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Abstract
In this paper different curvature tensors on Lorentzian Kenmotsu manifod are studied. We investigate constant
ϕ−holomorphic sectional curvature and L -sectional curvature of Lorentzian Kenmotsu manifolds, obtaining conditions
for them to be constant of Lorentzian Kenmotsu manifolds in such condition. We calculate the Ricci tensor and scalar cur-
vature for all the cases. Moreover we investigate some properties of semi invariant submanifolds of a Lorentzian Kenmotsu
space form. We show that if a semi-invariant submanifold of a Lorentzian Kenmotsu space form M is totally geodesic,
then M is an η−Einstein manifold. We consider sectional curvature of semi invariant product of a Lorentzian Kenmotsu
manifolds.
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1 Introduction

Contact structure has most important applications in physics. Many authors gave their valuable and essential
results on differential geometry [2], [7], [8]. Firstly contact manifolds were defined by Boothby and Wang [6].
In 1959, Gray defined almost contact manifold by the condition that the structural group of the tangent bundle
is reducible to U(n)×1 [8]. Sasakian introduced Sasaki manifold, which is an almost contact manifold with a
special kind a Riemannian metric [15]. Compared to that Sasakian manifolds have only recently become subject
of deeper research in mathematics, mechanics and physics [3, 18]. To study manifolds with negative curvature,
Bishop and O’Neill introduced the notion of warped product as a generalization of Riemannian product [4]. In
1960’s and 1970’s, when almost contact manifolds were studied as an odd dimensional counterpart of almost
complex manifolds, the warped product was used to make examples of almost contact manifolds [18]. In addi-
tion, S. Tanno classified the connected (2n+ 1) dimensional almost contact manifold M whose automorphism
group has maximum dimension (n+1)2 in [18]. For such a manifold, the sectional curvature of plane sections
containing ξ is a constant, say c. Then there are three classes:
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i) c > 0, M is homogeneous Sasakian manifold of constant holomorphic sectional curvature.
ii) c = 0, M is the global Riemannian product of a line or a circle with a Kähler manifold of constant

holomorphic sectional curvature.
iii) c < 0, M is warped product space R× f Cn.
Kenmotsu obtained some tensorial equations to characterize manifolds of the third case.
In 1972 , Kenmotsu abstracted the differential geometric properties of the third case. In [9], Kenmotsu

studied a class of almost contact Riemannian manifold which satisfy the following two condition,

(∇X ϕ)Y = −η(Y )ϕX−g(X ,ϕY )ξ (1.1)

∇X ξ = X−η(X)ξ

He showed normal an almost contact Riemannian manifold with (1.1) but not quasi Sasakian hence not
Sasakian. He characterized warped product space L× f CEn by an almost contact Riemannian manifold with
(1.1). Moreover, he showed that every point of an almost contact Riemannian manifold with (1.1) has a neigh-
borhood which is a warped (−ε,ε)× f V where f (t) = cet and V is Kähler.

In 1981, Janssens and Vanhecke [10], an almost contact metric manifold satisfiying this (1.1) is called a
Kenmotsu manifold. Some authors studied Kenmotsu manifold [1], [12], [13], [16], [19].

At the same time, in the year 1969, Takahashi [17] has introduced the Sasakian manifolds with Pseudo-
Riemannian metric and prove that one can study the Lorentzian Sasakian structure with an indefinite metric.
Furthermore, in 1990, K. L. Duggal [7] has initiated the space time manifolds with contact structure and analyzed
the paper of Takahashi. In 1991, Roşça introduced Lorentzian Kenmotsu manifold [14].

Our aim in the present note is to extend the study of some properties curvature to the setting of a Lorentzian
Kenmotsu manifod. We first rewiev, in section 2, basic formula and definition of aLorentzian Kenmotsu mani-
fold. In section 3, we introduced L - sectional curvature of Lorentzian Kenmotsu manifold. In section 4, we call
semi invariant submanifold of Lorentzian Kenmotsu manifold. In section 5, we study semi invariant submani-
fold of Lorentzian Kenmotsu space form, In last section, we investigate semi invariant products of a Lorentzian
Kenmotsu manifold.

