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Abstract
In the present frame work, we studied the semi generalized recurrent, semi generalized φ -recurrent, extended generalized
φ -recurrent and concircularly locally φ -symmetric on generalized Sasakian space forms.
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1 Introduction

The nature of a Riemannian manifold depends on the curvature tensor R of the manifold. It is well known
that the sectional curvatures of a manifold determine its curvature tensor completely. A Riemannian manifold
with constant sectional curvature c is known as a real space form and its curvature tensor is given by

R(X ,Y )Z = c{g(Y,Z)X−g(X ,Z)Y}.

A Sasakian manifold with constant φ -sectional curvature is a Sasakian space form and it has a specific form of its
curvature tensor. Similar notion also holds for Kenmotsu and cosymplectic space forms. In order to generalize
such space forms in a common frame Alegre, Blair and Carriazo [1] introduced and studied generalized Sasakian
space forms. These space forms are defined as follows:

A generalized Sasakian space form is an almost contact metric manifold (M,φ ,ξ ,η ,g), whose curvature
tensor is given by

R(X ,Y )Z = f1{g(Y,Z)X−g(X ,Z)Y} (1)

+ f2{g(X ,φZ)φY −g(Y,φZ)φX +2g(X ,φY )φZ}
+ f3{η(X)η(Z)Y −η(Y )η(Z)X +g(X ,Z)η(Y )ξ −g(Y,Z)η(X)ξ},
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The Riemanian curvature tensor of a generalized Sasakian space form M2n+1( f1, f2, f3) is simply given by

R = f1R1 + f2R2 + f3R3. (2)

where f1, f2, f3 are differential functions on M2n+1( f1, f2, f3) and

R1(X ,Y )Z = g(Y,Z)X−g(X ,Z)Y,

R2(X ,Y )Z = g(X ,φZ)φY −g(Y,φZ)φX +2g(X ,φY )φZ,

R3(X ,Y )Z = η(X)η(Z)Y −η(Y )η(Z)X +g(X ,Z)η(Y )ξ −g(Y,Z)η(X)ξ ,

where f1 =
c+3

4 , f2 = f3 =
c−1

4 . Where c denotes the constant φ -sectional curvature. The properties of general-
ized Sasakian space form was studied by many geometers such as those mentioned in Refs. [2, 11, 12, 18, 21].
The concept of local symmetry of a Riemanian manifold has been studied by many authors in several ways to
a different extent. The locally φ -symmetry of Sasakian manifold was introduced by Takahashi in Ref. [26]. De
et.al., generalize the notion of φ -symmetry and then introduced the notion of φ -recurrent Sasakian manifold in
Ref. [13]. Further φ -recurrent condition was studied on Kenmotsu manifold [10], LP-Sasakian manifold [27]
and (LCS)n-manifold [22].

Definition 1. A Riemannian manifold (M2n+1,g) is called a semi-generalized recurrent manifold if its curvature
tensor R satisfies [6, 9]

(∇X R)(Y,Z)W = A(X)R(Y,Z)W +B(X)g(Z,W )Y, (3)

where A and B are two 1-forms, B is non-zero, ρ1 and ρ2 are two vector fields such that

g(X ,ρ1) = A(X),g(X ,ρ2) = B(X),

for any vector field X ,Y,Z,W and ∇ denotes the operator of covariant differentiation with respect to the metric
g.

Definition 2. A Riemannian manifold (M2n+1,g) is semi generalized Ricci-recurrent if [6, 9]

(∇X S)(Y,Z) = A(X)S(Y,Z)+(2n+1)B(X)g(Y,Z), (4)

where A and B are two 1-forms, B is non-zero, ρ1 and ρ2 are two vector fields such that

g(X ,ρ1) = A(X),g(X ,ρ2) = B(X),

Definition 3. A Sasakian manifold (M2n+1,φ ,ξ ,η ,g), n≥ 1, is said to be an extended generalized φ -recurrent
Sasakian manifold if its curvature tenor R satisfies the relation

φ
2(∇W R)(X ,Y )Z = A(W )φ 2(R(X ,Y )Z)+B(W )φ 2(G(X ,Y )Z) (5)

for all vector fields X ,Y,Z,W , where A and B are two non-vanishing 1-forms such that A(X) = g(X ,ρ1),B(X) =
g(X ,ρ2). Here ρ1 and ρ2 are vector fields associated with 1-forms A and B respectively.

