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Abstract

Aim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the
generalized (p,q)-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced.
Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of
fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite
general in nature and capable of yielding both known and new results.
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1 Introduction and Preliminaries

Fractional calculus is a very rapidly growing subject of mathematics which deals with the study of fractional
order derivatives and integrals. Fractional calculus is an efficient tool to study many complex real world
systems [1]. It is demonstrated that fractional order representation of complex processes appearing in various
fields of science, engineering and finance, provides a more realistic approach with memory effects to study
these problems. (see e.g. [2—14] and [15]). Among the research work developing the theory of fractional
calculus and presenting some applications, we have to point out some literature (see [16—20]). Kumar ef al. [21]
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analyzed the fractional model of modified Kawahara equation by using newly introduced Caputo-Fabrizio
fractional derivative. One also et al. [22] studied a heat transfer problem and presented a new non-integer model
for convective straight fins with temperature-dependent thermal conductivity associated with Caputo-Fabrizio
fractional derivative. Recently, one ef al. [23] presented a new fractional extension of regularized long wave
equation by using Atangana-Baleano fractional operator. In et al. [24] one introduced a new numerical scheme
for fractional Fitzhugh-Nagumo equation arising in transmission of new impulses. In et al. [25] one constituted
a modified numerical scheme to study fractional model of Lienard’s equations. Hajipour et al. [26] in their
work formulated a new scheme for class of fractional chaotic systems. Baleanu et al. [27] proposed a new
formulation of the fractional control problems involving Mittag-Leffler non-singular kernel. In another work,
Baleanu et al. [28] studied the motion of a Bead sliding on a wire in fractional analysis. Jajarmi et al. [29]
analyzed a hyperchaotic financial system and its chaos control and synchronization by using fractional calculus.

For mathematical modeling of many complex problems appearing in various fields of science and engi-
neering such as fluid dynamics, plasma physics, astrophysics, image processing, stochastic dynamical system,
controlled thermonuclear fusion, nonlinear control theory, nonlinear biological systems, quantum physics and
heat transfer problems, the fractional calculus operators involving various special functions have been used
successfully. There is rich literature available revealing the notable development in fractional order derivatives
and integrals (see, [1, 10, 11, 18-20,30-39]). Recently, Caputo and Fabrizio [40] introduced a new fractional
derivative which is more suitable than the classical Caputo fractional derivative for many engineering and
thermodynamical processes. Atangana [41] used a new fractional derivative to study the nature of Fisher’s
reaction diffusion equation. Riemann and Caputo fractional derivative operators both have a singular kernel
which cannot exactly represent the complete memory effect of the system. To overcome these limitations of the
old derivatives, very recently Atangana and Baleanu [42] presented a new non-integer order derivative having a
non-local, non-singular and Mittag-Leffler type kernel.

In recent years, many researchers have extensively studied the properties, applications and extensions of
various fractional integral and differential operators involving the various special functions. (for detail see
McBride [43], Kalla [44, 45], Kalla and Saxena [46, 47], Saigo [48-50], Saigo and Maeda [51], Kiryakova
[32,52], [53] etc).

For our present study, we recall the following pair of Saigo hypergeometric fractional integral operators.

Forx > 0,4,0,9 € C and R(A) > 0, we have

<I§,f’ﬁf(t)) (x) = XF;; /OX(XI))L_IZFI (7L+a,—19;/1;1— i) £(r)dr (1.1)
and
(B2 r)) (x) = r(lz) / =P, (A+0, =021 =) f(r)dr (1.2)

where the 2Fj(.), a special case of the generalized hypergeomteric function, is the Gauss hypergeometric
function.

The operator I(’}f‘ﬁ(.) contains the Riemann-Liouville Réx(.) fractional integral operators by means of the

following relationships:

(R.r0) 9= (157°70) 09 = 5 | =0 0y (13
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(Waet ) () = (22425 0) ) = g5 [ =" 00 (14)

It is noted that the operator (1.2) unifies the Erdélyi-Kober fractional integral operators as follows:

(B2 r0) ) = (B07r0)) () = XF&: JACEDAY (15)
10 _ (00 X T e |
(KE270) 00 = (2825 0) 0 = g5 | =0 poyar (1.6

The following lemmas proved in Kilbas and Sebastin [54] are useful to prove our main results.

