking the efficiency
of proposed methods, the error norms L, and L. have at the same time been calculated. Those newly got solutions using
the presented method illustrate the easy usage and efficiency of the approach presented in this manuscript.
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1 Introduction

Fractional order integral and derivative are the generalizations of classical integral and derivative concepts
which are examined in detail by Leibniz and Newton. The concepts of fractional integral and derivative are as
old as integer order integral and derivative concepts, and the fractional derivative expression is first mentioned by
Leibniz’s letter to L'Hospital in 1695 [1]. In the letter, Leibniz’s question was ’Can the integer order derivatives
be generalized to fractional order derivative’. This is known as the first emergence of the concept of fractional
differential. In addition to Leibniz, many scientists such as Liouville, Riemann, Weyl, Lagrange, Laplace,
Fourier, Euler and Abel have worked on the same subject [2]. Many definitions are given in the literature for
fractional derivative. Some of these are Riemann-Liouville, Caputo, Grilnwald-Letnikov, Wely, Riesy fractional
derivatives [3]. Some studies have shown that these definitions are equivalent under certain conditions. There
is more than one derivative definition in the fractional analysis, making it possible to use the most suitable one
according to the problem and thus to get the best solution for this problem.
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However, if the derivative is described as how the derivative of the fractional order is defined, the expression
that when the order is selected being equal to the integer is the same as the integer order of the derivative.

The description of Caputo fractional derivative was first introduced by the Italian mathematician M.Caputo
in the 1960s to eliminate the problem of the calculation of Riemann-Liouville definition of initial values in
Laplace transform applications. The fundamental advantage of the Caputo approach is the fact that the appro-
priate initial conditions defined for Caputo fractional differential equations are identical. Therefore, in recent
studies in the literature, in the exact and approximate solutions of fractional differential equations, instead of
Riemann-Liouville fractional derivative operator, Caputo fractional derivative operator has been more preferred.
Recently, studies on the solution of fractional differential equations have increased. There are several studies
about fractional problems and their computational accuracy in the literature [4—6]. Since the exact solution
for many of the fractional differential equations are not found, various methods have been developed to find
approximate or numerical solutions.

Definition 1. f(z) function continuously and can be differentiated, and for n — 1 < y < n Caputo means for the
fractional order derivatives;

1 A
CDY — /
PO Sy ot
is defined as above.

Definition 2. Finite difference methods are widely used in the solution of many linear and nonlinear partial
differential equations. In general, the following way is followed in applying a finite difference method to a
partial differential equation:

The given solution area of the problem is divided into meshes with geometric shapes and approximate
solution for the problem is calculated on the nodes of each mesh. Proper finite difference approaches are obtained
by using Taylor series instead of derivatives in differential equations. Thus, the present problem of solution of
the differential equation has been converted into the problem of the solution of an algebraic system of equation
consisting of difference equations. Thus the algebraic equation system obtained now may be solved easily by
one of the direct or iterative methods.

2 Numerical Solution of the Model Problem

In this manuscript, we will deal with the nonlinear time fractional Burgers equation with the given initial
and boundary conditions as a test problem presented as

DY u+uuy — Vi = f(x,1)
u(x,0)=g(x), 0<x<1. (1)
u(0,¢) =hy(t),u(l,t) =hy(t), t >0

in which v is the viscosity parameter, u (x,#) represents the speed of fluid media at time-space position (x,) and

t
Dlu(x,t) = 1“(11—7/)/,1 (t—r)‘yau((;:f)dr, 0<y<l1
is the fractional derivative given in the Caputo’s form [1,7]. The Burgers’ equation is the one of the most impor-
tant differential equations arising in applied sciences and mathematical physics and has interesting applications
in physics and astrophysics. The Burgers’ equation examines the modeling of fluid mechanics, diffusive waves
in fluid dynamics and also it has many application in the theory of shock waves, mathematical modeling of
turbulent fluid, sound waves in a viscous medium and so on. In Mathematical modelling, fractional derivatives
provide more accurate and applicable models for real life problems. For the same reasons, recent researches
have concentrated on investigating and proposing models on Fractional Burgers Equations. During the years,
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this attractive modelling ability of the equation have taken attention of most of scientific people, many important
and useful papers have brighten science world. In this part of our manuscript, we want to remind some of them;
Esen and Tasbozan [8] have investigated numerical solutions of the equation via quadratic B-spline Galerkin
method which is an useful and efficient type of finite element approach, then they have obtained more accurate
numerical solutions with using collocation points and raising the degree of basis in [9]. Yaseen and Abbas,
in [12], have used collocation method with the help of cubic trigonometric B-splines basis. Qui ef al [10] have
proposed an implicit difference scheme with L1 algorithm which is a specific time discretization of the Caputo
fractional derivative. A numerical method focused on a finite difference scheme in terms of time and the Cheby-
shev spectral collocation method in terms of space is used to get approximate solutions of the Burgers’ equation
in [11]. Saad and Al-Sharif [16] have applied variational iteration method for solving the equation considering
several initial conditions. Asgari and Hosseini [13] have focused on generalized time fractional Burger type
equation, they put forward two semi implicit Fourier pseudospectral approximations for seeking solutions of the
equation. As a different view to the mentioned equation, Khan et al [14] are used the generalized version of
the differential transform method and homotopy perturbation method. Lombard and Matignon [15] present an
article for better understanding the competition between nonlinear effects and nonlocal relaxation.