Definition 4. A generalized Sasakian space form is said to be locally φ -symmetric if

φ
2(∇W R)(X ,Y )Z = 0

for all vector fields X ,Y,Z orthogonal to ξ . This notion was introduced by T. Takahashi for Sasakian manifolds
[26].
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In 1940, Yano introduce the concircular curvature tensor. A (2n+ 1) dimensional concircular curvature
tensor C is given by [30, 31]

C(X ,Y )Z = R(X ,Y )Z− r
2n(2n+1)

{g(Y,Z)X−g(X ,Z)Y},

where R and r are the Riemannian curvature tensor and scalar curvature tensor, respectively.

Author in Ref. [5] studies the symmetric conditons of generalized Sasakian space forms with concircu-
lar curvature tensor such as C(ξ ,X) ·C = 0, C(ξ ,X) ·R = 0, C(ξ ,X) · S = 0 and C(ξ ,X) ·P = 0. Recently,
researcher in Ref. [28] investigate some symmetric condition on generalized Sasakian space forms with W2-
curvature tensor, such as pseudosymmetric, locally symmetric, locally φ -symmetric and φ -recurrent. Moreover
many geometer’s studied the generalized Sasakian space forms with different conditions such as those mentioned
in Refs. [11–13, 15, 16].

2 Generalized Sasakian space-forms

A (2n+ 1)-dimensional Riemannian manifold is called an almost contact metric manifold if the following
result holds [6], [7]:

φ
2X =−X +η(X)ξ , (6)

η(ξ ) = 1, φξ = 0, η(φX) = 0, g(X ,ξ ) = η(X), (7)

g(φX ,φY ) = g(X ,Y )−η(X)η(Y ), (8)

g(φX ,Y ) =−g(X ,φY ), g(φX ,X) = 0 (9)

(∇X η)(Y ) = g(∇X ξ ,Y ) (10)

for all vector field X and Y . On a generalized Sasakian space form M2n+1( f1, f2, f3), we have ( [1, 15])

(∇X φ)Y = ( f1− f3)(g(X ,Y )ξ −η(Y )X), (11)

∇X ξ = −( f1− f3)φX . (12)

Again, we know that from Ref. [1], (2n+1)-dimensional generalized Sasakian space forms holds the following
relations:

S(X ,Y ) = (2n f1 +3 f2− f3)g(X ,Y )− (3 f2 +(2n−1) f3)η(X)η(Y ), (13)

R(X ,Y )ξ = ( f1− f3){η(Y )X−η(X)Y}, (14)

R(ξ ,X)Y = ( f1− f3){g(X ,Y )ξ −η(Y )X}, (15)

η(R(X ,Y )Z) = ( f1− f3){g(Y,Z)η(X)−g(X ,Z)η(Y )}, (16)

S(X ,ξ ) = 2n( f1− f3)η(X). (17)

3 Semi generalized recurrent generalized Sasakian space forms

Definition 5. A generalized Sasakian space form (M2n+1,g) is semi-generalized recurrent manifold if

(∇X R)(Y,Z)W = A(X)R(Y,Z)W +B(X)g(Z,W )Y, (18)

here A and B are two 1-forms, B is non-zero, ρ1 and ρ2 are two vector fields such that

A(X) = g(X ,ρ1) and B(X) = g(X ,ρ2)
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Definition 6. A generalized Sasakian space forms (M2n+1,g) is semi generalized Ricci-recurrent if

(∇X S)(Y,Z) = A(X)S(Y,Z)+(2n+1)B(X)g(Y,Z). (19)

Permutating equation (3) twice with respect to X ,Y,Z, adding the three equations and using Bianchi second
identity, we have

A(X)R(Y,Z)W +B(X)g(Z,W )+A(Y )R(Z,X)W

+B(Y )g(X ,W )Z +A(Z)R(X ,Y )W +B(Z)g(Y,W ) = 0. (20)

Contracting (20) with respect to Y , we get

A(X)S(Z,W )+B(X)g(Z,W )−g(R(Z,X)ρ,W )

B(Z)g(X ,W )−A(Z)S(X ,W )+B(Z)g(X ,W ) = 0. (21)

Setting S(Y,Z) = g(QY,Z) in (21) and factoring off W, we get

A(X)QZ +(2n+1)B(X)Z−R(Z,X)ρ +2B(Z)X−A(Z)QX = 0. (22)

Again contracting with respect to Z and then substitute X = ξ in (22), one can get

r =− 1
η(ρ1)

{(2n+1)2−2η(ρ2)−2n( f1− f3)[η(ρ2)+η(ρ1)]}. (23)

Now, we can state the following statement

Theorem 1. The scalar curvature r of a semi-generalized recurrent generalized Sasakian space forms is related
in terms of contact forms η(ρ1) and η(ρ2) is given in (23).