Lemma 1. (Kilbas and Sebastian 2008) Let A, 6,0 € C be such that R(A) > 0,R(p) > max[0,R(c — V)], then

c F<p)r(p +9 - G) —0o—
(1) O = Sorp it e (7

Lemma 2. (Kilbas and Sebastian 2008) Let A,6,0 € C be such that R(A) > 0,R(p) < 1 +min[R(c), R(V)],
then

B To—p+1I(B—p+1) , o
A,0,9.p—1 _ p—o—1
<Ix7°° ! )(x)*r(1—p)r(l+o+ﬁ—p+1)x ' 18

The image formulas for special functions of one or more variables are very useful in the evaluation and
solution of differential and integral equations. Motivating by the above discussion, we developed new fractional
calculus formulas involving extended generalized Mathieu series.

The following familiar infinite series

Z ——5, (reRY), (1.9)
n=1(n

is called a Mathieu series. It was introduced and studied by Emile Leonard Mathieu in his book [55] devoted
to the elasticity of solid bodies. Bounds for this series are needed for the solution of boundary value problems for
the biharmonic equations in a two dimensional rectangular domain, see [56, Eq. (54), p. 258]. Several interesting
problems and solutions dealing with integral representations and bounds for the following generalization of the
Mathieu series, which is so-called generalized Mathieu series with a fractional power can be found in [57-60]:

+r2

Z n2+r2 T (u>0,7>0).

In [59],the authors derived the following new Laplace type integral representation series
R 3
Su(r)= e "k (t)dt, u> = (1.10)
U iruen b 2
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© J 1(kl‘)
oo (1) = Ht3y A2t 7
ll() kz::] kyi%

and Jy,(z) is the Bessel function. Motivated essentially by the works of Cerone and Lenard [61], Srivastava
and Tomovski in [62] defined a family of generalized Mathieu series

oo — 211
SKP (ra) = SEP (r{anys) = Z - (&, B p,r>0), (11D

(a% +r?)m
where it is tacitly assumed that the positive sequence
a=A{ay} ={a,a,..}

such that

limy,_coty, = o0

is so chosen that the infinite series in definition (1.11) converges, that is, that the following auxiliary series

> 1
n; al* P

is convergent.

Definition 1. (see [63, Eq. (6.1), p. 256] ) The extended Beta function B,.,(x;y) is defined by

1
By q(x,y) = / P (1 =10 Ep g, (1.12)
0
(x,y,p,q € C; min{R(x),R(y)} > 0,min{R(p),R(q)) > 0}

where E,, ,(t) is defined by

(p,q € C and min{R(p),R(q)} > 0).

In particular, Chaudhry et al. [64, p. 591, Eq. (1.7)], introduced the p—extension of Euler’s Beta function
B(x,y):
1 )
B,(x,y) :/ 1 = eT 0 dr
0
(%R(p) >0)
whose special case, when p =0 (or p = ¢ =0 in (1.12)), is the familiar Beta integral
1
B(x,y) :/ =) dr
0
(R(x),R(y) >0).

Recently, Mehrez and Tomovski [65] introduces the (p,q)-Mathieu-type power series in terms of the ex-
tended Beta function (1.12), which is defined as:
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i 2ap (0),Bpg(t+n,E—1) 2"
B(t,§ —1)(a%+r?)* n! (1.13)
(na,B,v>0;§ >1>0;p,qcCmin{R(p),R(q)} > 0;]z| < 1)

Sugrg(r;a;p,q;z) =

n=1

In particular case when p = g; we define the p-Mathieu-type power series defined by

2a} (8)uBp(t+n,E 1) "

%P ca:pi7) = 1.14
s P = L g g (114
(T,a,ﬁ,ﬁ,’é,r>0,p€C, |Z| S 1)
The function S g .y (7;a; p;z) has many other special cases. If we set p = g = 0; we get
= 24 (),
S 1a;z) = 1.15
o6 = L (g () (L1
(t,a,B8,9,6 >0,lz| <1)
On the other hand, by letting T = @ in (1.15) we obtain [66, Eq. 5, p. 974]:
(r;a;2) i 2, (9), 2 (t,a,B,9>0,|z| < 1). (1.16)
: a(x + r2 n' ) ) ) M ) f—