Throughout this manuscript, in order to contribute to literature, we will consider numerical solutions of the
time fractional Burgers equations using finite difference approach. For the presented numerical solutions, to get
a Crank Nicolson finite difference scheme to solve the time fractional Burgers equation as utilized in explicit
difference method in Ref. [17], we will also discretize the derivative respect to time using the widely-known L1
formula [18]

an N Al‘ m—
ot tn: Zby (tik) = f(tas-1)], O0<y<I )

where
bl = (k+1)"77 k7,

2.1 Crank Nicolson Finite Difference Scheme

Let’s assume the fact that the solution domain for the present problem 0 < x < 1 is discretized into regular
grids with equal length Ax in the x- direction and also with equal time intervals A7 over time ¢ such that x; = jAx,
J=1(1)M —1 and 1, = nAt, n = 0(1)N and the numerical solution of u at the grid point (jAx,nAt) will denote
by U} throughout the study. Using L1 formula in Eq.( 2) instead of Caputo derivative in Eq.(1) and utilizing the
following discretization in place of the terms uu, and u,, respectively:

d"u(x,1)
oY

At y m—1
:r((z)— Zby[U"" U"“], 0<y<l1

In
1 n +1 +1
it Un+ j+l Ujfl + Y U]n+1 U}"il
* 2 2Ax 2 2Ax

1 1 1
. ot vty urt! o -0 U
. Z(Ax)2 2(Ax)?

We are able to get the following system of algebraic equations
1 1 1
Uit (s —ai07) + U7 (1 s (07 —00)) U (i + )
= 2L, +up (1- 2% )+ U+ 8P (k) — X B [Urt - ]

where S = At'T'(2 — 7).

1

and
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3 Numerical Results

Numerical results obtained for the Eq. (1) are got using the Crank Nicolson finite difference methods. The
efficiency of the present methods are tested using the error norm L,

Lo=|

M 2
uexact _ (UN)jH2 — Ax ZO (u;xact _ (UN)J')
]:

and also the maximum error norm L.

L=

uexact _ (UN)jH = m]qx

uj_xact _ (UN)j‘ )

Example 1. Firstly, we are going to take time fractional Burgers equation (1) given with the following appro-
priate boundary conditions
U(0,t)=0,U(1,t) =0,t>0
and the initial condition as
U(x,0)=0,0<x<1.
The term f(x,t) is of the form [9]
2277 sin (27x)
rG-v

The analytic solution for the present problem is described as

+27r* sin (27x) cos (27x) 4+ 4va’t? sin (27x) .

f(xvt) =

U (x,t) = t*sin (27x).

A comparison for the exact and approximate solutions got by the Crank-Nicolson methods for fractional Burgers
equation for the values of y = 0.5, At = 0.00025 and ty = 1 for various values of M is presented in Table 1. As
one could clearly see from this table, the decreasing values of the error norms Ly and L. validate this comment.
In Table 2, the approximate solutions obtained for values of M have been compared with those in Ref. [9]. Those

Table 1 The error norms L, and L.. of the time fractional Burgers equation problem using the Crank Nicolson finite
difference method with v = 1.0, Ar=0.00025 and =1 for various values of M

N=10 N=20 N =40 M =380
Ly x 10° 22.64087326 5.44483424 1.22007333 0.16846258
L. x 10°  30.49445082 7.70051177 1.72552915 0.23826679

error norms for each values of M got by this method are smaller than those presented in Ref. [9].

Table 2 A comparison of the errors for Example 1 at ¢4=1
N =40 N =280 N =100
Present [9] Present [9] Present [9]
L, x 10>  1.22007333 1.224329 0.16846258 0.177703 0.04239382 0.052299
Lo x10° 1.72552915 1.730469 0.23826679 0.253053 0.05996900 0.076541

The solutions obtained at different times in Fig. 1 were given graphically with exact solutions. The results
obtained at different times were found to be too close to each other on the graphics.

In Table 3, solutions for different viscosity values were given for values of vy = 0.5, Ar=0.00025, t; =1.0,
N=40. It was observed that the errors increased gradually at small values of viscosity.