2 Lorentzian Kenmotsu Manifolds

Let M be a real (2n+ 1)−dimensional differentiable manifold endowed with an almost contact structure
(ϕ,η ,ξ ), where ϕ is a tensor field of type (1,1), η is a 1−form, and ξ is a vector field on M satisfying

ϕ
2 =−I +η⊗ξ , η(ξ ) = 1. (2.1)

then M is called an almost contact manifold. It follows that ϕ(ξ ) = 0,η ◦ϕ = 0, rankϕ = 2n. If there exists a
semi-Riemannian metric g satisfying

g(ϕX ,ϕY ) = g(X ,Y )− εη(X)η(Y ), g(ξ ,ξ ) = ε =−1 (2.2)

then (ϕ,η ,ξ ,g) is called a Lorentzian almost contact structure and M is said to be a Lorentzian almost contact
manifold.

For a Lorentzian almost contact manifold we also have η(X) = εg(X ,ξ ).We note that ξ is neither a light-
like nor a spacelike vector fields on M. We note that ξ is the time-like vector field. We consider a local basis
{e1, ...,e2n,ξ} in T M i.e.

g(ei,e j) = δi j and g(ξ ,ξ ) =−1

that is e1, ...,e2n are spacelike vector fields.
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Then a 2−form Φ is defined by Φ(X ,Y ) = g(X ,ϕY ), for any X ,Y ∈ Γ(T M), called the fundamental 2−form.
Moreover, a Lorentzian almost contact manifold is normal if

N = [ϕ,ϕ]+2dη⊗ξ = 0

where [ϕ,ϕ] is denoting the Nijenhuis tensor field associated to ϕ .

Definition 2.1. Let M be a Lorentzian almost contact manifold of dimension (2n+ 1), with (ϕ,ξ ,η ,g) . M
is said to be a Lorentzian almost Kenmotsu manifold if 1−form η is closed and dΦ = −2η ∧Φ. A normal
Lorentzian almost Kenmotsu manifold M is called a Lorentzian Kenmotsu manifold [14].

Theorem 2.1. Let (M,ϕ,ξ ,η ,g) be a Lorentzian almost contact manifold. M is a Lorentzian Kenmotsu manifold
if and only if

(∇X ϕ)Y =−g(ϕX ,Y )ξ +η(Y )ϕX (2.3)

for all X ,Y ∈ Γ(T M), where ∇ is Levi-Civita connection on M [14].

Corollary 2.1. Let M be (2n+1)-dimensional a Lorentzian Kenmotsu manifold with structure (ϕ,ξ ,η ,g) . Then
we have

∇X ξ =−ϕ
2X (2.4)

for all X ∈ Γ(T M) [14].

Let K(Xp,Yp) be the sectional curvature for 2−plane spanned by Xp and Yp, p∈M. M is said to have constant
ϕ−holomorphic sectional curvature if K(Xp,ϕXp) is constant for any point p and for any unit vector Xp 6= 0 such
that η(Xp) = 0.

A Lorentzian Kenmotsu manifold is said to be a Lorentzian Kenmotsu space form if it has constant
ϕ−holomorphic section curvature c and then, it is denoted by M(c). The curvature tensor field R of M(c)
is given by,

R(X ,Y,Z,W ) =
c+3

4
{g(X ,W )g(Y,Z)−g(X ,Z)g(Y,W )}

+
c−1

4
{g(ϕX ,W )g(ϕY,Z)−g(ϕX ,Z)g(ϕY,W )−2g(ϕX ,Y )g(ϕZ,W )

+g(X ,Z)η(Y )η(W )−g(Y,Z)η(X)η(W )+g(Y,W )η(X)η(Z)}. (2.5)

where X ,Y,Z,W ∈ Γ(T M).
By virtue of (2.5), we have the following proposition.