The concept of the Hadamard product (or the convolution) of two analytic functions is very useful in our
present study. It can help us to decompose a newly emerging function into two known functions. Let

=Y a2 (lz| <Ry) (1.17)
n=0
and
= anz",(|z| <R,) (1.18)
n=0

be two power series whose radii of convergence are denoted byR, and R,, respectively.
Then their Hadamard product is the power series defined by

(fx8)(z Zan n?' = (8% f)(2)

(1.19)
(|2l <R),
where
. anby . ay .
R = lim = lim . lim =R¢R, (1.20)
n—ee |y 1bpi 1 n—e | dpi | n=o|bpiy

Therefore, in general, we have R > R¢.R, [67,638].

For various investigations involving the Hadamard product (or the convolution), the interested reader may
refer to several recent papers on the subject (see, for example, [69,70] and the references cited therein).
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2 Fractional integration

In this section, we will establish some fractional integral formulas for the generalized (p,q)-Mathieu-type
power series. Then their special cases also introduced here.

Theorem 1. Ler A,0,9,p,r,a,B,0 > 0;& > 7 > 0;p,q € C;min{R(p),R(q)} > 0, such thar R(p) >
max[0,R(c — 3)|, then

A,0,9 ; e e
(I 00 p— 1S“g15(r,a,p,q,t)) (x)

_ p-o1 _T(PX(p+9—0) a.p
=27 1r(p—a) (P+7L+19)S ‘5(mpq’)*2Fz[

ppid_o 2.1)

p— Gp+/l+19.

Proof. For convenience, we denote the left-hand side of the result (2.1) by .#. Using (1.13), and then changing
the order of integration and summation, which is valid under the conditions of Theorem 1, then

& 20 (9B (T E—T) 1 g o
? B(1,&E —1)(a% + r2)K a(IOX t )(x), (2.2)

applying the result (1.7), the above equation (2.2) reduced to

o 200 (9)Bpy(t4mE =) | _T(p4mL(p+D-0+n) oo
; B(t é—‘C)(aa—i—rZ) n!F(p—G+n)r(p+l+l9+n)xp ) (2.3)

after simplification, we have

—1)
O 2.4)

_ o1 _L(OIL(p+8-0) & 205 (9)uBpg(t+n.8
7= F(p—G)F(pMﬂs)n; (rg—r)(g r
(p—0)u(p+A+0),n!’

further interpret the above equation with the view of of the function given in equation (1.13), we have

C(p)T'(p+9—o0) a,B:p,p+8—0

— p—0—1
J=x I(p—0)[(p+A+0) HO5sp—0p+A+d

(ra;p,q:x), (2.5)

employing the concept of the Hadamard product given in equation (1.19) in the above equation (2.5), re-
quired result is obtained. O

Theorem 2. Let A,0,9,p,r,ot,3,0 > 0;& > 7> 0;p,q € C;min{R(p),R(q)} > 0, such that R(p) < 1+
min[R(c),R(D)], Then

p-o-1 L@ —p+I(B—p+1)

F1-p)l(A+0—-9—p)
c—p+1,9— p+1
—p,A+0—0V— p

(1’l OPIset e (rap.g; l/t)> (x) =
(2.6)

X S,;ﬁ ce(raip,q;1/x) 2k [
Proof. Proof is parallel to Theorem 1. O
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2.1 Special cases of fractional integral formulae

In this section we reduces our main findings to the special cases by assigning particular values to the param-
eters as follows:

Case 1. If we choose p = q the findings in equations (2.1) and (2.6) reduces to the following the form:

Corollary 1. Let A,0,9,p,r,a,B,9 >0, > 1> 0;p € C;R(p) > 0, such that R(p) > max[0,R(c — I)],
then

4,00 p—1 ¢, R
(IO,;}G P 15357@&(”’“’1”’)) (x)

— xpfcfl F(p)r(p +0— G) o,B
T(p—o)(p+A+0) w078

p.p+0—0C @7

p—o.ptAtd |

(r;a; p;x) x2F»

Corollary 2. Let A,0,9,p,r,a,,0 > 0,5 >1>0;p € C;R(p) >0, such that R(p) < 1+ min[R(c), R(I)],
Then

_ p-o-1 INo—p+1)I'(0—p+1)
r(1-p)(A4+oc—-v-p)

