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Abstract
A work on a mathematical modeling is very popular in applied sciences. Nowadays many mathematical models have
been considered and new methods have been used for approaching of these models. In this paper we are considering
mathematical modeling of nuclear family model with fractional order Caputo derivative. Also the existence and uniqueness
results and numerical scheme are given with Adams-Bashforth scheme via fractional order Caputo derivative.
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1 Introduction

Recently, new efficient numerical methods have been developed for solutions of differential equations with
different definitions of derivatives. For example the kernels including the power law for the Riemann-Liouville
and Caputo type, the exponential decay law for the Caputo-Fabrizio case and the Mittag-Leffler law for the
Atangana-Baleanu derivative [2-6, 11-14]. So these kernels history are beginning from the Leibniz’s letter
to L’Hospital to Atangana-Baleanu derivative. In this work we are interesting in mathematical modeling of
nuclear family. Model was introduced by Koca in 2015 with Caputo type fractional derivative [1]. In addition to
previous paper, we reconsider model with searching the existence and uniqueness results of solutions and we give
numerical approach for solutions of model with Caputo derivative. We believe that classical (ordinary) derivative
is weak to explain the memory effect of the family dynamics. Because of this, we considered numerical solutions
via fractional order Caputo derivative. Also the aim of the choose of the Caputo derivative is to give better
meaning for modeling.

Adams-Bashforth is a powerful numerical method to solve linear and non-linear ordinary differential equa-
tions. Method was used only for ordinary differential equations generally with integer order. After that Atangana
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and Batogna have extended this method for partial differential equation with Caputo-Fabrizio derivative [10] in
their thesis. Also Owolabi and Atangana formulated a new three-step fractional Adams-Bashforth scheme with
Caputo-Fabrizio derivative [7-9]. Method has been used for the solution of linear and nonlinear fractional dif-
ferential equations .

In this paper we extend the applicability of the proposed scheme to solve system that is modeled by the
Caputo derivative. The remainder of this paper is follows that in section one; some useful definitions of fractional
order differentiation are given, in section two; we present in detail the existence and uniqueness results of
solutions of our system. Finally in numerical part; we consider the solutions of system with two-step Adams-
Bashforth scheme via fractional order Caputo derivative.

2 Preliminaries

Definition 1 : Caputo fractional derivative of order α > 0 of a function f : (0,∞)→ R, according to Caputo, the
fractional derivative of a continuous and differentiable function f is given as :

CDα
t ( f (t)) =

1
Γ(1−α)

tˆ

0

(t− x)−α d
dx

f (x)dx, 0 < α ≤ 1. (1)

Definition 2 : The Riemann-Liouville fractional integral of order α > 0 of a function f : (0,∞)→ R, according
to Riemann-Liouville, the fractional integral that is considered as anti-fractional derivative of a function f is :

Iα
t ( f (t)) =

1
Γ(α)

tˆ

0

(t− x)α−1 f (x)dx, x > a. (2)

Now we give two important properties for Caputo and Riemann-Liouville derivatives.
Property 1 : If f (t) is defined in the interval [a,b] and

1
Γ(α)

tˆ

a

(t− x)α−1 f (x)dx = 0 (3)

for α > 0 and for all t ∈ [a,b], then
f (t)≡ 0. (4)

Property 2 : The following equation

CDα
t ( f (t)) = g(x), α ∈ (0,1), x ∈ R, (5)

f (0) = f0,

doesn’t have a periodic solution if f0 does not solve g(x) = 0, where g(x) is continuous.

3 Model derivation and existence and uniqueness of solutions for the nuclear family model

In this section, first we give integer order nuclear family model that is introduced by Koca in 2015 with four
state variables [1]. The model describes baby’s emotions, in which baby (B) is involved in emotions with mother
(M) and father (F). In model, the following notations for variables were used:

B(t): Baby’s love for the baby’s father,
F(t): Father’s love for the baby and his wife,
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M(t): Mother’s love for the baby and her husband,
B1(t): Baby’s love for the baby’s mother.
The integer order nuclear family model is given as

dB
dt

= aB+b(F−M)(c− (F−M))+ γ1, (6)

dF
dt

= eF +gB(h−B)+ jM+ γ2,

dM
dt

= kM+mB1(n−B1)+ pF + γ3,

dB1

dt
= aB1 +b(M−F)(d− (M−F))+ γ4,

with initial conditions
B(0) = B0, F(0) = F0, M(0) = M0, B1(0) = B10, (7)

where e,g,h, j are specify father’s emotional style, k,m,n, p are specify mother’s emotional style and γ1,γ2,γ3,γ4
are attraction constants.

