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Abstract

In this paper, the hybrid method (differential transform and finite difference methods) and the RDTM (reduced differential
transform method) are implemented to solve Rosenau-Hyman equation. These methods give the desired accurate results
in only a few terms and the approach procedure is rather simple and effective. An experiment is given to demonstrate the
efficiency and reliability of these presented methods. The obtained numerical results are compared with each other and
with exact solution. It seems that the results of the hybrid method and the RDTM show good performance as the other
methods. The most important part of this study is that these methods are suitable to solve both some linear and nonlinear
problems, and reduce the size of computation work.
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1 Introduction

In the present paper, the hybrid method and the RDTM will be applied for solving Rosenau-Hyman equation
that is given as
Up — Ullyyy — ULy — Syl = 0. (D)

Special case of Gilson-Pickering equation is Rosenau-Hyman equation for € = 0,x = 0, = 1,8 = 3. Gilson-
Pickering equation is defined as follows:

Uy — EUyyy + 2Ky — Ullyyy — Oty — Pttty = 0. 2)

where €, K, o, 3 are arbitrary constants. The Eq. (2) was introduced by Gilson and Pickering [1]. The other
special cases of Eq. (2) can be seen in the literature [1-5]. The Eq. (2) includes many other nonlinear equations
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except for the Rosenau-Hyman equation, such as Camassa-Holm equation and Fornberg-Whitham equation [1].
The Rosenau-Hyman equation was used as a simplified model for the study of nonlinear dispersion in pattern
formation in liquid drops and also it has different applications in modelling of many problems in engineering
and physics [2]. Various analytical methods have been discussed to obtain the solution of the Rosenau-Hyman
equation. For example, g-homotopy analysis method, semi-analytical methods, dissociative perturbation meth-
ods, variational iteration method and homotopy perturbation method [7-12]. According to the literature review,
the RDTM and the hybrid method for the solution of the Rosenau-Hyman equation have not been used until
now. Therefore, this study is conducted. Recently, the hybrid method (differential transform and finite differ-
ence methods) and the RDTM have attracted many class of researcher in fields of science and engineering. For
instance, the hybrid method has been used in the solution of several linear and nonlinear problems [25-31].
RDTM is used by various researchers in [13-24]. These important methods may also be potential approximate
methods for in some partial differential equations [32-36].

In the target of this paper, by using the hybrid method and the RDTM, the approximate solution of the
Rosenau-Hyman equation is obtained and determined the accuracy of this method for solving this equation.
The remainder of this study is continued as follows: In Section 2, a brief introduction for the Rosenau-Hyman
equation, the hybrid method and the RDTM are presented. In Section 3, the hybrid method and the RDTM are
applied to the Rosenau-Hyman equation in a few steps. And then, the numerical results are obtained for the
Rosenau-Hyman equation. The tables and graphs are given that the results are presented. Finally, this study
ends with conclusion section.

2 Description of the Methods

Here, the hybrid method and the RDTM which are analyzed the numerical solution of the Rosenau-Hyman
equation are introduced, respectively. The differential transform method was studied in the solution of linear
and nonlinear problems by Zhou in 1986 [17]. Two-dimensional differential transform method was applied to
two dimensional partial differential equations by Chen and Ho in 1999 [16]. The definition and properties of the
differential transform method are introduced as follows:

u(x,t) =Y UGk =U@,0)+ UG Dt +U,2)5 + .. (3)
k=0
The differential transform of u(x,z) based on #— time variable is defined as
1 [d*u(x,t)
Ui k) = — | 28500 4
w55 @

The reverse of the U (i, k) differential function based on r— time variable is defined as follows:

oo

u(x,t) =Y U(i,k)t*. (5)
k=0
The differential transform and finite difference method apply to r— and x— variables. Linear and nonlinear
partial differential equations are solved by using hybrid method with a few iteration and with obtaining rapid
convergence. Some properties of differential transform and finite difference method, which using to solve the
Rosenau-Hyman equation, are presented the Table 1 and 2 as follows:
Using the definition of differential transform method and its some properties, the form of RDTM is given
as [13—15] and Table 3:
u(x,r) and Ug(x) are defined as original function and the transformed function in the RDTM, respectively.
The transformed function is defined as
k
Vi) = 1 [8 u(x,t)}
t=0

k! otk
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Table 1 Some properties of differential transform based on #— variable.