6—p+L0—p+1w

l-pA+c—0—p |

(reop=tsph  (mapi1/n) ()
(2.8)

X SO"I3

u ﬁmé(r;a;p;l/x)*ze [

Case 2. If we choose p = q = 0 the findings in equations (2.1) and (2.6) reduces to the following the form:

Corollary 3. Let A,0,9,p,r,a,B,9 >0, > 7> 0, such that R(p) > max[0,R(c — )|, then

A,6,9 p—1 o0, Lo
(IOJG P lSigfé(r,a,t)) (x)

2.9)
o1 T(P)(p+0—0) _ap p,p+¥—o0 (
— p—0-1 ) e ) .
S e R R R PRSP L |
Corollary 4. Let A,0,0,p,r,a, 3,0 > 0;& > 7> 0, such that R(p) < 1 +min[R(c),R(D)], Then
A,0,0.p—1 a,B . _ p—a—lr(c_p"’l)r(ﬁ_p"‘l)
QW ! ﬂngnmUﬂﬂﬂ Y T-pfAf+o—v—p) (2.10)

x %P (r;a;1/x) %2 [

#7197175

G—p+1,19—p+1'x
l—-p,A+0c—-0—p 7|

Case 3. If we choose p = q=0and T = &, the findings in equations (2.1) and (2.6) reduces to the following the
form:

Corollary 5. Let A,0,9,p,r,a,B,9 > 0, such that R(p) > max[0,R(c — ¥)], then

<I&;{G’ﬁtpflSZ:g(r;a;t)> (x)

_ o1 I'(p)I(p+ 0 —o0) qoB
I(p—o)l(p+A+0) H?

pptD—0 2.11)

p-c.p+A+ot|

(r;a;x) %2>
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Corollary 6. Let A,0,0,p,r,a, 3,0 > 0, such that R(p) < 1 + min[R(c),R()], Then

2,00 ,p—1g0B . _ poal(c—p+ DI (B —p+1)
(teoP =i ras1 /) (x) =« NPT a0—8-7)
c—p+1,9— p+1

—p,A+0—-9— p

2.12)
X Sﬁ:g(r;a; 1/x) % 2P [

3 Image Formulas Associated With Integral Transform

In this section, we establish certain theorems involving the results obtained in previous section associated
with the integral transforms like, Beta transform, Laplace transform and Whittaker transform.

3.1 Beta Transform

The Beta transform of f(z) is defined as [71]:

B{f(z):a,b} = / — 2" f(2)dz 3.1)

Theorem 3. Let A,0,0,p,r,a,B,% > 0;& > 7> 0;p,q € C;min{R(p),R(¢)} > 0, such that R(p) >
max[0,R(c — V)], then

{( 1o 0p- 1Sﬁgré(r;a;p,q;t)) (x) : l’m}

o—1gaB (Lo (p,1),(p+0—0,1),(1,1) 1 (3.2)
F( )xp lsﬂﬁrg(”a p,q,x)*3\P3 |:(p_(y),(p—{—l—I—ﬁ’l)’(l_‘_m’l),x] .

Proof. For convenience, we denote the left-hand side of the result (3.2) by Z. Using the definition of beta
transform, the LHS of (3.1) becomes:

1
B — /0 2711 —2 (Il 0.0 p— IS#{; Tg(r;a;p,q;tz)) (x)dz, (3.3)

further using (1.13) and then changing the order of integration and summation, which is valid under the
conditions of Theorem 1, then

- + n 5B 1 - .
Z’ B(t é—p:)((raairi) T));;! <I(/’l+ P 1)( )/0 S (12" dz (3.4)

applying the result (1.7), after simplification the above equation (3.4) reduced to

- 2a§(19)an7q(T—|—n,<§ -7)x"
~ B(t,E—1)(ak+r2)* !