3.1 Existence of solution for the nuclear family model

In this part, we will present in detail the existence of the solutions of our system. The fixed-point theorem
will help achieve this. Let P = K(q)×K(q) and K(q) be the Banach space of continuous R→ R valued function
defined on the interval q with the norm

‖B,F,M,B1‖= ‖B‖+‖F‖+‖M‖+‖B1‖ . (8)

Here

‖B‖ = sup{|B(t)| : t ∈ q} ,
‖F‖ = sup{|F(t)| : t ∈ q} ,
‖M‖ = sup{|M(t)| : t ∈ q} ,
‖B1‖ = sup{|B1(t)| : t ∈ q} .

Let us redefine the nuclear family model spread by replacing the time derivative by Caputo fractional deriva-
tive:

C
a Dα

t B(t) = F1(t,B(t)), (9)
C
a Dα

t F(t) = F2(t,F(t)),
C
a Dα

t M(t) = F3(t,M(t)),
C
a Dα

t B1(t) = F4(t,B1(t)),

with initial conditions B(t0) = B0,F(t0) = F0,M(t0) = M0 and B1(t0) = B10.
Here,

F1(t,B(t)) = aB(t)+b(F(t)−M(t))(c− (F(t)−M(t))+ γ1, (10)

F2(t,F(t)) = eF(t)+gB(t)(h−B(t))+ jM(t)+ γ2,

F3(t,M(t)) = kM(t)+mB1(t)(n−B1(t))+ pF(t)+ γ3,

F4(t,B1(t)) = aB1(t)+b(M(t)−F(t))(d− (M(t)−F(t))+ γ4.
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The above system (10) can be converted to the Caputo fractional integral. By definition (2), the model can
be written as

B(t) = B0 +
1

Γ(α)

tˆ

0

(t− τ)α−1F1(τ,B(τ))dτ, (11)

F(t) = F0 +
1

Γ(α)

tˆ

0

(t− τ)α−1F2(τ,F(τ))dτ,

M(t) = M0 +
1

Γ(α)

tˆ

0

(t− τ)α−1F3(τ,M(τ))dτ,

B1(t) = B10 +
1

Γ(α)

tˆ

0

(t− τ)α−1F4(τ,B1(τ))dτ.

Theorem 1 : The kernels F1,F2,F3 and F4 satisfy the Lipschitz condition if the following inequalities can be
obtained :

0≤ Li < 1, for i = 1,2,3,4. (12)

Proof : Let us start the kernel F1. Let B and B1 be two function, so we have following:∥∥F1(t,B(t))−F1(t,B1(t))
∥∥ (13)

=

∥∥∥∥ aB(t)+b(F(t)−M(t))(c− (F(t)−M(t))+ γ1
−aB1(t)−b(F(t)−M(t))(c− (F(t)−M(t))− γ1

∥∥∥∥
≤ a

∥∥B(t)−B1(t)
∥∥

Taking as L1 = a, then we get∥∥F1(t,B(t))−F1(t,B1(t))
∥∥≤ L1

∥∥B(t)−B1(t)
∥∥ . (14)

Hence, the Lipschitz condition is satisfied for F1, and if 0 ≤ L1 < 1, then it is also a contraction for F1.
Similarly the other kernels have the Lipschitz condition as follows:∥∥F2(t,F(t))−F2(t,F1(t))

∥∥ ≤ L2
∥∥F(t)−F1(t)

∥∥ , (15)∥∥F3(t,M(t))−F3(t,M1(t))
∥∥ ≤ L3

∥∥M(t)−M1(t)
∥∥ ,∥∥F4(t,B1(t))−F4(t,B1

1(t))
∥∥ ≤ L4

∥∥B1(t)−B1
1(t)
∥∥ .

When considering the kernels for the model, eq. (9) can be rewritten as follows:

B(t) = B0 +
1

Γ(α)

tˆ

0

(t− τ)α−1F1(τ,B(τ))dτ, (16)

F(t) = F0 +
1

Γ(α)

tˆ

0

(t− τ)α−1F2(τ,F(τ))dτ,

M(t) = M0 +
1

Γ(α)

tˆ

0

(t− τ)α−1F3(τ,M(τ))dτ,

B1(t) = B10 +
1

Γ(α)

tˆ

0

(t− τ)α−1F4(τ,B1(τ))dτ.
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Now we can present the following recursive formula:

Bn(t) = B0 +
1

Γ(α)

tˆ

0

(t− τ)α−1F1(τ,Bn−1(τ))dτ, (17)

Fn(t) = F0 +
1

Γ(α)

tˆ

0

(t− τ)α−1F2(τ,Fn−1(τ))dτ,

Mn(t) = M0 +
1

Γ(α)

tˆ

0

(t− τ)α−1F3(τ,Mn−1(τ))dτ,

B1n(t) = B10 +
1

Γ(α)

tˆ

0

(t− τ)α−1F4(τ,B1(n−1)(τ))dτ.

