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Abstract
The purpose of this paper is to present a uniform finite difference method for numerical solution of a initial value problem
for semilinear second order singularly perturbed delay differential equation. A numerical method is constructed for this
problem which involves appropriate piecewise-uniform Shishkin mesh on each time subinterval. The method is shown to
uniformly convergent with respect to the perturbation parameter. A numerical experiment illustrate in practice the result of
convergence proved theoretically.
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1 Introduction

Consider an initial value problem for the semilinear second order singularly perturbed delay differential
equation [12] in the interval Ī = [0,T]:

εu′′(t)+a(t)u′(t)+ f (t,u(t),u(t− r)) = 0, t ∈ I, (1)

u(t) = ϕ(t), t ∈ I0, (2)

u′(0) = A/ε, (3)

where I = (0,T ] =
m
∪

p=1
Ip, Ip = { t : rp−1 < t ≤ rp}, 1 ≤ p ≤ m and rs = sr, for 0 ≤ s ≤ m and I0 = (−r,0].

0 < ε ≤ 1 is the perturbation parameter, a(t) ≥ α > 0, b(t), c(t), f (t) and ϕ(t) are given sufficiently smooth
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functions satisfying certain regularity conditions to be specified and r is a constant delay, which is independent
of ε . Moreover ∣∣∣∣ ∂ f

∂u

∣∣∣∣≤ b∗ and
∣∣∣∣ ∂ f
∂v

∣∣∣∣≤ c∗. (4)

Delay differential equations play an important role in the mathematical modelling of various practical phenom-
ena in the biosciences and control theory. Any system involving a feedback control will almost always involve
time delays. These arise because a finite time is required to sense information and then react to it. A singularly
perturbed delay differential equation is an ordinary differential equation in which the highest derivative is mul-
tiplied by a small parameter and involving at least one delay term [1-4]. Such problems arise frequently in the
mathematical modelling of various practical phenomena, for example, in the modelling of several physical and
biological phenomena like the optically bistable devices [5], description of the human pupil-light reflex [6], a
variety of models for physiological processes or diseases and variational problems in control theory where they
provide the best and in many cases the only realistic simulation of the observed phenomena[7].An overview of
numerical treatment for first and second order singularly perturbed delay differential equations, may be obtained
in [8-16](see,also references therein).

The numerical analysis of singular perturbation cases has always been far from trivial because of the bound-
ary layer behavior of the solution. Such problems undergo rapid changes within very thin layers near the bound-
ary or inside the problem domain. It is well known that standard numerical methods for solving singular pertur-
bation problems do not give satisfactory result when the perturbation parameter is sufficiently small. Therefore,
it is important to construct suitable numerical methods for these problems, whose accuracy does not depend on
the perturbation parameter, i.e. methods that are uniformly convergent with respect to the perturbation parameter
[17-22].

In a singularly perturbed delay differential equation, one encounters with two difficulties, one is because of
occurrence of the delay term and another one is due to presence of perturbation parameter. To overcome the first
difficulty, we employed the numerical method of steps [2] for the delay argument which converted the problem
to a initial value problem for a singularly perturbed differential equation. Then we constructed a numerical
scheme based on finite difference method on non uniform Shishkin mesh for the numerical solution.

In the present paper we discretize (1)-(2) using a numerical method, which is composed of an exponentially
fitted difference scheme on piecewise uniform Shishkin mesh on each time-subinterval. In section 2, we state
some important properties of the exact solution. In section 3, we describe the finite difference discretization and
introduce the piecewise uniform mesh. In section 4, we present convergence analysis for approximate solution.
Uniform convergence is proved in the discrete maximum norm. Some numerical results are being presented in
section 5. The technique to construct discrete problem and error analysis for approximate solution is similar to
those in [8,9,23,24]

Throughout the paper, C will denote a generic positive constant independent of ε and of the mesh parameter.

2 The Continuous Problem

Here we show some properties of the solution of (1)-(3), which are needed in later sections for the analysis of
the appropriate numerical solution. For any continuous function g(t), we use ‖g‖

∞
for the continuous maximum

norm on the corresponding interval.
Lemma 2.1. Let δ (t) be nonnegative and continuous function such that

δ (t)≤ δ0 +

tˆ

0

{c0δ (τ)+ c1δ (τ− r)}dτ, t > 0, (5)

δ (t) = δ0, − r ≤ t ≤ 0, (6)
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where δ0, c0 and c1 are nonnegative constants. Then it holds that

δ (t)≤ γ0

p

∑
s=0

{
γs

1(t− rp−1)
s

s!