Fp+nI(p+3—0+n) /1 In—1/y _ ym—1
Tp—o4mptAtom fy ° O I &

B = P01

(3.5)
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applying the definition of beta transform, the above equation (3.5) reduced to

PR 245 (8),Bpg(r+m,E —7) ¥ T(p+nI(p+9—0c+n)
~ B(t,E—-1)(a¢+r)* nT(p—oc+n(p+A+0+n)
XF(l—i—n)F(m)

I'(l4+m+n)

after simplification, we have

BT.E—1)(@f+ ) nl(p—0)u(p+A+0),

(D)nl(m)
U m),

7oy, 2 (0)uBp(T+1,6 ~ 1) &' (p)a(p+ 0~ )y
n=1

23

(3.6)

3.7

further interpret the above equation with the view of of the function given in equation (3.7), we have

_ p—o—1 o.pB;p,p+0—0,l o .
B =x L(m)Sy"s vep-opiatorm3 @ P 4:%),

(3.8)

employing the concept of the Hadamard product given in equation (1.13) in the above equation (3.8), re-

quired result is obtained.

O]

Theorem 4. Let A,0,9,p,r,0,3,0 > 0, > 17> 0;p,q € C;min{R(p),R(q)} >0, such that R(p) < 1+

min[R (o), R(D)], Then

B { (I)&f’ﬂtp_lSz:gﬂé(r;a;p,q;z/t)) (x): l,m} = F(m)xp_a_lSZ:gmé (r;a;p,q;x)

(P, 1), (S —p+1,1),(1,1)
x3'¥s3 [(p—6,1),(l+19+v’1)’(1+m’1),1/x].

Proof. The proof of this theorem is the same as that of Theorem 3.

3.2 Laplace Transform

The Laplace transform of f(z) is defined as [71]:

L{f(2)} = /0 TR f (e

(3.9)

(3.10)

Theorem 5. Let A,0,0,p,r,a,B,9 > 0;€ > 7> 0;p,q € C;min{R(p),R(q)} > 0, such that R(p) >

max[0,R(c — V)], then

B 2,600 7 xpfcfl ‘ X
L{zl ! (IO‘;" 1P 1Sigmé(r;a;p,q;tz)> (x)} = 755;5,1,6 (r;a;p,q;;)

sl
(p>1)>(p+6_651)5(131).x
Xﬂ]z{ (p—0o,1),(p+A+0,1) ’s}

3.11)
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Proof. For convenience, we denote the left-hand side of the result (3.11) by .Z. Then applying the Laplace, we
have:

7 / —s2,1— 1 /l 0,0 ,p— lsggré(r;a;p,q;tz» (x)dz (3.12)

further using (3.3) and then changing the order of integration and summation, which is valid under the
conditions of Theorem 1, then

=, 2d} ( (t+n8—1)x" /260
L — Z P q — Gy I ,0, tn-&-p 1 ( )
_ 1 \o+
= B’L’&m 7)(a% +r?)*  n! ( ) (3.13)
% / efszszrlfle
0
applying the result (1.7), after simplification the above equation (3.13)reduced to
P 208 (8)uBpg(T+0,E —7) " T(p+n(p+8—0+n)
=~ B Té—’c)(aa+r2) nT(p—oc+n)T(p+A+0—+n) (3.14)
I'(n+1)
gntl
after simplification, we have
x”“lF S (t+n&—1) rx\n  (plalp+D¥—0)
B = Brq n (D), 3.15
n; —1)(a% 4 r?)H (s) n!(p—o)n(p+/l+19)n() (3.15)

further interpret the above equation with the view of of the function given in equation (3.15), we have
=T (m) apip.pro-oi X
- ﬁsuvﬂv‘[aé;p*cvpﬂ’l%’ﬁ, (r’aepvq’;> ) (316)

employing the concept of the Hadamard product given in equation (1.13) in the above equation (3.16),
required result is obtained. O

Theorem 6. Let A,0,9,p,r,0,3,0 >0, > 17> 0;p,q € C;min{R(p),R(q)} >0, such that R(p) < 1+
min[R (o), R(D)], Then

p—o—1 1
I-1  7A,0,9 p—1 cot.B ) } X o.B e L
L{ (1 8y e (nasp, i2/t) 0 Suoce | BEPG X (3.17)
e, [(O—p+ LD, (B—p+1,1),(1,1) 1] '
2 (1=p,1),A+0+0—p+1,1) "sx
Proof. The proof of this theorem would run parallel as those of Theorem 5. O
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3.3 Whittaker Transform

Theorem 7. Let A,0,0,p,r,a,B,% > 0;& > 7> 0;p,q € C;min{R(p),R(q)} > 0, such that R(p) >
max[0,R(c — V)], then