Also the initial conditions are given as B(t0) = B0, F(t0) = F0, M(t0) = M0 and B1(t0) = B10. Now, we
obtain the difference between the successive terms in the expression.

φ n(t) = Bn(t)−Bn−1(t) (18)

=
1

Γ(α)

tˆ

0

(t− τ)α−1 (F1(τ,Bn−1(τ))−F1(τ,Bn−2(τ)))dτ,

ψn(t) = Fn(t)−Fn−1(t)

=
1

Γ(α)

tˆ

0

(t− τ)α−1 (F2(τ,Fn−1(τ))−F2(τ,Fn−2(τ)))dτ,

µn(t) = Mn(t)−Mn−1(t)

=
1

Γ(α)

tˆ

0

(t− τ)α−1 (F3(τ,Mn−1(τ))−F3(τ,Mn−2(τ)))dτ,

εn(t) = B1n(t)−B1(n−1)(t)

=
1

Γ(α)

tˆ

0

(t− τ)α−1 (F4(τ,B1(n−1)(τ))−F4(τ,B1(n−2)(τ))
)

dτ.

It is worth noticing that

Bn(t) =
n

∑
i=1

φ n(t), (19)

Fn(t) =
n

∑
i=1

ψn(t),

Mn(t) =
n

∑
i=1

µn(t),

B1n(t) =
n

∑
i=1

εn(t).

Let us consider equality (18), applying the norm on both sides of the equation and considering triangular
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inequality and then the equation reduces to (20),

‖φ n(t)‖ = ‖Bn(t)−Bn−1(t)‖ (20)

≤ 1
Γ(α)

∥∥∥∥∥∥
tˆ

0

(t− τ)α−1 (F1(τ,Bn−1(τ))−F1(τ,Bn−2(τ)))dτ

∥∥∥∥∥∥ .
As the kernel satisfies the Lipschitz condition, we have

‖Bn(t)−Bn−1(t)‖ ≤
L1

Γ(α)

tˆ

0

(t− τ)α−1 ‖Bn−1(τ)−Bn−2(τ)‖dτ, (21)

then we get

‖φ n(t)‖ ≤
L1

Γ(α)

tˆ

0

(t− τ)α−1∥∥φ n−1(t)
∥∥dτ. (22)

Similarly, we get the following results:

‖ψn(t)‖ ≤
L2

Γ(α)

tˆ

0

(t− τ)α−1∥∥ψn−1(t)
∥∥dτ, (23)

‖µn(t)‖ ≤
L3

Γ(α)

tˆ

0

(t− τ)α−1∥∥µn−1(t)
∥∥dτ,

‖εn(t)‖ ≤
L4

Γ(α)

tˆ

0

(t− τ)α−1 ‖εn−1(t)‖dτ,

after the above results, let us give a new theorem for solutions of model.
Theorem 2 : The nuclear family model with the Caputo fractional derivative (9) has a unique solution under the
conditions that we can find tmax satisfying

tα
max

Γ(α)
Li < 1, for i = 1,2,3,4. (24)

Proof : We know that the functions B(t),F(t),M(t) and B1(t) are bounded. Also we have shown that their
kernels satisfy the Lipschitz condition. So from the equality (22)-(23), we obtain the succeeding relations as
follows:

‖φ n(t)‖ ≤ ‖B0‖
[

tα
max

Γ(α)
L1

]n

, (25)

‖ψn(t)‖ ≤ ‖F0‖
[

tα
max

Γ(α)
L2

]n

,

‖µn(t)‖ ≤ ‖M0‖
[

tα
max

Γ(α)
L3

]n

,

‖εn(t)‖ ≤ ‖B10‖
[

tα
max

Γ(α)
L4

]n

.
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Thus equality (19) exists and is a smooth function. To show that the above functions are the solutions of the
model, let we assume

B(t)−B0 = Bn(t)−bn(t), (26)

F(t)−F0 = Fn(t)− cn(t),

M(t)−M0 = Mn(t)−dn(t),

B1(t)−B10 = B1n(t)− en(t).