Next, we prove the semi generalized Ricci-recurrent generalized Sasakian space form, inserting Z = ξ in
(19), we have

2n( f1− f3)
2g(W,φY )+( f1− f3)S(Y,φW ) = A(X)2n( f1− f3)η(Y )+(2n+1)B(X)η(Y ). (24)

Again setting Y = ξ in (24), we get

A(X)2n( f1− f3)+(2n+1)B(X) = 0. (25)

Now, we can state the following theorem

Theorem 2. A semi-generalized Ricci-recurrent generalized Sasakian space forms, the 1-form A and B holds
(25)

4 Semi generalized φ -recurrent generalized Sasakian space forms

Definition 7. A generalized Sasakian space form (M2n+1,g) is called semi-generalized φ -recurrent if its curva-
ture tensor R satisfies the condition

φ
2(∇W R)(X ,Y )Z = A(W )R(X ,Y )Z +B(W )g(Y,Z)X (26)

where A and B are two 1-forms, B is non-zero and these are defined by

A(W ) = (W,ρ1), B(W ) = (W,ρ2)

and ρ1 and ρ2 are vector fields associated with 1-forms A and B respectively.
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Let us consider a semi-generalized φ -recurrent generalized Sasakian space forms. Then by virtue of (6) and
(26), we have

− (∇W R)(X ,Y )Z +η((∇W R)(X ,Y )Z)ξ

= A(W )R(X ,Y )Z +B(W )g(Y,Z)X . (27)

it follows that

− g((∇W R)(X ,Y )Z,U)+η((∇W R)(X ,Y )Z)η(U)

= A(W )g(R(X ,Y )Z,U)+B(W )g(Y,Z)g(X ,U). (28)

Let ei, i = 1,2, ...n be an orthonormal basis of the tangent space at any point of the manifold. Then putting
X =U = ei in (28) and taking summation over i, 1≤ i≤ (2n+1), we get

− (∇W S)(Y,Z)+
2n

∑
i=1

η(∇W R)(ei,Y )Z)η(ei)

= A(W )2n( f1− f3)S(Y,Z)+B(W )(2n+1)g(Y,Z). (29)

The second term of left hand side of (29) by putting Z = ξ takes the form ((∇W R)(ei,Y )Z,ξ ) = 0. So, by
replacing Z by ξ in (29) and with the help of (7) and (12), we get

− 2n( f1− f3)
2g(W,φY )+( f1− f3)S(Y,φW )

= A(W )2n( f1− f3)η(Y )+B(W )(2n+1)g(Y,Z). (30)

Inserting Y = ξ in (30) and using (7), we have

−2n( f1− f3)A(W ) = (2n+1)B(W ). (31)

In view of (31) and replace Y by φY , (30) yields

S(Y,W ) = 2n( f1− f3)g(Y,W ).

Theorem 3. A semi generalized φ -recurrent generalized Sasakian space forms (M2n+1,g) is an Einstein mani-
fold and moreover; the 1-forms A and B are related as −2n( f1− f3)A(W ) = (2n+1)B(W ).

5 Extended generalized φ -recurrent generalized Sasakian space forms

According to the definition of extended generalized φ -recurrent Sasakian manifolds, we will define the
Extended generalized φ -recurrent generalized Sasakian space forms

Definition 8. A generalized Sasakian space forms (M2n+1,φ ,ξ ,η ,g), n≥ 1, is said to be an extended general-
ized φ -recurrent generalized Sasakian space forms if its curvature tenor R satisfies the relation

φ
2(∇W R)(X ,Y )Z = A(W )φ 2(R(X ,Y )Z)+B(W )φ 2(G(X ,Y )Z) (32)

for all vector fields X ,Y,Z,W , where A and B are two non-vanishing 1-forms such that A(X) = g(X ,ρ1), B(X) =
g(X ,ρ2). Here ρ1 and ρ2 are vector fields associated with 1-forms A and B respectively.

