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Abstract
This paper proposes obtaining the new wave solutions of time fractional sixth order nonlinear Equation (KdV6) using
sub-equation method where the fractional derivatives are considered in conformable sense. Conformable derivative is
an understandable and applicable type of fractional derivative that satisfies almost all the basic properties of Newtonian
classical derivative such as Leibniz rule, chain rule and etc. Also conformable derivative has some superiority over other
popular fractional derivatives such as Caputo and Riemann-Liouville. In this paper all the computations are carried out by
computer software called Mathematica.
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1 Introduction

In the last years, the number of studies on fractional partial differential equations have increased since they
can be used in many fields such as physics, engineering, biology and chemistry [1–3]. Most of these studies
focused on obtaining the exact solutions of fractional partial differential equations [13, 14]. But, some of the
fractional derivative definitions such as Riemann-Liouville and Caputo do not have capabilities to achieve the
exact solutions. Because they do not satisfy some main principles of classical integer order derivative. It is not
possible to solve some fractional derivatives by using these definitions. For example

• Riemann-Liouville derivative definition does not satisfy Dαc = 0where cis real constant and α is not a
natural number. (This property satisfies for Caputo derivative definition)
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• Riemann-Liouville and Caputo derivatives do not satisfy the derivative of the product of two functions.

Dα( f g) = gDα( f )+ f Dα(g).

• Caputo and Riemann-Liouville derivatives do not satisfy the derivative of the quotient of two functions.

Dα

(
f
g

)
=

gDα( f )− f Dα(g)
g2 .

• Caputo and Riemann-Liouville derivatives do not satisfy the well-known chain rule.

Dα( f og) = f (α)(g(t))g(α)(t).

• Caputo and Riemann-Liouville derivatives do not satisfyDαDβ ( f ) = Dα+β ( f ) usually.

• Caputo derivative definition accepts that the function f is differentiable.

Although the concept of fractional derivative appeared in the middle of the 17th century, in recent years,
interest in this subject has increased. The reason is that physical systems can be expressed clearer by fractional
derivative. When the literature is examined, we see that a lot of studies have been carried out on fractional
derivatives. Different definitions of fractional derivative have been made since 1730s. Because of the limitations
of the popular fractional derivative definitions, the scientists worked to find a new definition for fractional deriva-
tive which can satisfy all the main principles. Recently, by Khalil et al. introduced the conformable fractional
derivative which is a simple, understandable and efficient fractional derivative definition [4].
Definition 1. For all t > 0 and α ∈ (0,1), an α-th order “conformable fractional derivative” of a function is
defined by [4] as

Tα( f )(t) = lim
ε→∞

f
(
t + εt1−α

)
− f (t)

ε

for f : [0,∞)→ R.
Definition 2. If f is α differentiable in some (0,a), a > 0 and lim

t→0+
f (α) (t) exist then define f (α) (0) =

lim
t→0+

f α (t) . For a function f starting from a ≥ 0, the conformable fractional integral is defined such as fol-

lowing:

Iα
a ( f )(t) =

tˆ

a

f (x)dαx =

tˆ

a

f (x)
x1−α

dx

where α ∈ (0,1] and the integral is the Riemann improper integral.
In the following theorem [1.1], the properties of this new definition are given.

Theorem 1.1. Let α ∈ (0,1], t > 0 and f ,gbe α− differentiable functions. Then

1. Tα(c f +dg) = cTα( f )+dTα(g), for all a,b ∈.

2. Tα(t p) = pt p−α for all p.

3. Tα(λ ) = 0 for all constant functions f (t) = λ .

4. Tα( f g) = f Tα(g)+gTα( f ).

5. Tα

(
f
g

)
= gTα (g)− f Tα ( f ).

g2

6. If f is differentiable function, then Tγ( f )(t) = t1−α d f
dt .
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The conformable fractional derivative has been used to provide new solutions for existing differential equa-
tions by many scientists. For example, Ilie et al. [5] studied general solutions of Riccati and Bernoulli fractional
differential equations with conformable fractional derivative. Taşbozan and Kurt [12] obtained new travel-
ling wave solutions of time-space fractional Liouville and Sine-Gordon equations using conformable fractional
derivative definition. Many references can be seen in the literature [15–17] that used conformable fractional
derivative to build the mathematical model of a natural event.

In this study authors aimed to find the new exact solutions of conformable time fractional (1+1) and (2+1)
dimensional KdV6 equations [10, 11] with the aid of sub equation method.

2 The Sub-Equation Method

In this section, we mention a biref description of fractional sub-equation method [8]. We assume the nonlin-
ear fractional partial differential equation

P
(
u,Dt

αu,Dxu,Dt
2αu,Dx

2u, . . .
)
= 0 (2.1)

where all the fractional derivatives are in conformable form. u(x, t) is unknown function and Dt
nα means n times

conformable fractional derivative u(x, t). The sub-equation method will be explained step by step as follows:
Step 1: Using the wave transformation [7], we get the following equalities.

u(x, t) =U(ξ ), ξ = kx+w
tα

α
(2.2)

where k,w are constants to be examined later and. Equation (2.1) can be rewritten in the form of the following
ODE by using chain rule [6]:

G
(
U,U ′,U ′′, . . .