Proposition 2.2. A Lorentzian Kenmotsu manifold of constant ϕ−holomorphic sectional curvature cannot be

flat manifold.

Also, the Ricci curvature of M is given by

S(X ,Y ) =
2n+1

∑
i=1

R(Ei,X ,Y,Ei),

for X ,Y ∈ Γ(T M). Then from (2.5) on M(c), we have,

S(X ,Y ) =
(c−3)n+(c+1)

2
g(ϕX ,ϕY )−2nη(X)η(Y ) (2.6)

for all X ,Y ∈ Γ(T M).

Proposition 2.3. A Lorentzian Kenmotsu manifold of constant ϕ−holomorphic sectional curvature cannot be

η-Einstain manifold.
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3 L -sectional curvature of Lorentzian Kenmotsu manifold

Let M be Lorentzian Kenmotsu manifold. Therefore, T M splits into two complementary subbundles Imϕ

(whose differentiable distribution is usually denoted by L ) and kerϕ (whose differentiable distribution is usually
denoted by M ) The sectional curvature of planar sections spanned by vector fields of L called L−sectional
curvature.

In what follows, we denote by M the distribution spanned by the structure vector field ξ and by L its
orthogonal complementary distribution. Then we have,

T M = L ⊕M .

If X ∈M we have ϕX = 0 and if X ∈L we have η(X) = 0, that is, ϕ2X =−X .

From (2.5) the L−sectional curvature of Lorentzian Kenmotsu space form is given by

KL (X ,Y ) =
c−3

4
+3

c+1
4

g(X ,ϕY )2 (3.1)

Corollary 3.1. Let M be Lorentzian Kenmotsu space form. If L−sectional curvature KL is constant equal to
c, then c =−1.

Proof. We can chose X and Y such that g(X ,ϕY ) = 0. Thus , from (3.1) we deduce

c =
c−3

4
⇒ c =−1.

Corollary 3.2. Let M be Lorentzian Kenmotsu maifold and X ,Y ∈L . In this case,the scalar curvature of M is

τ =−n(2n+1).

Proposition 3.1. Let M be Lorentzian Kenmotsu manifold and X ,Y ∈L . Then M is Einstein manifold.

Proof. For all X ,Y ∈L , using (2.6), we can proof that M is Einstein manifold.

4 Semi Invariant Submanifolds of a Lorentzian Kenmotsu Space Form

Definition 4.1. An (2m+ 1)−dimensional Riemannian submanifold M of Lorentzian Kenmotsu space form M
is called a semi invariant submanifold if ξ is tangent to M and there exists on M two differentiable distributions
D and D⊥ on M satisfying:

(i) T M = D⊕D⊥⊕ sp{ξ};

(ii) The distribution D is invariant under ϕ, that is ϕDx = Dx for any x ∈M;

(iii) The distribution D⊥ is anti-invariant under ϕ, that is, ϕD⊥x ⊆ T⊥x M for any x ∈M, where TxM and TxM⊥

are the tangent space of M at x.
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Now, we choose a local field of orthonormal frames {E1, ...,E2p,E2p+1, ...,E2m,ξ} on M. Then we have,

D = sp{E1, ...,E2p}, D⊥ = sp{E2p+1, ...,E2m} (4.1)

where dimD = 2p and dimD⊥ = q.
Then if p = 0 we have an anti-invariant submanifold tangent to ξ and if q = 0, we have an invariant sub-

manifold. Now, we give the following example.

Example 4.1. In what follows, (R2n+1,ϕ,η ,ξ ,g) will denote the manifold R2n+1 with its usual Lorentzian
Kenmotsu structure given by

η = dz, ξ =
∂

∂ z

ϕ(
n

∑
i=1

(Xi
∂

∂xi
+Yi

∂

∂yi
)+Z

∂

∂ z
) =

n

∑
i=1

(Yi
∂

∂xi
−Xi

∂

∂yi
)+

n

∑
i=1

Yiyi
∂

∂ z

g = e−2z(
n

∑
i=1

dxi⊗dxi +dyi⊗dyi)− εdz⊗dz

(x1, ...,xn,y1, ...,yn,z) denoting the Cartesian coordinates on R2n+1. The consider a submanifold of R7 defined
by

M = X(u,v,k, l, t) = (u,k,0,v,0, l, t).