T e 2,0,0 p—1 o, o
/0 =l 8Z/2W17a)(nz){<107x6 P lsz,g,f,fg(r’a’p’q’tZD (x)}dz

xP—o-1 ap X
:7775‘1 Syore <r;a;p,q;n> (3.18)
cop, | P (p+9—0.1).(1/2+0+E,1).(1/2-0+§,1) x

o (p—0.1),(p+A+0,1),(1/2—1+E,1) "N

Proof. For convenience, we denote the left-hand side of the result (3.25) by #". Then using the result from (2.3),
after changing the order of integration and summation, we get:

dh (9)uBpg(T+n,E—T)x" T(p+n)[(p+0—0+n)
B(t,E—1)(a%+r)* nT(p—oc+n)(p+A+0+n)

o 2
W =xPo!

o (3.19)
x / Z"%*le*nz/ngw(TlZ)dZ,
0
by substituting 11z = ¢, (3.19) becomes:
Y oo i 20} (8)uBpg(t+n,E —T)x" T(p+n)(p+0—0+n)
~ B(t,E—-1)(a¢+r)* nT(p—oc+n(p+A+0+n) (3.20)
X/ gwéileig/zWr,w(g)dQ-
0
Now we use the following integral formula involving Whittaker function
“ (12 r(/2-
/ e PW, o (1)dt = 1/ +1£0(:_/;) a§+/v) w+v)7
0 X (3.21)
(‘Ji(via)) > 2) .
Then we have
g i 24l (V)uBpy(t+n,0—1) T(p+n)T(p+0—0+n)
& & B(r,o—t)(af +12)Hn! T(p—o+n)l(p+ A+ +n) (3.22)
C(12+0+&+n)T(1/2—0+&+n) <x>
C(1/2—t+&+n) n)’
after simplification, we have
R~ 24P (V)B4 (t+n,0—7) (p)a(p+0O—0),
né_l n=1 B(T,(D—T)(a’?‘i—fz)“n‘ (p _G)VZ(p—i_)L +1‘9)n (3 23)

L 12+ e+8),(1/2-0+3), (X)"
(1/2—=7+8), n)’
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further interpret the above equation with the view of of the function given in equation (3.23), we have

xP—o~1 o.Bip,p+0—0,1/240+E1/2—w+E X
¥ = né-1 Su,ﬂ,r,é;P—o,p—s-?L-s—ﬂ,l/2—1—&-5 r;a;p,q;ﬁ ) (3.24)

employing the concept of the Hadamard product given in equation (1.13) in the above equation (3.24),
required result is obtained. O

Theorem 8. Let A,0,9,p,r,0,3,0 > 0, > 17> 0;p,q € C;min{R(p),R(q)} >0, such that R(p) < 1+
min[R(c),R(3)], Then

/0 Zé_le_&/ZWT,a)(nZ) { <Iﬁf’ﬂfp_lsz7’g,@§ (r;a;p,q;z/t)> (x)}dz

P01 wp x
= n(§71 Su,ﬁ,r,.’; (r;a;P;%n) (325)
% 4 ¥s (G-p—f—l,l),(ﬁ-p—l—171),(1/24‘(1)4‘5,1),(1/2—0)—’-&,1)f
(1_pal)a(p+2‘+ﬁ7l)7(l/2_f+€al) ’TT

Proof. The proof of this theorem would run parallel as those of Theorem 7. O

4 Fractional Kinetic Equations

The importance of fractional differential equations in the field of applied science has gained more attention
not only in mathematics but also in physics, dynamical systems, control systems and engineering, to create the
mathematical model of many physical phenomena. Especially, the kinetic equations describe the continuity of
motion of substance. The extension and generalization of fractional kinetic equations involving many fractional
operators were found in [72-85].

In view of the effectiveness and a great importance of the kinetic equation in certain astrophysical
problems the authors develop a further generalized form of the fractional kinetic equation involving generalized
k-Mittag-Leffler function.

The fractional differential equation between rate of change of the reaction, the destruction rate and the
production rate was established by Haubold and Mathai [78] given as follows:

dN
= —d(N) +p(N), (.

where N = N(t) the rate of reaction, d = d(N) the rate of destruction, p = p(N) the rate of production and
N; denotes the function defined by N, (t*) = N(t —t*),t* > 0.