}
, t ∈ Ip , p = 1,2, ...,m,

where γ0 = δ0exp(c0T ) and γ1 = c1exp(c0T ).
Proof. See [11].
Lemma 2.2. Let a,b,c, f ∈C1 (Ī),ϕ ∈C1 (Ī0). Then for the solution u(t) of problem (1)-(3) the following

estimates hold
‖u(t)‖

∞,Ī ≤C, (7)∣∣u′(t)∣∣≤C
{

1+
1
ε

exp
(
−αt

ε

)}
, t ∈ I, (8)

∣∣u′′(t)∣∣≤C
{

1+
(t− rp−1)

p−1

ε2 exp
(
−

α(t− rp−1)

ε

)}
, t ∈ Ip, p = 1,2, (9)∣∣u′′(t)∣∣≤C , t ∈ Ip, 3≤ p≤ m, (10)

Proof.The semilinear equation (1) can be written in the form

εu′′(t)+a(t)u′+b(t)u(t)+ c(t)u(t− r) =− f (t,0,0), t ∈ I, (11)

where

b(t) =
∂ f
∂u

(t, ũ, ṽ), c(t) =
∂ f
∂v

(t, ũ, ṽ),

ũ = γu, ṽ = γu(t− r), (0 < γ < 1)− intermediate value.

We rewrite (11) in the form
εu′′(t)+a(t)u′(t) = F(t), (12)

where
F(t) =− f (t,0,0)−b(t)u(t)− c(t)u(t− r).

From (12), we have the following relation for u′(t)

u′(t) = u′(0)exp

 −1
ε

tˆ

0

a(s)ds

+
1
ε

tˆ

0

F(τ)exp

 −1
ε

tˆ

τ

a(s)ds

dτ. (13)

Integrating (13) from 0 to t, we have

u(t) = ϕ(0)+Aε
−1

tˆ

0

exp

 −1
ε

sˆ

0

a(τ)dτ

ds+

+
1
ε

tˆ

0

ds

sˆ

0

F(τ)exp

 −1
ε

tˆ

τ

a(λ )dλ

dτ.

By the change of integral bounds, we get

|u(t)| ≤ |ϕ(0)|+

∣∣∣∣∣∣Aε
−1

tˆ

0

exp

 −1
ε

sˆ

0

a(τ)dτ

ds

∣∣∣∣∣∣+
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+
1
ε

∣∣∣∣∣∣
tˆ

0

dτ{F(τ)}
tˆ

τ

exp

 −1
ε

sˆ

τ

a(λ )dλ

ds

∣∣∣∣∣∣
Then

|u(t)| ≤ |ϕ(0)|+α
−1(|A|+‖ f‖1)+α

−1

tˆ

0

(‖b‖
∞
|u(τ)|+‖c‖

∞
|u(τ− r)|)dτ

Applying Lemma 2.1, we obtain (7).
Due to ‖F‖

∞
≤C, it now follows from (13) that

|u′(t)| ≤ |u′(0)|exp

 −1
ε

tˆ

0

a(s)ds

+
1
ε

tˆ

0

|F(τ)|exp

 −1
ε

tˆ

τ

a(s)ds

dτ.

≤C
{
|A|ε−1exp

(
−αt

ε

)
+α

−1(1− exp
(
−αt

ε

)}
which proves (8)

Now, differentiating the Eq.(1) we have

εu′′′(t)+a(t)u′′(t) = Φ(t), t ∈ Ik+1, (14)

where
Φ(t) = f ′(t,0,0)− (a′(t)+b(t))(t)u′(t)−b′(t)u(t)− c′(t)u(t− r)− c(t)u′(t− r).