Function Transform
Dlxi) W (i,k) = (k+ D)W (i,k+1)
w(x,t) = aw(x,t) | W(i,k) = aW(i,k)
Table 2 Some properties of central difference and differential transform based on x—variable.

Function Transform
awa(x,t) (i) = W(i+1,k)2—hW(i—l7k)
a2w)fx,z) W (i k) = W (i+1,k)—2W (i,k)+W (i—1,k)

ax2 ) h2
‘933(1 ) W(ik) — W(i+2,k)72W(i+l,k);};}ZW(ifl,k)fw(ifz,k)

X3 J 3

( ) x;c W(l, k) — Zﬁl 0 W(l, k _ m) W(l+2,k)72W(1+1,k);};zW(lfl,k)7W(172,k)
awa(x 1) 0. av;(zx 1) W(i, k) _ Z;:O W(i+l,k)72Wh(2i,k)+W(ifl,k) W(i+1,k7m)27hW(i71,k7m)

(x t) w‘; W(i,k)ZZQZQU(Lk_m)%;W

w(x,t) = (x) W (x,t) = sinh(x;)

w(x,t) = cosh(x) | W(x,t) = cosh(x;)

The differential inverse transform of Uy (x) is defined as follows:

= ¥ Uit
k=0

Table 3 Some properties of the RDTM.

Function Transform

u(x.1) Uix) = 1 | |
w(x,t) = (xt)iV(xt) Wic(x) = Ur(x) £ Vi (x)
w(x,r) = ou(x,t),a is a constant. | Wi(x) = alU(x)
wix,1) = ( ) (x,1) Wi(x) = Y7o Ur(x) Vi (x)
wint) = 20 Wix) = (k+ 1)Ui1 ()

3 Implementation and Comparison of the Hybrid Method and the RDTM to the Rosenau-Hyman Equa-
tion

In the present study, the Rosenau-Hyman equation is analyzed by the hybrid method and the RDTM. The
obtained numerical solutions are compared with the exact solution and each other.

Example 1. To demonstrate the basic idea of the hybrid method and the RDTM, we consider the following
Rosenau-Hyman equation:

Uy — Ullyyy — U

Uy — Sutylty, = 0. (6)

subject to the initial condition

8

u(x,0) = —gcosz(x

1) (7
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where € =0,k =0, = 1,8 = 3, the exact solution of problem (6)-(7) is given as

u(x,t) = —gcosz(th).
Now, let us solve the Rosenau-Hyman equation using the hybrid method and the RDTM respectively as
follows:
The solution with the hybrid method:
Using the hybrid method in the (6)-(7) Rosenau-Hyman equation, differential transformations corresponding
to both each term and initial condition are as follows:

a”g;’t) —U(i,k) = (k+ 1)U (i,k+1),
aug;,t) UG = U(i+1,k)2—hU(i— l,k)’
azgg,t) N U(i+1,k)—2U}(l;',k)+U(i—l,k)7
aagg,z) LUK = U(i+2,k)—2U(i+1,k)24};32U(i— 1,k) —U(i—2,k)’
8u§);t) 32356);;) LU :miOU(H—1,k)—2U}E;',k)+U(i— 1,k) U(i—i—l,k—m)z—hU(i—l,k—m)’
u<x»t>8”§i’t) LUk = f U(ivkm)U(i—i—l,k)z—hU(i— l,k)’

u(x,0) — —gcosz(%),

According to the hybrid method procedure, the presented differential transforms in the above can be obtained
the following recurrence relation by putting in its place on equation (1).

xi=ih, i=0,1,2,..., k=0,1,2,....

1 kUG k—m) UG+2,k)=2U(i+1,k)+2U(i—1,k)—U(i—2,k
lk— )

—Z

2h3 Z (i+1,k)—2U(i,k) +U(i—1,k))((U(i+1,k—m) —U(i—1,k—m))),
m=0

(U(i+1,k) —U(i— 1,k))

where for k =0, 1,2,3,... differential transform coefficients U (i,0),U (i,1),U(i,2),... are obtained. After this,
approximate solutions for ¢ = 0.01 are found with the help of (5) and demonstrated in Table 3.

xi=0, u(0,t) =Y U(0,k)* =U(0,0)+U(0,1)r+U(0,2)r*) +
=0
= —2.666666667 — 2.503443416¢ — 1.25000000¢> — ... — 1.333333333¢'°.
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% =0.1, u(0.1,1) = Y U(0.1,k)i* = U(0.1,0)+U(0.1,1)t + U (0.1,2)> + ...
k=0