The special case of (4.1) for spatial fluctuations and inhomogeneities in N(¢) the quantities are neglected ,
that is the equation

dN

i —ciNi(t), 4.2)
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with the initial condition that N;(r = 0) = N is the number density of the species i at time r = 0 and ¢; > 0.

If we remove the index i and integrate the standard kinetic equation (4.2), we have
N(t) — Ny = —coD; 'N(¢) (4.3)

where oD, ! is the special case of the Riemann-Liouville integral operator oD, ¥ defined as

oDV f(t) = ! )/Ot (t—s)v_lf(s)ds, (t>0,R(v) >0) 4.4)

I'(v
The fractional generalization of the standard kinetic equation(4.3) is given by Haubold and Mathai [78] as

follows:

N(t) =Ny = —c"oD; 'N(r) (4.5)

and obtained the solution of (4.5) as follows:

N(1) :Noi F(_Uk

vk
k:()m (CZ) (46)

Further, (Saxena and Kalla [83]) considered the the following fractional kinetic equation:

N(t) =Nof(1) = =c"oD; "N(1),  (R(v) >0), 4.7)

where N(¢) denotes the number density of a given species at time ¢, No = N(0) is the number density of that
species at time 1 = 0, ¢ is a constant and f € .£(0,0).

By applying the Laplace transform to (4.7) (see [79]),

LING):p} =No— T P) iy, ( ZO <—cV>"pV"> F(p),

- 0l—i—c"p—"

(4.8)
<n € Ny, C‘ < 1)
p
where the Laplace transform [86] is given by
Fip) = LN@iph = [ s () >0) @9)

5 Solution of generalized fractional kinetic equations

In this section, we investigated the solutions of the generalized fractional kinetic equations by considering
generalized (p, g)-Mathieu Type Series
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Theorem 9. Ifa > 0,d >0,v >0,r,a, 3,0 >0, > 1> 0;p,q € C;min{R(p),R(q)} > 0, then the solution
of the fractional kinetic equation

N(t) = NoSh o (ria p,qsd*t") = —a"oD; "N(1) (5.1)
is given by the following formula
V)nBpg(T+n,8—1) (a"t")"

T,E—1) (a2 +r2)E  nl (5.2)
X F Vn—|- 1)EV,VVl+1 (_avtv)

oo aﬁ
N(t) =Ny Zl 2 ]’;E

n—=

Proof. Laplace transform of Riemann-Liouville fractional integral operator is given by (Erdelyi et.al. [87], Sri-
vastava and Saxena [88]):

L{oD; v f(1):p} =p~"F(p) (5.3)

where F(p) is defined in (4.9). Now, applying Laplace transform on (5.1) gives,

L{N(t);p} = NoL{Szjgng(r;a;p,q;dvtv);p} —a’L{oD; "N(t);p} (5.4)
. _ * e 200 (OBt E—T) (@)
ie.  N(p)=Ny (/0 Y e |~ V) (5.5)

interchanging the order of integration and summation in (5.5), we have

Z Za,, (6)an7q(T+n7g - T) (d ) / e*l’ztvndt (56)
0

N(p)+a"p "N(p) =No B(1,& —7)(a% + r2)H n!

n=1

= ﬁ vin
2ay (0)nBpg(t+n,E—1) (d¥)"T'(vn+1)
= - 5.7
N(’n; B(1,& —1)(a% +r?)® n!  pvntl S
this leads to
oo B Vin
_ 2ay (0)nBp4(T+n,E — 1) (d")
N(p) _Nong’l B(t,& —1)(a%+r?)# n!
(5.8)
_ . P\
xT(va+1){ p~v+h [— £ ] }
{rmn g [-(2)
Taking Laplace inverse of (5.8), and by using
= b 5.9
L {p "ty = R 0 .
{p ’t} F(V)7( (V) > ) ( )
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we have,

aﬁ n, a’)"
L™ {N( )} = NOZ 2 "(2)"qu)(za;;+f2) 2 (n‘)

1—* Vn+1 L~ 1 Z 1 Vl v(n+1)+1]
{1—0

(5.10)

) E 3),B E— FAML oo v v(n+l)
ie. N(t)zNo);1 an (0)Bp (T 41,8 T)(n!) F(Vn+1){2(—l)lalrvt+l)} (5.11)