From (14) we have the following relation for u′′(t)

u′′(t) = u′′(rk)exp

 −1
ε

tˆ

rk

a(s)ds

+
1
ε

tˆ

rk

Φ(τ)exp

 −1
ε

tˆ

τ

a(s)ds

dτ. (15)

and it is easy to see that

|Φ(t)| ≤
∣∣ f ′(t)∣∣+ ∣∣∣(a′(t)+b(t))u′(t)

∣∣∣+ ∣∣b′(t)u(t)∣∣+ ∣∣c′(t)u(t− r)
∣∣+ ∣∣c(t)u′(t− r)

∣∣
≤C

(
1+
∣∣∣(a′(t)+b(t))u′(t)

∣∣∣+ ∣∣c(t)u′(t− r)
∣∣) . (16)

It follows from (1.1) that ∣∣u′′(0)∣∣≤ C
ε2 . (17)

Using the estimates (8), (16) and (17) in (21) for k = 0, we have

∣∣u′′(t)∣∣≤ C
ε2 exp

(
−αt

ε

)
+

1
ε

C

tˆ

0

(
1+

1
ε

exp
(
−ατ

ε

))
exp
(
−α(t− τ)

ε

)
dτ

≤C
(

1+
1
ε2 exp

(
−αt

ε

))
, t ∈ I1,

i.e., the inequality (9) is valid for p = 1.
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Next, from the last inequality for t = r, we have∣∣u′′(r)∣∣≤C

and thereby from (15) it follows that

∣∣u′′(t)∣∣≤ |u′′(r)|exp
(
−αt

ε

)

+
1
ε

C

tˆ

0

(
1+

1
ε

exp
(
−α(τ− r)

ε

))
exp
(
−α(t− τ)

ε

)
dτ

≤C
(

1+
1
ε2 (t− r)exp

(
−αt

ε

))
, t ∈ I2.

i.e. the inequality (9) is also valid for p = 2.
Since ∣∣Φ′(t)∣∣≤C, t ∈ Ip , p = 3, ...,m,

the estimate (10) follows immediately from (15).

3 Discretization and Mesh

In this section, we construct a numerical scheme for solving the initial value problem (1)-(2).
Let ω̄N0 be any non-uniform mesh on Ī:

ω̄N0 = {0 = t0 < t1 < ... < tN0 = T, hi = ti− ti−1}

which contains by N mesh point at each subinterval Ip(1≤ p≤ m) :

ωN,p = {ti : (p−1)N +1≤ i≤ pN} , 1≤ p≤ m,

and consequently

ωN0 =
m⋃

p=1

ωN,p.

To simplify the notation we set wi = w(ti) for any function w(t), and moreover yi denotes an approximation
of u(t) at ti. For any mesh function {wi} defined on ω̄N0 , we use

wt̄,i = (wi−wi−1)/hi, wt,i = (wi+1−wi)/hi+1,

w0
t ,i
= (wt̄,i +wt,i)/2, wt̄t,i = (wt,i−wt̄,i)/hi,

‖w‖
∞,N,p = ‖w‖∞,ωN,p

:= max
1≤i≤N

|wi| .

For the difference approximation of (1), we are using the following identity

h−1
i

ti+1ˆ

ti−1

Lu(t)ψi(t)dt = 0, 1≤ i≤ N0−1, (18)
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where exponential basis functions

ψi(t) =


ψ1i(t)≡ eai(t−ti−1)/ε−1

eaih/ε−1
, ti−1 < t < ti

ψ2i(t)≡ 1−e−ai(ti+1−t)/ε

1−e−aih/ε
, ti < t < ti+1 ,

0 , t /∈ (ti−1, ti+1),

and

h−1
i

ˆ ti+1

ti−1

ψi (t)dt = 1.

We note that functions ψ1i(t) and ψ2i(t) are the solutions of the following problems, respectively:

εψ ′′(t)−aiψ
′(t) = 0 , ti−1 < t < ti

ψ(ti−1) = 0 , ψ(ti) = 1,

εψ ′′(t)−aiψ
′(t) = 0 , ti < t < ti+1

ψ(ti) = 1 , ψ(ti+1) = 0.

Using interpolating quadrature rules with the weight and remainder terms in integral form on subintervals
[ti−1, ti+1], consistent with [23,24], after a simple calculation, we have the following relation:

εθiut̄t,i +aiu0
t ,i
+ f (ti,ui,ui−N)+Ri = 0, i = 1,2, ...,N0−1, (19)

where the factor
θi =

ρai

2
coth(aiρ/2) , ρ = h/ε (20)

and remainder term

Ri = h−1
i

ti+1ˆ

ti−1

[a(t)−a(ti)]u′(t)ψi(t)dt (21)

+h−1
i

ti+1ˆ

ti−1

d
dt

f (τ,u(τ) ,u(τ− r))K∗0,i (t,τ)dτ

K∗0,i (t,τ) = T0 (ti− τ)−T0 (ti− τ) ,T0(t) = 1, t > 0;T0(t) = 0, t < 0.

