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Abstract
This paper investigates the optimal placement of piezoelectric actuators for the active vibration attenuation of beams. The
governing equation of the beam is achieved by coupled first order shear deformation theory with two node element. The
velocity feedback controller is designed and used to calculate the feedback gain and then apply to the beam. In order to
search for the optimal placement of the piezoelectric actuators, a new optimization criterion is considered based on the use
of genetic algorithm to reduce the displacement output of the beam. The proposed optimization technique has been tested
for two boundary conditions configurations; clamped -free and clamped-clamped beam. Numerical examples have been
provided to analyze the effectiveness of the proposed technic.
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1 Introduction

In the last few decades, piezoelectric materials have been grossly used in various industrial sectors due to
their great ability of converting energy [1–3]. One of the main sectors that used the piezoelectric materials is the
active vibration control. Such technic aims to reduce structures vibration by measuring the output displacement
and accordingly a result gain calculated using control algorithms and introduce into the structures by means
piezoelectric actuators [4]. The mathematical modeling of the active vibration control of different type of struc-
tures has been largely investigated. Theoretical and finite element models have been introduced by the research
community. [5] proposed an analytical model based on Kirchhoff-Love thin shell theory to model an intelligent
shell with piezoelectric sensor and actuator distribution. [6, 7] introduced a new electromechanical model for
plate with piezoelectric layers based on higher order shear deformation theory with the use of finite element
method. More studies are provided by the research in the literature reader can refer to [8–12].

However, the miss placement of the piezoelectric patches can significantly reduce the performance of control
mechanism and lead to a lack of observability and controllability. Therefore, finding the optimal position of the
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piezoelectric patches is a main point to increase the system efficiency. A large amount of research papers
has been conducted to investigate the issue of optimal location and different cost functions are presented in
the literature. [13] used genetic algorithm with two modified optimization criteria based on the minization of
the actuators input energy to find the suitable placement, orientation and size of the distributed actuators and
sensors. [14] proposed criteria based on the maximizing the controllability gramian. The authors used Ansys for
the determination of the required parameters and by mean genetic algorithm the optimization was implemented.
[15] introduced a new fitness based on variations in the average closed loop dB gain margin reduction for the
determination of the optimal location and numbers of discreet piezoelectric patches. Several approached and
optimization technics can be also found in [12, 16–21].

In the present paper a simple fitness function has been proposed based on the minimizing of the displacement
output. The fitness function was optimized using a genetic algorithm code special implemented by the authors
using an improve crossover and mutation process. The velocity feedback controller is applied to analyze the
effectiveness of the proposed technic. Low velocity feedback controller has been implemented using newmark
schema to analyze the effectiveness and the performance of the proposed technic.

2 Theoretical

Considering a beam with surface bounded piezoelectric patches. The coupling relationship between the
electrical and mechanical behavior of the smart piezoelectric beam [4, 22] can be described as:

σ xx

τxz

Dz
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The dynamic equations of the smart beam can be derived by using Hamilton’s principle:

δ

ˆ t2

t1
(£−we)dt = 0 (2)

Based on the Timoshenko’s beam theory, and using Hamilton’s principle with two node beam element the
governing mechanical equation of motion of the smart beam can be written as (see [22]):

[Me]
{
∀̈
}
+[Ke]{∀}= { fmec

e}+{ fele
e} (3)

where [Me] represents the element mass matrix corresponding to the vector of mechanical displacement. [ fmec
e]

and [ fele
e] represent the externel mechanical and electric forces. and [Ke] the stiffness matrix which given by:

[Ke] = [Ke
uu]+ [Ke

uv][K
e
vv][K

e
vu]

The matrices [Ke
vv] and [Ke

vu] are piezoelectric permittivity and electromechanical coupling matrices.
In the present investigation we proposed the velocity feedback algorithm to be used for the active vibration

control. In order to couple the input voltage with the output displacement of the beam the following schema is
implanted:

Va = Gvu̇ (4)

3 Optimization

The objective here is to find actuators locations that ensure the effectiveness to the active vibration control
with low input cost, in this regards we chose a the difference of amplitude in different time increment as a fitness
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function as shown:

J = min(x(t)− x(t +dt)) (5)

In order to minimize the cost function, the genetic algorithms (GA) is used [23,24]. The GA is global proba-
bilistic search algorithm inspired by Darwinian principle of natural selection. The flowchart of the optimization
procedure conducted by the GA is presented in Figure 1. The developed GA is founded on five main process;
population, selection crossover and mutation. First the beam is discretized in 12 elements; each element is a
possible position of piezoelectric actuator. The population is containing 12 chromosomes. The chromosome
contains gen as much as the number of actuators. It must be noted that is, crossover and mutation, specially
designed by the authors for the problem under investigation.