Our aim here is to show that the term at infinity goes ‖b∞(t)‖ −→ 0. Therefore we have

‖bn(t)‖ ≤

∥∥∥∥∥∥ 1
Γ(α)

tˆ

0

(t− τ)α−1 (F1(τ,B(τ))−F1(τ,Bn−1(τ)))dτ

∥∥∥∥∥∥ (27)

≤ 1
Γ(α)

tˆ

0

(t− τ)α−1 ‖F1(τ,B(τ))−F1(τ,Bn−1(τ))‖dτ

≤ tαL1

Γ(α)
‖B−Bn−1‖ .

Repeating this process recursively, we obtain

‖bn(t)‖ ≤ ‖B0‖
[

tα

Γ(α)

]n+1

Ln
1M. (28)

Then at tmax we have

‖bn(t)‖ ≤ ‖B0‖
[

tα
max

Γ(α)

]n+1

Ln
1M. (29)

With applying the limit on both sides as n tends to infinity, we obtain ‖b∞(t)‖ −→ 0. This completes the
proof.

3.2 Uniqueness of the special Solution

Another important application is to prove the uniqueness of the system of solutions. So we assume by
contraction that there exists another system of solutions of (9), B2(t), F2(t), M2(t) and B12(t). Then

‖B(t)−B2(t)‖ ≤
1

Γ(α)

tˆ

0

(t− τ)α−1 (F1(τ,B(τ))−F1(τ,B2(τ)))dτ. (30)

Applying the norm to eq. (30), we get

‖B(t)−B2(t)‖ ≤
1

Γ(α)

tˆ

0

(t− τ)α−1 ‖F1(τ,B(τ))−F1(τ,B2(τ))‖dτ. (31)

By using the Lipschitz condition properties of the kernel, we have

‖B(t)−B2(t)‖ ≤
tαL1

Γ(α)
‖B(t)−B2(t)‖ . (32)

This gives

‖B(t)−B2(t)‖
(

1− tαL1

Γ(α)

)
≤ 0, (33)

‖B(t)−B2(t)‖= 0−→ B(t) = B2(t). (34)

So the equation has a unique solution. It is clear that we can show the same results for other solutions of
F(t), M(t) and B1(t).
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4 Two-step Adams-Bashforth scheme with fractional order Caputo derivative

In this section we consider the two-step Adams-Bashforth scheme with Caputo derivative which is given by
Atangana and Owolabi in [9]. Let us give fractional differential equation with fractional order Caputo derivative
as below:

C
0 Dα

t x(t) = F(t,x(t)), (35)

x(0) = x0.

The above fractional order Caputo equation is equal to integral equation as below:

x(t) = x(0)+
1

Γ(α)

tˆ

0

F(τ,x(τ))(t− τ)α−1dτ. (36)

With using the fundamental theorem of calculus and taking t = tn+1, we have

x(tn+1) = x(0)+
1

Γ(α)

tn+1ˆ

0

F(τ,x(τ))(tn+1− τ)α−1dτ. (37)

When t = tn, we have

x(tn) = x(0)+
1

Γ(α)

tnˆ

0

F(τ,x(τ))(tn− τ)α−1dτ. (38)

Then we can write follows that

x(tn+1)− x(tn) =
1

Γ(α)

tn+1ˆ

0

F(τ,x(τ))(tn+1− τ)α−1dτ (39)

− 1
Γ(α)

tnˆ

0

F(τ,x(τ))(tn− τ)α−1dτ.

To get the value of integrals
tn+1ˆ

0

F(τ,x(τ))(tn+1− τ)α−1dτ (40)

and
tnˆ

0

F(τ,x(τ))(tn− τ)α−1dτ, (41)

we can use the polynomial interpolation p(τ) as an approximation of F(τ,x(τ)). Then the interpolation is taking
as with Lagrange polynomial

p(τ) = F(τ,x(τ)) =
τ− τn−1

τn− τn−1
F(τn,x(τn))+

τ− τn

τn−1− τn
F(τn−1,x(τn−1)). (42)
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If we integrate and simplify the right side of equality, then we get

tn+1ˆ

0

(
τ−τn−1
τn−τn−1

F(τn,x(τn))

+ τ−τn
τn−1−τn

F(τn−1,x(τn−1))

)
(tn+1− τ)α−1dτ (43)

=
F(tn,x(tn))

hΓ(α)

(
2h
α

tα
n+1−

tα+1
n+1

α +1

)

−F(tn−1,x(tn−1))

hΓ(α)

(
h
α

tα
n+1−

tα+1
n+1

α +1

)
,

and
tnˆ

0

(
τ−τn−1
τn−τn−1

F(τn,x(τn))

+ τ−τn
τn−1−τn

F(τn−1,x(τn−1))

)
(tn− τ)α−1dτ (44)

=
F(tn,x(tn))

hΓ(α)

(
h
α

tα
n −

tα+1
n

α +1

)
+

F(tn−1,x(tn−1))

hΓ(α +1)
tα+1
n .