To define an approximation for the boundary condition (3), we proceed our discretization process by

t1ˆ

t0

Lu(t)ϕ0(t)dt = 0

where the exponential basis function

ψ0(t) =

{
1−e−a0(t1−t)/ε

1−e−a0h/ε
, t0 < t < t1

0 , t /∈ (t0, t1)
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We note that functions ϕ0(t) is the solution of the following problem:

εψ ′′(t)−a0ψ ′(t) = 0 , t0 < t < t1,
ψ(t0) = 0 , ψ(t1) = 1.

Whence, as similar above we can write the following difference relation:

εσut,0−A+ r(0) = 0 (22)

where the coefficient and the remainder term

σ = 1+a0ε
−1

t1ˆ

t0

ψ0(t)dt =
a0ρ

1− e−a0ρ
(23)

r(0) =

t1ˆ

t0

[a(t)−a0]u′(t)ψ0(t)dt +

t1ˆ

t0

f (t,u(t),u(t− r))ψ0(t)dt. (24)

Neglecting Ri and r(0) in (19) and (22), we propose the following difference scheme for approximation
(1)-(2):

εθiyt̄t,i +aiy0
t ,i
+ f (ti,yi,yi−N) = 0, i = 1,2, ...,N0−1, (25)

yi = ϕi, −N ≤ i≤ 0, εσyt,0−A = 0, (26)

where θi and σ are defined by (20),(23), respectively.
The difference scheme (25)-(26), in order to be ε- uniform convergent, we will use the non uniform Shishkin

mesh. For the even number N, the piecewise uniform mesh ωN,p divides each of the interval [rp−1, σp] and
[σp, rp] into N/2 equidistant subintervals, where the transition point σp, which separates the fine and coarse
portions of the mesh is obtained by

σp = rp−1 +min
{

r/2, α
−1

βpε lnN
}
,

where β1≥ 1 and βp > 1 (2≤ p≤m) are some constants. Hence, if h(1)p and h(2)p denote the stepsizes in [rp−1, σp]
and [σp, rp] respectively, we have

h(1)p = 2(σp− rp−1)N−1, h(2)p = 2(rp−σp)N−1, 1≤ p≤ m,

so

ω̄N,p =

{
ti = rp−1 +(i− (p−1)N)h(1)p , i = (p−1)N, ...,(p−1/2)N
ti = σp +(i− (p−1/2)N)h(2)p , i = (p−1/2)N +1, ..., pN,

1≤ p≤ m.

In the rest of the paper we only consider this type mesh.
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4 Convergence Analysis

We now estimate the approximate error zi = yi−ui, 0≤ i≤ N0, which satisfies the discrete problem

εθizt̄t,i +aiz0
t ,i
+ f (ti,yi,yi−N)− f (ti,ui,ui−N) = Ri, i = 1, ...,N0−1, (27)

zi = 0, −N ≤ i≤ 0, εσzt,0−A+ r(0) = 0, (28)

where the truncation error Ri and r(0) are given by (21) and (24).
Lemma 4.1. Let zi be the solution of the problem (27)-(28). Then the following estimate holds

‖z‖
∞,N,p ≤ γ((θ∗/σ)|r(0)| +C

p

∑
k=1
‖R‖

∞,ωN,k
, 1≤ p≤ m. (29)

where θ∗ =
ρα

2 coth(αρ/2), γ = 4α−1 exp(4α−1(b∗+ c∗))
Proof. Let zt,i = vi. Then the relation (27) can be rewritten as

ε θivt̄,i +
ai

2
(vi + vi−1) = Fi,

where
Fi = Ri− f (ti,yi,yi−N)+ f (ti,ui,ui−N).

Solving the first order difference equation with respect to vi, we get

vi = v0Qi +h
i

∑
k=1

F̀
εθk +hak/2

Qi−k, (30)

where

Qi−k =


1 , k = i,

i
∏

j=k+1

(
1−a jρ

/
(2θ j)

1+a jρ
/
(2θ j)

)
, 0≤ k ≤ i−1.

Then, since

zp = h
p−1

∑
i=0

vi = h
p

∑
i=1

vi−1

and taking into consideration (5), from (30) after some manipulations we have the following inequality

|zp| ≤ 4α
−1(εθ∗ |zt,0|+h

p−1

∑
i=1

(|Ri|+b∗|zi|+ c∗|zi−N |)),1≤ p≤ N0−1.