Fig. 1 Flowchart of the genetic algorithm used in the placement strategy.

The GA starts by selecting the best chromosomes and ranked them based on their fitness function to use
them in the crossover process. Then, the crossover is implemented and filtered to avoid the repeated gen. Finally
one mutation gen is applied at each Childs coupled. The whole process is depicted in Figure 2.
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Fig. 2 Genetic algorithm coding process.

4 Results and Discussion

To analyze the accuracy of the present methodology, a composite beam dimensioned 500x40x10 mm with
four surface bounded piezoelectric actuators has been considered. The material properties of the structures under
consideration are presented in Table 1.

Table 1 Material proprieties

Proprieties T300/976
[25] PZT G-1195

Young’s modulus E (N/m2)
Poisson’s ratio
Shear modulus G
Density ρ (kgm-3)

150×109
0.3
7.1×109
1600

63×109
0.3
24.2×109
7600

Piezoelectric constant e31 (cm-2)
Dielectric constant ∈ 33 (Fm-2)

-
-

17.584
15.0×10-9

The beam is discretized into 12 elements from the left to the right as shown in Figure 3. A GA code as
described in the previous section is implemented to find the optimal location of the piezoelectric actuators; two
cases of beam boundary conditions have been analyzed clamped-free and clamped-clamped. The progressive
convergence of the piezoelectric actuators location onto an optimal solution is depicted in Figure 3, in which the
red points present the best contribution of one piezoelectric actuator for each generation, it’s clear from the Fig
that concentration of the piezoelectric possible location is find to be in the optimal location that’s due to the fact
that GA select the best individuals to be used in the next generation.

As explained in the previous section each possible configuration is represented by their fitness function, the
convergence of the fitness function for the case of clamped-free beam is shown in Figure 4. For the case of
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Fig. 3 Optimal distribution for both CC and CF boundary conditions for each generation.

Table 2 Optimal configuration of the piezoelectric actuators
Configuration fitness position
CF 9.088e-05 [1,2,3,6]
CC 3.925e-05 [4,5,6,7]

clamped-clamed beam the convergence of the fitness function is presented in Figure 5. It can be seen from both
figures that the value of fitness function of the CF beam is much larger than the CC beam which is quite normal
since the displacement of the CF is bigger.

In order to investigate the active vibration control of the present structures. The smart beam considering the
optimal placement of the piezoelectric actuators has been subjected to an initial displacement of 0.008 mm. As
a first case, a clamped-free beam is considered; the time history of the beam displacement is shown in Figure
6 while the second case clamped-free beam is presented in Figure 7. Two low velocity feedback gains for each
case have been used. The Figs are clearly shown that the proposed controller is reduce efficiently the vibration
of the beam in matter of amplitude and settling time.

Fig. 4 Variation of fitness index with generation for the clamped-free beam
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Fig. 5 Variation of fitness index with generation for the clamped-clamped beam

Fig. 6 Tip deflection of clamped-free beam with and without control

5 Conclusions

This work conducts to the active vibration control with optimally placement piezoelectric actuators. A FEM
model of a composite beam with four piezoelectric actuators is developed base on the shear deformation theory.
The minimizations of output displacements have been used as a fitness function to optimally place the piezo-
electric actuators through a GA optimization technic. A low velocity feedback controller is implemented using
newmark integration schema to actively reduce the beam vibrations. Two cases of boundary conditions have
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Fig. 7 Tip deflection of clamped-clamped beam with and without control

beam treated and different results were presented. The results show that significant reduction with minimum
required actuation has been obtained thanks to the proposed methodology.
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