Then local frame of T M is given by

e1 =
∂

∂x1
, e2 =

∂

∂y1
,

e3 =
∂

∂x2
, e4 =

∂

∂y3
,

e5 =
∂

∂ z
= ξ

and we have

e∗1 =
∂

∂x3
, e∗2 =

∂

∂y2

which are the a basis of T⊥M. We determine D1 = sp{e1,e2} and D2 = sp{e3,e4}. Then D1, D2 are invariant
and anti-invariant distribution, respectively. Thus T M = D1⊕D2⊕ sp{ξ} is a semi invariant submanifold of
R7.

Let ∇ be the Levi-Civita connection of M with respect to the g. Then Gauss and Weingarten formulas are
given by

∇XY = ∇XY +h(X ,Y ) (4.2)

∇X N = ∇
⊥
X N−ANX (4.3)

for any X ,Y ∈ Γ(T M) and N ∈ Γ(T⊥M). ∇⊥ is the connection in the normal bundle, h is the second fundamental
from of M and AN is the Weingarten endomorphism associated with N. The second fundamental form h and the
shape operator A are related with by

g(h(X ,Y ),N) = g(ANX ,Y ). (4.4)

Let M be semi invariant submanifold of M. M is said to be totally geodesic if h(X ,Y )= 0, for any X ,Y ∈Γ(T M).
We denote by R and R the curvature tensor fields associated with ∇ and ∇ respectively. The Gauss equation

is given by
R(X ,Y,Z,W ) = R(X ,Y,Z,W )+g(h(X ,Z),h(Y,W ))−g(h(X ,W ),h(Y,Z)) (4.5)
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for all X ,Y,Z,W ∈ Γ(T M).
On the other hand, let M be a semi invaiant submanifold of a Lorentzian Kenmotsu space form M . Then

using (2.5) and (4.5), a semi invariant submanifold M has constant ϕ-sectional curvature c if and only if the
Riemannian curvature tensor R satisfied

R(X ,Y,Z,W ) =
c+3

4
{g(X ,W )g(Y,Z)−g(X ,Z)g(Y,W )}

+
c−1

4
{g(ϕX ,W )g(ϕY,Z)−g(ϕX ,Z)g(ϕY,W )−2g(ϕX ,Y )g(ϕZ,W )

+g(X ,Z)η(Y )η(W )−g(Y,Z)η(X)η(W )+g(Y,W )η(X)η(Z)}
+g(h(X ,W ),h(Y,Z))−g(h(Y,W ),g(X ,Z)). (4.6)

Theorem 4.1. Let M be a semi-invariant submanifold of a Lorentzian Kenmotsu space from M(c).Then we get
Ricci tensor of M,

S(X ,Y ) = {c+3
4

(p+q−3)+3
c−1

2
}g(X ,Y )

−{c−1
4

(p+q−6)+
c+1

2
}η(X)η(Y )

+
p+q

∑
i=1
{g(h(X ,Y ),h(Ei,Ei))−g(h(Ei,Y ),h(X ,Ei))} (4.7)

for all X ,Y ∈ Γ(T M).

Proof. Let Γ(T M) = sp{e1,...,ep,ep+1, ...,eq,ep+q+1} such that {e1,...,ep} are tangent to D1 and {ep+1, ...,eq}
are tangent to D2. Then we have,

S(X ,Y ) =
p

∑
i=1

R(X ,Ei,Ei,Y )+
q

∑
i=p+1

R(X ,Ei,Ei,Y )+R(X ,ξ ,ξ ,Y ).