Replacing i−N = j, we get

h
p

∑
i=1
|zi−N |= h

p−N

∑
j=1−N

|z j| ≤ h
0

∑
j=1−N

|z j|+h
p−1

∑
j=1
|z j|

= ‖ψ‖L1(wN,0)
+h

p−1

∑
j=1
|z j|.

Therefore

|zp| ≤C(εθ∗ |zt,0|+‖ψ‖1 +
p

∑
i=1

(|Ri|+b∗|zi|+ c∗|zi−1|)
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Taking also into account (28), and using difference analogue of Gronwall’s inequality this leads to (29).
Lemma 4.2. Let a,b,c, f ∈ C1 (Ī), ψ ∈ C1 (Ī0). Then for the truncation errors Ri and r(0), the following

estimates hold
‖R‖

∞,ωN ,p ≤CN−1 lnN, 1≤ p≤ m,

|r(0)| ≤CN−1 lnN. (31)

Proof. From explicit expression (21) for Ri on an arbitrary mesh, we have

|Ri|= h−1
i

ti+1ˆ

ti−1

|(a(t)−a(ti))||u′(t)|ψi(t)dt

+h−1
i

ti+1ˆ

ti−1

∣∣∣∣ d
dt

f (t,u(t) ,u(t− r))
∣∣∣∣dt, 1≤ i≤ N0.

This inequality together with (7), enable us to write

|Ri| ≤C

hi +

ti+1ˆ

ti−1

(∣∣u′(t)∣∣+ ∣∣u′(t− r)
∣∣)dt

 , 1≤ i≤ N0.

From here, in view of (8), it follows that

|Ri| ≤C

hi +
1
ε

ti+1ˆ

ti−1

e−
αt
ε dt

 , 1≤ i≤ N0 (32)

in which

hi =

{
h(1)p , (p−1)N ≤ i≤ (p−1/2)N
h(2)p , (p−1/2)N +1≤ i≤ pN.

At the each submesh ωN,p, we estimate the truncation error R as follows. We consider first the case σp =

rp−1 + r/2, and so r/2≤ α−1θpε lnN and h(1)p = h(2)p = τp = r/N.
Hereby, since

h−1
i ε

−1

ti+1ˆ

ti−1

e−
αt
ε dt ≤ ε

−1hp ≤
2βp lnN

αr
r
N

= 2β
−1

βpN−1 lnN,

(p−1)N ≤ i≤ pN, 1≤ p≤ m−1

it follows from (32) that

|Ri| ≤CN−1 lnN, (p−1)N ≤ i≤ pN, 1≤ p≤ m−1.

We now consider the case σp = rp−1+α−1βpε lnN and estimate Ri on [rp−1, σp] and [σp, rp] separately. In
the layer region [rp−1, σp], the inequality (32) reduces to

|Ri| ≤C(1+ ε
−1)hp(1) =C(1+ ε

−1)
α−1βpε lnN

N/2
,(p−1)N ≤ i≤ (p−1/2)N,
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1≤ p≤ m−1.

Hence
|Ri| ≤CN−1 lnN, (p−1)N ≤ i≤ (p−1/2)N, 1≤ p≤ m−1.

Next we estimate Ri for (p−1/2)N+1≤ i≤ pN. In this case, recalling that ti = σp+(i−(p−1/2)N)h(2)p =

rp−1 +α−1βpε lnN +(i− (p−1/2)N)h(2)p , we obtain from (32)

|Ri| ≤C
{

h(2)p +α
−1

βp(e
− α(ti−1)

βpε − e−
α(ti)
βpε )

}
and this implies that

|Ri| ≤CN−1.

Then, we estimate the remainder term r(0). From the explicit expression (32) and |ϕ0 (t)| ≤ 1, after similar
calculation as above, it follows that ∣∣∣r(0)∣∣∣≤CN−1 lnN.

Combining the two previous lemmas gives us the following main convergence result.
Theorem 4.1. Let a ∈ C1 (Ī), ϕ ∈ C1 (I0) . The continuously differentiable function f (t,u,v) satisfies the

conditions (1.4) and the derivative ∂

∂ t f (t,u,v) is bounded for 0≤ t ≤ T and |u|, |v| ≤ C. Then the following
estimate holds

|yi−ui| ≤CN−1 lnN, 0≤ i≤ N0.