Here tn−1, tn and tn+1 are equally spaced then we take

tn− tn−1 = h, (45)

tn+1− tn = h.

Therefore finally we get

x(tn+1) = x(tn)+
F(tn,x(tn))

hΓ(α)

(
2h
α

tα
n+1−

tα+1
n+1

α +1
+

h
α

tα
n −

tα+1
n

α

)
(46)

+
F(tn−1,x(tn−1))

hΓ(α)

(
h
α

tα
n+1−

tα+1
n+1

α +1
+

tα
n

α +1

)
+Rα

n (t).

Here Rα
n (t) is error term for two step Adams-Bashforth scheme and calculated as below:

Rα
n (t) =

F(n+1)(t,x(t))
(n+1)!

n

∏
i=0

(t− ti) (47)

<
h3+αtmax

12Γ(α +1)
((n+1)α +n2).

Readers can be found detailed analysis of method in paper [9].

4.1 Application of the two-step fractional Adams-Bashforth method on fractional order nuclear family
model via Caputo derivative

Let us consider the fractional order nuclear family model as below:

C
a Dα

t B(t) = F1(t,B(t)), (48)
C
a Dα

t F(t) = F2(t,F(t)),
C
a Dα

t M(t) = F3(t,M(t)),
C
a Dα

t B1(t) = F4(t,B1(t)),
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with initial conditions B(t0) = B0, F(t0) = F0, M(t0) = M0 and B1(t0) = B10.
Here

F1(t,B(t)) = aB(t)+b(F(t)−M(t))(c− (F(t)−M(t))+ γ1, (49)

F2(t,F(t)) = eF(t)+gB(t)(h−B(t))+ jM(t)+ γ2,

F3(t,M(t)) = kM(t)+mB1(t)(n−B1(t))+ pF(t)+ γ3,

F4(t,B1(t)) = aB1(t)+b(M(t)−F(t))(d− (M(t)−F(t))+ γ4.

By using the numerical shcheme of above (46)-(47) then we have

B(tn+1) = B(tn)+
F1(tn,B(tn))

hΓ(α)

(
2h
α

tα
n+1−

tα+1
n+1

α +1
+

h
α

tα
n −

tα+1
n

α

)
(50)

+
F1(tn−1,B(tn−1))

hΓ(α)

(
h
α

tα
n+1−

tα+1
n+1

α +1
+

tα
n

α +1

)
+Rα

n (t),

F(tn+1) = F(tn)+
F2(tn,F (tn))

hΓ(α)

(
2h
α

tα
n+1−

tα+1
n+1

α +1
+

h
α

tα
n −

tα+1
n

α

)

+
F2(tn−1,F (tn−1))

hΓ(α)

(
h
α

tα
n+1−

tα+1
n+1

α +1
+

tα
n

α +1

)
+Rα

n (t),

M(tn+1) = M(tn)+
F3(tn,M (tn))

hΓ(α)

(
2h
α

tα
n+1−

tα+1
n+1

α +1
+

h
α

tα
n −

tα+1
n

α

)

+
F3(tn−1,M (tn−1))

hΓ(α)

(
h
α

tα
n+1−

tα+1
n+1

α +1
+

tα
n

α +1

)
+Rα

n (t),

B1(tn+1) = B1(tn)+
F4(tn,B1 (tn))

hΓ(α)

(
2h
α

tα
n+1−

tα+1
n+1

α +1
+

h
α

tα
n −

tα+1
n

α

)

+
F4(tn−1,B1 (tn−1))

hΓ(α)

(
h
α

tα
n+1−

tα+1
n+1

α +1
+

tα
n

α +1

)
+Rα

n (t).

5 Conclusion

In this paper fractional order nuclear family model is considered. Here, we generalize the previous model
by considering the order as fractional order. As we saw that, the fractional order model is much more efficient
in modeling than its integer order version. The detailed analysis such as existence and uniqueness results of the
solution and efficient numerical scheme for model are presented.
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