Now,using (4.6), we get

S(X ,Y ) = {c+3
4

(p−1)+3
c−1

4
}g(X ,Y )+

c−1
4

(3− p)η(X)η(Y )

+
p

∑
i=1
{g(h(X ,Y ),h(Ei,Ei))−g(h(Ei,Y ),h(X ,Ei))}

+{c+3
4

(q−1)+3
c−1

4
}g(X ,Y )+

c−1
4

(3−q)η(X)η(Y )

+
q

∑
i=p+1

g(h(X ,Y ),h(Ei,Ei))−g(h(Ei,Y ),h(X ,Ei))

−c+3
4

g(X ,Y )−{c+3
4

+
c−1

4
}η(X)η(Y )

which gives proof.

Corollary 4.1. Let M be a semi-invariant submanifold of a Lorentzian Kenmotsu space from M(c). If M is
totally geodesic, then M is an η-Einstein manifold.

Proposition 4.2. Let M be a semi-invariant submanifold of a Lorentzian Kenmotsu space from M(c).Then we
have scalar curvature

τ = {c+3
4

(p+q−3)+3
c−1

2
}(p+q−1)

+
c−1

4
(p+q−6)+

c+1
2

+
1

(p+q+1)2 ‖H‖
2 +‖h‖2 .
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Proof. From (4.7) by using X = Y = ek we get

τ =
p+q+1

∑
k=1

S(ek,ek).

The proof is completed.

Proposition 4.3. Let M be semi invariant submanifold of Lorentzian Kenmotsu space form M(c). Then

R(X ,Y,Z,W ) =
c+3

4
{g(X ,W )g(Y,Z)−g(X ,Z)g(Y,W )} (4.8)

+g(h(X ,W ),h(Y,Z))−g(h(Y,W ),g(X ,Z))

for all X ,Y,Z,W ∈ Γ(D⊥).

Proof. Using (4.6). For all X ,Y,Z,W ∈ Γ(D⊥), since ϕX ,ϕY,ϕZ,ϕW ∈ ϕD⊥ ⊂ T M⊥ we have (4.8).

Corollary 4.2. Let M be semi invariant submanifold of Lorentzian Kenmotsu space form M(c). If D⊥ is totally
geodesic, then D⊥ is flat if and only if c =−3.

Proposition 4.4. Let M be semi invariant submanifold of Lorentzian Kenmotsu space form M(c). Then

S(X ,Y ) =
c+3

4
(q−1)g(X ,Y )+

q

∑
i=1
{g(h(X ,Y ),h(Ei,Ei))−g(h(Ei,Y ),h(X ,Ei))} (4.9)

for all X ,Y ∈ Γ(D⊥), where S is Ricci tensor.

Proof. Using (4.8). From S(X ,Y ) =
q
∑

i=1
R(X ,Ei,Ei,Y ), for all X ,Y ∈ Γ(D⊥), we have equation (4.9).

Corollary 4.3. Let M be a semi-invariant submanifold of a Lorentzian Kenmotsu space from M. If D⊥ is totally
geodesic, then distribution D⊥ is Einstein.

Corollary 4.4. Let M be semi inavariant submanifold of Lorentzian Kenmotsu space form M(c). If D⊥ is totally
geodesic, then

τD⊥ =
c+3

4
q(q−1)

where τ is the scalar curvature.

Proposition 4.5. Let M be semi invariant submanifold of Lorentzian Kenmotsu space form M(c). Then the Ricci
curvature determined by D

S(X ,Y ) = {c+3
4

(p−1)+3
c−1

4
}g(X ,Y )

for all X ,Y ∈ Γ(D).

Proof. For all X ,Y ∈ Γ(D), from (4.8) we have

R(X ,Y,Z,W ) =
c+3

4
{g(X ,W )g(Y,Z)−g(X ,Z)g(Y,W )}

+
c−1

4
{g(X ,ϕW )g(Y,ϕZ)−g(X ,ϕZ)g(Y,ϕW )

Then, from S(X ,Y ) =
p
∑

i=1
R(X ,Ei,Ei,Y ), using last equation, this complates the proof.
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Corollary 4.5. Let M be semi invariant submanifold of Lorentzian Kenmotsu space form M(c). Then the scalar
curvature determined by D is given

τD = p
(c+3)2p−1)+3(c−1)

4
.