5 Numerical Results

In this section, a simple numerical example is devised to verify the validity for the proposed method.
Consider the test problem with

a = 1, f =−u(t−1)+ t2,T = 2,ϕ = 1+ t, A =−1.

We use the double mesh principle to estimate the errors and compute the experimental rates of convergence
in our computed solution, i.e. We compare the computed solution with the solution on a mesh that is twice as
fine [17]. The error estimate eN,p

ε and the computed convergence rate rN,p
ε obtained in this way are denoted by

eN,p
ε = max

ωN,p

∣∣yε,N− yε,2N
∣∣ , p = 1,2; rN,p

ε = ln
(

eN,p
ε /e2N,p

ε

)
/ ln2.

The resulting errors eN,p
ε and the corresponding numbers rN,p

ε for particular values of ε , N, for first and second
subinterval are listed in the Tables 1 and 2.

The values of ε for which we solve the test problem are ε = 2−i, i = 1,2,4, ...,16. These convergence rates
are increasing as N increases for any fixed ε.Tables 1 and 2 verify the ε-uniform convergence of the numerical
solution on both subintervals and computed rates are essentially in agreement with our theoretical analysis.
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Table 1 Maximum errors and rates of convergence on ωN,1

ε N = 64 N = 128 N = 256 N = 512 N = 1024
2−1 0.0085116

0.99
0.0042832
1.00

0.0021485
1.00

0.0010760
1.00

0.0005384

2−2 0.0140007
0.98

0.0070930
0.98

0.0035693
0.99

0.0017090
1.00

0.0008906

2−4 0.0241181
0.75

0.0143603
0.78

0.0083166
0.81

0.0047146
0.84

0.0026331

2−6 0.0230541
0.75

0.0137267
0.78

0.0079497
0.81

0.0045066
0.84

0.0025149

2−8 0.0227881
0.75

0.0135684
0.78

0.0078580
0.81

0.0044546
0.84

0.0024859

2−10 0.0227216
0.75

0.0135288
0.78

0.0078350
0.81

0.0044416
0.84

0.0024786

2−12 0.0227050
0.75

0.0135189
0.78

0.0078293
0.81

0.0044382
0.84

0.0024768

2−14 0.0227008
0.75

0.0135164
0.78

0.0078279
0.81

0.0044361
0.84

0.0024763

2−16 0.0226998
0.75

0.0135158
0.78

0.00782756
0.81

0.0044374
0.84

0.0024762

Table 2 Maximum errors and rates of convergence on ωN,2

ε N = 64 N = 128 N = 256 N = 512 N = 1024
2−1 0.0079814

0.98
0.0040103
0.99

0.0020101
1.00

0.0010063
1.00

0.0005033

2−2 0.0012138
0.98

0.0061392
0.99

0.0030875
1.00

0.0015482
1.00

0.0007775

2−4 0.0202600
0.75

0.0120754
0.79

0.0069885
0.81

0.0039609
0.84

0.0022110

2−6 0.0194243
0.75

0.0115426
0.78

0.0066802
0.82

0.0037862
0.84

0.0021126

2−8 0.0191427
0.75

0.0114094
0.78

0.0066031
0.82

0.0037425
0.84

0.0020882

2−10 0.0190868
0.75

0.0113761
0.78

0.0065838
0.82

0.0037315
0.84

0.0020821

2−12 0.0190729
0.75

0.0113678
0.78

0.0065790
0.82

0.0037288
0.84

0.0020806

2−14 0.0190696
0.75

0.0113657
0.78

0.0065778
0.82

0.0037281
0.84

0.0020668

2−16 0.0190685
0.75

0.0113652
0.78

0.0065754
0.82

0.0037280
0.84

0.0020801

6 Conclusions

A numerical method is developed to solve singularly perturbed initial value problem for semilinear second-
order delay differential equation. This method is based on exponentially fitted difference scheme on an equidis-
tant mesh, which gives first order uniform convergence in the discrete maximum norm. The method is shown to
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be uniformly convergent to the continuous solution i.e., independent of mesh parameter and perturbation param-
eter. Efficiency of the present method is demonsrated by a numerical example and also by comparing the results
with exact solution of the problem. Presented numerical results are essentially in agreement with our theoretical
analysis.
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