Let us consider an extended generalized φ -recurrent generalized Sasakian space forms. Then by virtue of
(6), we have

− (∇W R)(X ,Y )Z +η((∇W R)(X ,Y )Z)ξ

= A(W ){−R(X ,Y )Z +η(R(X ,Y )Z)}
+ B(W ){−G(X ,Y )Z +η(G(X ,Y )Z)}. (33)
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From which it follows that

− g((∇W R)(X ,Y )Z,U)+η((∇W R)(X ,Y )Z)η(U)

= A(W ){−g(R(X ,Y )Z,U)+η(R(X ,Y )Z)η(U)}
+ B(W ){−g(G(X ,Y )Z,U)+η(G(X ,Y )Z)η(U)}. (34)

Let ei, i = 1,2, ...n be an orthonormal basis of the tangent space at any point of the manifold. Then putting
X = U = ei in (34) and taking summation over i, 1 ≤ i ≤ (2n+ 1), and the relation g((∇W R)(X ,Y )Z,U) =
−g((∇W R)(X ,Y )U,Z), we get

− (∇W S)(Y,Z) = A(W ){−S(Y,Z)+η(R(ξ ,Y )Z)}
+ B(W ){−(2n−1)g(Y,Z)−η(Y )η(Z)}. (35)

It follows that,
(∇W S)(Y,Z) = A⊗S(Y,Z)+Kg(Y,Z)+µη(Y )(Z). (36)

where K = [(2n−1)B(W )−A(W )( f1− f3)] and µ = [( f1− f3)A(W )+B(W )].
Inserting Z = ξ (35) and using (12), (17) and (7), we get

2n( f1− f3)
2g(W,φY )+( f1− f3)S(Y,φW )

= {2n( f1− f3)A(W )+2nB(W )}η(Y ). (37)

Again inserting Y = ξ and using (7), (37) yields

2n( f1− f3)A(W )+2nB(W ) = 0. (38)

By taking the account of (38) in (37) and then replace Y by φY , we get

S(Y,W ) = 2n( f1− f3)g(Y,W ).

Thus we have the following assertion

Theorem 4. An extended generalized φ -recurrent generalized Sasakian space forms is an Einstein manifold and
moreover the associated 1-forms A and B are related by ( f1− f3)A+B = 0.

It is known that a generalized Sasakian space form is Ricci-semisymmetric if and only if it is an Einstein
manifold. In fact, by Theorem 4, we have the following:

Corollary 5. An extended generalized φ -recurrent generalized Sasakian space forms is Ricci-semisymmetric.

6 Concircularly locally φ -symmetric generalized Sasakian space forms

Definition 9. A (2n+ 1) dimensional (n > 1) generalized Sasakian space form is called concircularly locally
φ -symmetric if it satisfies [12].

φ
2(∇WC)(X ,Y )Z = 0.

for all vector fields X ,Y,Z are orthogonal to ξ and an arbitrary vector field W .

Differentiate covariantly with respect W , we have

(∇WC)(X ,Y )Z = (∇W R)(X ,Y )Z− dr(W )

2n(2n+1)
{g(Y,Z)X−g(X ,Z)Y}. (39)
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Operate φ 2 on both side, we have

φ
2((∇WC)(X ,Y )Z) = φ

2((∇W R)(X ,Y )Z)− dr(W )

2n(2n+1)
{g(Y,Z)φ 2X−g(X ,Z)φ 2Y}. (40)

In view of (6), and taking the help of relation (1) with X ,Y,Z are orthogonal vector field, one can get

φ
2((∇WC)(X ,Y )Z) = d f1(W ){g(Y,Z)X−g(X ,Z)Y}

+ d f2(W ){g(X ,φZ)φY −g(Y,φZ)φX +2g(X ,φY )φZ}
+ f2{g(X ,φZ)(∇W φ)Y +g(X ,(∇W φ)Z)φY

− g(Y,φZ)(∇W φ)X−g(Y,(∇W φ)Z)φX

+ 2g(X ,φY )(∇W φ)Z +2g(X ,(∇W φ)Y )φZ}

+
dr(W )

2n(2n+1)
{g(Y,Z)X−g(X ,Z)Y}. (41)

If the manifold is conformally flat then f2 = 0. Therefore, (41) yields

φ
2((∇WC)(X ,Y )Z) =

{
d f1(W )+

dr(W )

2n(2n+1)

}
{g(Y,Z)X−g(X ,Z)Y}.

Hence we can state the following theorem

Theorem 6. A generalized Sasakian space forms is concircularly locally φ -symmetric if and only if f1 and the
scalar curvature are constant

Note 7. In [18], U. K. Kim studied generalized Sasakian space forms and proved that if a generalized Sasakian
space forms M2n+1( f1, f2, f3) of dimension greater than three is conformally flat and ξ is Killing, then it is
locally symmetric. Moreover, if M2n+1( f1, f2, f3) is locally symmetric, then f1− f3 is constant. In the above
theorem it is shown that a conformally flat generalized Sasakian space form of dimension greater than 3 is locally
φ -symmetric if and only if f1 and scalar curvature is constant. Thus, we observe the difference between locally
symmetric generalized Sasakian space forms and concircularly locally φ -symmetric generalized Sasakian space
forms.
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