Corollary 4.6. Let M be a semi-invariant submanifold of a Lorentzian Kenmotsu space from M. If D is totally
geodesic, then distribution D is Einstein.

Theorem 4.6. Let M be semi invariant submanifold of Lorentzian Kenmotsu space form M(c). Then, ϕ-sectional
curvature of D is −c if and only if D is totally geodesic.

Proof. Using (4.6). For all X ∈ Γ(D),

R(X ,ϕX ,X ,ϕX) =
c+3

4
{g(X ,ϕX)g(ϕX ,X)−g(X ,X)g(ϕX ,ϕX)}

+
c−1

4
{g(ϕX ,ϕX)g(ϕ2X ,X)−g(ϕX ,X)g(ϕ2X ,ϕX)

−2g(ϕX ,ϕX)g(ϕX ,ϕX)

+g(h(X ,ϕX),h(ϕX ,X))−g(h(ϕX ,ϕX),h(X ,X)).

Then,
R(X ,ϕX ,X ,ϕX) =−c−2‖h(X ,X)‖2 .

5 Semi Invarinat Product in a Lorentzian Kenmotsu Space Form

Let M be a semi invariant submanifold of a Lorentzian Kenmotsu space form M. We say that M is a semi
invariant product if the distribution D⊕ sp{ξ} is integrable and locally M is a Riemannian product M1×M2,
where M1 (resp. M2 ) is leaf of D⊕ sp{ξ} (resp. D⊥ ). If we have pq 6= 0, we say that M is a proper semi
invariant product.

Theorem 5.1. Let M be a proper semi invariant product of a Lorentzian Kenmotsu space form M(c). Then

R(X ,ϕX ,Z,ϕZ) = 2(‖h(X ,Z)‖2− c−1
4

) (5.1)

for any unit vector fields X ∈ D and Z ∈ D⊥.

Proof. Using (4.6) and ϕZ ∈ Γ(ϕD⊥)⊂ T M⊥ this complates the proof.

Theorem 5.2. Let M be a proper semi invariant product of a Lorentzian Kenmotsu space form M(c). Then,

‖h‖2 ≥ pq(1− c)+2qp (5.2)

Proof. Since h is fundamental form, we have

‖h‖2 =
2p

∑
i, j=1

∥∥h(Ei,E j)
∥∥2

+
2m

∑
k,l=2p+1

‖h(Ek,El)‖2

+2
2p

∑
i=1

2m

∑
k=2p+1

‖h(Ei,Ek)‖2 +2
2m

∑
k=2p+1

‖h(Ek,ξ )‖2
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from (4.1)

‖h‖2 = pq(1− c)+2qp+
2p

∑
i, j=1

∥∥h(Ei,E j)
∥∥2

+
2m

∑
k,l=2p+1

‖h(Ek,El)‖2

which gives (5.2).

Proposition 5.3. Let M be a proper semi invariant product of an a Lorentzian Kenmotsu space form M(c). Then,

R(X ,Y,Z,W ) = 0

for all X ,Y ∈ Γ(D⊕ sp{ξ}) and Z,W ∈ Γ(D⊥).

Proof. Let M be semi invariant submanifold of Lorentzian Kenmotsu manifold M. Then for all Z,W ∈ Γ(D⊥),

ϕZ,ϕW ∈ ϕD⊥ ⊂ T M⊥.

Using (4.6), which complates the proof.

Proposition 5.4. Let M be a proper semi invariant product of a Lorentzian Kenmotsu M. Then

R(X ,Y,Z,W ) = 0

for all X ,Y ∈ Γ(D) and Z,W ∈ Γ(D⊥⊕ sp{ξ}).
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[12] G. Pitiş, (2007), Geometry of Kenmotsu manifolds, Publishing House of Transilvania University of Braşov, Braşov.
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