)
= 0 (2.3)

where prime indicates the known derivative with respect to ξ .
Step 2. Assume that Equation (2.3) has one solution in the following form

U(ξ ) =
N

∑
i=0

aiϕ
i(ξ ), aN 6= 0, (2.4)

where ai (0≤ i≤ N) are constants to be determined. N represents a positive integer which is going to found
using balancing procedure [9] in Eq. (2.3) and ϕ(ξ ) satisfies the ordinary differential equation below

ϕ
′ (ξ ) = σ +(ϕ (ξ ))2 (2.5)

where σ is a constant. For the Eq. (2.5), some special solutions are given in the following formulas.

ϕ(ξ ) =


−
√
−σ tanh(

√
−σξ ), σ < 0

−
√
−σ coth(

√
−σξ ), σ < 0√

σ tan(
√

σξ ), σ > 0
−
√

σ cot(
√

σξ ), σ > 0
− 1

ξ+ϖ
,ϖ isacons., σ = 0

(2.6)

Step 3. Eqs. (2.4) and (2.5) are substituted into Eq. (2.3) and the coefficients of ϕ i(ξ ) are set to zero. This
procedure gives a nonlinear algebraic system in ai (i = 0,1, . . . ,N).
Step 4. Finally, solving the obtained non-linear algebraic equations system gives us the values of unknown
constants. Substituting obtained constants from the nonlinear algebraic system and by help of the formulas (2.6)
the solutions of Eq. (2.5) into Eq. (2.4). This provide the exact solutions for Eq. (2.1).
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3 Implementation of the Sub-Equation Method

3.1 Solution of (1+1) Dimensional Time Fractional KdV6 Equation

Firstly, we consider (1+1) KdV6 equation

D6
xu+20DxuD4

xu+40D2
xuD3

xu+120Dxu2D2
xu+D3

xDα
t u+8DxuDxDα

t u+4Dα
t uD2

xu = 0. (3.1)

Employing the chain rule [6] and wave transform [7] in Eq. (3.1) and integrating once yield following
differential equation

k6u(v)+ k3wu′′′+6k2w
(
u′
)2

+20k5u′′′u′+10k5(u′′)2
+40k4(u′)3

= 0 (3.2)

where prime denotes integer order derivative of function u(ξ ) with respect to variable ξ . Assuming the solution
of Equation (3.2) is denoted by the following series

u(ξ ) =
N

∑
i=0

aiϕ
i (ξ ),aN 6= 0 (3.3)

where ϕ(ξ ) is the exact solutions of Riccati differential equation (2.5). With aid balancing procedure [9], we
get N = 1. Substituting all the obtained values in Eq. (3.2) led to an equation with respect to ϕ(ξ ). Equating
all the coefficients of ϕ i(ξ ) to zero we obtain an equation system. After solving the equation system by using
Mathematica, we get,

a1 =−k,w = 4k3
σ .

Due to the this solution set the new wave solutions of Eq. (3.1) can be obtained as

u1 (x, t) = a0 + k
√
−σtanh

(√
−σ

(
kx+

4k3tασ

α

))
,

u2 (x, t) = a0 + k
√
−σcoth

(√
−σ

(
kx+

4k3tασ

α

))
,

u3 (x, t) = a0− k
√

σtan
(√

σ

(
kx+

4k3tασ

α

))
,

u4 (x, t) = a0 + k
√

σcot
(√

σ

(
kx+

4k3tασ

α

))
.

3.2 Solution of (2+1) Dimensional KdV6 Equation

Consider the time fractional (2+1) KdV6 equation as follows:

Dx(D6
xu+20DxuD4

xu+40D2
xuD3

xu+120Dxu2D2
xu+D3

xDα
t u+8DxuDxDα

t u+4Dα
t uD2

xu)+D3
yu = 0

then applying chain rule [6] and with the aid of the conformable wave transform [7] ξ = kx+w tα

α
+ ly,u(x,y, t) =

u(ξ ), and integrating once we have the following ODE

k6u(v)+ k3wu′′′+6k2w
(
u′
)2

+20k5u′′′u′+10k5(u′′)2 +40k4(u′′′)3 + l3u′ = 0 (3.4)

Using balancing principle [9] we have N = 1. Subrogating all the obtained results in Eq. (3.2) we have an
equation system. Solving the system yields

w =−20k3
σ , a1− k, l =−222/331/3k7/3

σ
2/3.
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Using the solution set above, we acquire the exact solutions for time fractional (2+1) dimensional KdV6
Equation

u1 (x,y, t) = a0 + k
√
−σtanh

(√
−σ

(
kx−222/331/3k7/3yσ

2/3− 20k3tασ

α

))
,

u2 (x,y, t) = a0 + k
√
−σcoth

(√
−σ

(
kx−222/331/3k7/3yσ

2/3− 20k3tασ

α

))
,

u3 (x,y, t) = a0− k
√

σtan
(√

σ

(
kx−222/331/3k7/3yσ

2/3− 20k3tασ

α

))
,

u4 (x,y, t) = a0 + k
√

σcot
(√

σ

(
kx−222/3 31/3k7/3yσ

2/3− 20k3tασ

α

))
.

4 Conclusions

In study the sub equation method is implemented to get the new traveling wave solutions of time fractional
(1+1) and (2+1) dimensional KdV6 equation successfully. The obtained results indicate that the sub equation
method is an efficient, reliable and applicable technique for obtaining the exact solutions of fractional derivatives
in conformable sense.
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