= —2.665000347 —2.533929470¢ — 1.250104145¢% — ... — 1.333333333¢'°.

xi=1, u(l,t) =Y ULK* =U(1,00+ U1, 1)t +U(1,2)%) + ...
k=0
= —2.503443416 — 2.666666667t — 1.260201453¢> — ... — 1.333333333¢1°.

where x; = ih mesh points for h =0.1, i=0,1,2,.....
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Fig. 1 2D curves of Hybrid method, Exact and RDTM solutions for = 0,0001.
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Fig. 2 3D curves of Hybrid method, Exact and RDTM solutions for t = 0,0001, respectively.

The solution with the RDTM:

According to r— time variable and Table 3, we take differential transform of the equation (6) and the ini-
tial condition (7), respectively. If these differential transformations are written in the Eq. (6), the following
recurrence relation is obtained:

du(x,t)
ot

— (k+1)Us1(x),

du(x,t)  dUi(x)
ox | ox
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Fig. 3 The Comparison of Exact, Hybrid Method and RDTM for ¢t = 0,0001.

d%u(x,t) . Uy (x)

ox2 oxz
and
1 L B0 (x) L Uk (x) 92Uk m( 3Uk()
Uk+(x) = 1 {mz_’o o0 Um(x)*mgoT 3’;0 axz ox ) .

Here, the following differential transform coefficients are found by using above iteration procedure and two
iterations for k =0,1,2,....

8
no(x) = —5cos’(3),
40 4
up(x) = ?cos3(§)sin(§) - gcosz(g)sin(z)cos(z),
These differential transform coefficients are written in the equation (7), the approximate solution is found as
_82x 40 Ssx. . x4 S, x . X X
ZUk *=Up(x)+ U (x)t +.... = 3608 (4)+( g cos (4)sm(4) 3€08 (4)sm(4)c0s(4))t+...

One can see that the obtained approximate solutions by the hybrid method and the RDTM are quite close to their
exact solutions.

The exact, the approximate solutions and error values for different values for ¢t = 0.0001, x are presented in
Table 4 as.

The approximate solution curves are presented in Figure 1, Figure 2 and Figure 3. Exact, hybrid and RDTM
solutions are compared in Table 1 for various values of x and especially t = 0.0001

4 Conclusion

In this study, we have successfully acquired approximate solution of the Rosenau-Hyman equation using the
hybrid method and the RDTM. The obtained numerical solutions by these method were compared with the exact
solution and with each other. These solutions are of high accuracy and also the results show that the proposed
methods were strongly and efficient for solving the Rosenau-Hyman equation. In conclusion, It was revealed
these methods are as good as the other methods in terms of fast convergence. As suggestion, these methods are
a potential important approximate method for further works in strongly nonlinear partial differential equations.
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Table 4 Comparison of the approximate solutions (hybrid method and RDTM) with exact solution u(x,) and the error
values for t = 0.0001.

x(x;) | Hybrid Method | RDTM Exact Error of RDTM | Error of Hybrid Method
0.0 | —2.666917024 | —2.666666656 | —2.666666665 | 0.9x10~% 0.000250359
0.1 —2.665253753 | —2.664992564 | —2.665003678 | 0.000011114 0.000250075
0.2 | —2.660261708 | —2.659990035 | —2.660012208 | 0.000022173 0.000249500
0.3 | —2.651953366 | —2.651671588 | —2.651704732 | 0.000033144 0.000248635
0.4 | —2.640349496 | —2.640058033 | —2.640102014 | 0.000043981 0.000247483
0.5 | —2.625479097 | —2.625178409 | —2.625233055 | 0.000054646 0.000246043
0.6 | —2.607379341 | —2.607069925 | —2.607135019 | 0.000065094 0.000244322
0.7 | —2.586095466 | —2.585777858 | —2.585853142 | 0.000075284 0.000242324
0.8 | —2.561680672 | —2.561355438 | —2.561440619 | 0.000085181 0.000240054
0.9 | —2.534195983 | —2.533863725 | —2.533958466 | 0.000094741 0.000237517
1.0 | —2.503710096 | —2.503371438 | —2.503475376 | 0.000103938 0.000234720
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