Table 4 presents the error norms obtained at various selected values of 7y .
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U(x,t)

Fig. 1 A comparison of the analytic and approximate solutions using the Crank-Nicolson method for v=1.0, N=40, y=0.5
and Ar = 0.0025 at various values of final time

Table 3 The error norms L, and L., of Example 1 for y=0.5, At=0.00025, s =1.0, N=40 and various values of v
v=1 v=0.5 v=0.1 v =0.01 v =0.001
L, x 10> 0.41761157 0.51259161 1.03928112 2.13880314 6.46231244
L. x 10° 0.59040780 0.72342731 1.51280185 4.65707275 22.95302718

Table 4 The error norms L, and L., of Example 1 for N=120, ¢y = 1.0, At = 0.00025 for different values of y
Y=0.1 Y=0.25 Y=0.75 Yy=0.9
L, x10° 0.02411976 0.02490518 0.02669547 0.02579288
Lo x 10> 0.03409905 0.03521115 0.03774592 0.03646791

Example 2. Secondly, we will consider the model problem with the appropriate boundary conditions
U,t)=1>U(1,t) = —t*,t >0

and the initial condition as
U(x,0)=0,0<x<1.

The term 2y (1)
2t Vcos (mx
flrn) = T2
WO="F5y)

and the analytic solution for the problem

— mr* cos (7x) sin (7x) + va?e? cos (7x)

U(x,t) = 1* cos(mx).

In Table 5, for various values of N, the error norms obtained for Example 2 have been illustrated. In the
table, one can obviously see that the improvement in numerical solutions has been observed as expected for the
increasing values of N.
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Table 5 Comparison of results at 7, = 1.0 for y = 0.5, At = 0.0001, v = 1.0 and various mesh sizes
N=10 N =20 N =40 N =280
L, x 10> 0.81667090 0.23594859 0.09215464 0.05901177
Lo x10% 1.13678094 0.32086237 0.12245871 0.09790576

Table 6 Comparison of results at 7, = 1.0 for v=1, N = 40 and various time steps

At =0.0001 Ar=0.00025 Ar=0.0005 Ar=0.001 Ar=0.0025 Ar=0.005
Lo x10° 0.09215464  0.16142590  0.27906906 0.51583267 1.22775834 2.41506007
L. x10° 0.12245871  0.24577898  0.47478371 0.93280810 2.30696715  4.59744900

In Table 6, the error norms obtained for different values of At have been given for values of v = 1.0,
Ax = 0.025 and y=0.5. As the At values decreased, it was observed that the errors also decreased accordingly.
In Figure 2, the solutions of Problem 2 obtained at different times for values of v = 1.0, Ax =0.025, y=10.5
and At = 0.0025 have been presented together with their analytical values.

| | | $—6-—o
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 2 A comparison of the analytic and approximate solutions using the Crank-Nicolson method for v = 1.0,
Ax =0.025, Y= 0.5 and Ar = 0.0025 at different values of final time

Example 3. Lastly, we consider the model problem with the boundary conditions
U0,0)=>,U(1,t) =et*>,t >0

and the initial conditions as
U(x,0)=0,0<x<1.

The function f(x,t) is of the following form
212 e

A
r@-vy

fxt) =
The analytical solution of the problem is given by
Ul(x,t) =12¢".

In Table 7, approximate solutions obtained for values of ty = 1.0 and , Ax = 0.025 have been given at different
At values. It is obvious that the errors get smaller and smaller as At values get smaller and smaller. Figure 3
shows the numerical and exact solutions obtained at different times for Problem 3. It is seen that the results are
indiscriminately close to each other on the graphics.
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Table 7 Comparison of results at 7, = 1.0 for v = 1 , Ax = 0.025 and various time steps
At =0.0001 Ar=0.00025 Ar=0.0005 Ar=0.001

Ly x 10°  0.08344454  0.22252258  0.45497994  0.92040447
L. x10°  0.23648323  0.59722584  1.19848941 2.40107923

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 3 A comparison of the analytic and approximate solutions using the Crank-Nicolson method for v = 1.0, N = 40,
Y= 0.5 and Ar = 0.0025 at different values of final time

4 Conclusions

As a conclusion, in the present study the numerical solutions of the time fractional Burgers equation have
been obtained by using finite difference method based on Crank-Nicolson discretization. The obtained results
are compared with analytic and some of the numerical results available in the literature. This comparison has
shown that the presented method is efficient and effective and can also be used for a wide range of physical and
scientific applications. Moreover to illustrate the accuracy of the present method the error norms L; and L., are
computed and given in tables. Two test problems have been used to show the accuracy of the present scheme for
various values of parameters in the problem. Tables and figures show the results of these various tests and also
comparisons with some available results together with the error norms L, and L.. Finally the present method
has been shown to be applicable for more widely used fractional differential equations.
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