B(1,& —1)(a%+r?)u = (v(in+1)
2 (T4, —7) (d"r")" 2 (@)’
; B(z s—p?><aa+r2> il ”V”*l){g(‘l)lmmm} 612

The equation (5.12) can be written as

i B(z 5_’)5)((21152) O+ ) Ey s (-ar), (5.13)

O]

Theorem 10. Ifd > 0,v > 0,r,0,3,9 > 0;& > 7> 0;p,q € C;min{R(p),R(q)} > 0, then the solution of the
fractional kinetic equation

N(t) = NoS3% o (s p,qsd’t) = —d" oDy "N(1) (5.14)

is given by the following formula

205 (8),Bpg(T+n,& —T) (d1)"

= B(r,E—-1)(af+rH)r  nl (5.15)
X F vn + 1)EV,V7l+1 (_dvtv).

Theorem 11. Ifd > 0,v > 0,r,0,,9 > 0;€ > 7> 0;p,q € C;min{R(p),R(q)} > 0, then the solution of the
fractional kinetic equation

N() = NoSSE o (rias p,gst) = —d" oD VN(1) (5.16)

is given by the following formula

> (t+n€—1) (")
Z T:S—p’?)(a“+r2) n! (5.17)

(Vn+1)Ev Vn+1( dvtv).

Proof. The proof of the Theorem 10 and Theorem 11 are same as that of Theorem 9, so we would like to skip
here. O
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5.1 Special cases

Here we introduce some special cases of our results established in this section.
Case 4. If p = q, then Theorem 9, Theorem 10 and Theorem 11 reduces to

Corollary 7. Ifa>0,d >0,v >0,r,a,B,9 >0, > 1> 0;p € C;R(p) > 0, then the solution of the fractional
kinetic equation

N(t) = NoSGh _ o (ria psd*t") = —a"oD; "N(1) (5.18)

is given by the following formula

M=WmL > <fénB i

T(va+ 1)Eyynii(—a't"). (5.19)

Corollary 8. Ifd >0,v>0,r,a,3,9 > 0;E > 1> 0;p € C;R(p) > 0, then the solution of the fractional kinetic
equation

N(t) = NoS% o (s psd’t) = —d" oD VN(1) (5.20)

is given by the following formula

OIS s UL AR R Sl

~ B(1,&—1)(ag +r?)H n!

T(va+ 1)Eyynii(—d"1"). (5.21)

Corollary 9. Ifd >0,v>0,r,a,3,9 > 0;E > 17> 0;p € C;R(p) > 0, then the solution of the fractional kinetic
equation

N(t) = NoS% o (s pst) = —d"oD; VN (1) (5.22)

is given by the following formula

i . 5_1)1(;’: érz) ) (t,:!)nr(vwr1)Ev,vn+1(—thV). (5.23)

Case 5. If p = q =0, then Theorem 9, Theorem 10 and Theorem 11 reduces to

Corollary 10. Ifa>0,d >0,v > 0,r,a, 3,9 > 0;& > 7 > 0, then the solution of the fractional kinetic equation

N(t) = NoSLh o (ria:d"t") = —a*oD; ¥ N (1) (5.24)

is given by the following formula

240 (9),  (a')"
L uE),

(vi+ 1)Eyyni1(—a"t"). (5.25)
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Corollary 11. Ifd >0,v > 0,r,a, 3,9 > 0;& > 7 > 0, then the solution of the fractional kinetic equation

N(1) = NoSph . o (rsa psd*1) = =d"oD; "N (1) (5.26)

is given by the following formula

> Zan Yo (dVEV)"
NOZ (a®+r)H(E), n!

Corollary 12. Ifd >0,v > 0,r,a,B,9 > 0;& > 7 > 0, then the solution of the fractional kinetic equation

T(vi+ 1)Ey ypy1 (—d"1"). (5.27)

N(t) = NoS% o (s pst) = —d"oD; VN (1) (5.28)

is given by the following formula

> 2 n Ak
- Z aa:zrz (&) ( )F(Vn+1)Ev7vn+1(_dva)' (5.29)

a on!

6 Conclusion

In the present work, fractional integral formulae involving (p,q)-Mathieu Type series has established. The
image formulae of our findings by employing integral transform has been also introduced. Further in this work
we gave the solution of fractional kinetic equation in terms of Mittag-Leffler function. All the results are general
in nature and give numerous results as their special cases.
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