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Abstract
In our study, we give the associated evolution equations for curvature and torsion as a system of partial differential equa-
tions. In addition, we study second binormal motions of inextensible curves in 4-dimensional Galilean space.
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1 Introduction

Galilean 3-space G3 is simply defined as a Klein geometry of the product space RxE2 whose symmetry
group is Galilean transformation group which has an important place in classical and modern physics. It is well
known that the idea of world lines originates in physics and was pioneered by Einstein.
In the recent time, the study of the motion of inextensible curves has been arisen in a number of diverse engi-
neering applications and has many applications in computer vision, snake-like, robots. The flow of a curve is
said to be inextensible if the arc length is preserved.
Nowadays, many important and intensive studies are seen about inextensible curve flows in the different space.
Physically, inextensible curve flows give rise to motions in which no strain energy is induced. The swinging
motion of a cord of fixed length, for example, or of a piece of paper carried by the wind, can be described by
inextensible curve and surface flows. Such motions arise quite naturally in a wide range of a physical applica-
tions. For example, both Chirikjian and Burdick [1] used novel and efficient kinematic modeling techniques for
“hyper-redundant” robots that to determining the time varying backbone curve behavior and Mochiyama et al.

Inextensible flows of curves are studied surfaces in R3 by Kwon in [2]. In addition, many researchers have
studied on inextensible flows such as [3], [4] and [8]. In [7] and [19], the authors studied inextensible flows in
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Minkowski space-time E4
1. In [10] is obtained a theoretical framework for controlling a manipulator with hyper

degrees of freedom in which the shape control of hyper-redundant, or snake-like robots.
In [15], the generalization of Bertrand curves in Galilean 4-space is introduced and the characterization of the
generalized Bertrand curves is obtained. In [16], the author constructed Frenet-Serret frame of a curve in the
Galilean 4-space and obtained the mentioned curve’s Frenet-Serret equations. Inextensible curve and surface
flows also arise in the context of many problems in computer vision [6], [12] and computer animation [9], and
even structural mechanics [17]. Papers in [5], [11], [13], [14] and [18] are obtained some new characterizations
of the inextensible curve flows curves. By drawing inspiration from them, in this paper, we consider the second
binormal motions of inextensible curves in Galilean 4-space. We give the necessary and sufficient conditions
to be inextensible flows and we find the evolution equations for the inextensible curve flows in 4-dimensional
Galilean Space.

2 Geometric Preliminaries

The scalar product of two vectors ~U = (u1,u2,u3,u4) and ~V = (v1,v2,v3,v4) in G4 is defined by

<
−→
U ,
−→
V > =


u1v1 , if u1 6= 0 or v1 6= 0

u2v2 +u3v3 +u4v4 , if u1 = 0, v1 = 0
. (2.1)

The Galilean cross product in G4 for the vectors~u = (u1,u2,u3,u4),~v = (v1,v2,v3,v4), and ~w = (w1,w2,w3,w4)
is defined by

~u∧~v∧~w =−

∣∣∣∣∣∣∣∣
0 e2 e3 e4
u1 u2 u3 u4
v1 v2 v3 v4
ω1 ω2 ω3 ω4

∣∣∣∣∣∣∣∣ , (2.2)

where ei 1≤ i≤ 4, are the standard basis vectors.
The norm of vector ~U = (u1,u2,u3,u4) is defined by

‖~U‖=
√
|< ~U ,~U > | [16].

Let α : I ⊂ R→G4, α(s) = (s,y(s),z(s),w(s)) be a curve parametrized by arclength s in G4. .The first vector of
the Frenet-Serret frame,that is,the tangent vector of α is defined by

t = α
′(s) = (1,y′(s),z′(s),w′(s)). (2.3)

Since t is a unit vector, we can express
< t, t > = 1. (2.4)

Differentiating (2.4) with respect to s, we have

< t′, t > = 0. (2.5)

The vector function t′ gives us the rotation measurement of the curve α . The real valued function

κ(s) = ‖t′(s)‖=
√
(y′′)2 +(z′′)2 +(ω ′′)2 (2.6)

is called the first curvature of the curve α . We assume that κ(s) 6= 0 for all s ∈ l. Similar to space G3, the
principal vector is defined by

n(s) =
t′(s)
κ(s)

;

https://www.sciendo.com


Second Binormal Motions of Inextensible Curves in 4-dimensional Galilean Space 251

in other words

n(s) =
1

κ(s)

(
0, y′′(s), z′′(s), ω

′′(s)
)
. (2.7)

By the aid of the differentiation of the principal normal vector given in (2.7), define the second curvature function
that is defined by

τ(s) = ‖n′(s)‖.

This real valued function is called torsion of the curve α . The third vector field, namely, binormal vector
field of the curve α ,is defined by

b(s) =
1

τ(s)

(
0,
(

y′′(s)
κ(s)

)′
,

(
z′′(s)
κ(s)

)′
,

(
ω ′′(s)
κ(s)

)′)
.

Thus the vector b(s) is perpendicular to both t and n. The fourth unit vector is defined by

e(s) = µt(s)∧n(s)∧b(s).

Here the coefficient µ is taken ±1 to make +1 determinant of the matrix [t,n,b,e] . The third curvature of
the curve α by the Galilean inner product is defined by

σ = 〈b′,e〉. (2.8)

Here, as well known, the set {t,n,b,e,κ,τ,σ} is called the Frenet-Serret apparatus of the curve α . We know
that the vectors {t,n,b,e} are mutually orthogonal vectors satisfying

〈t, t〉= 〈n,n〉= 〈b,b〉= 〈e,e〉= 1,
〈t,n〉= 〈t,b〉= 〈t,e〉= 〈n,b〉= 〈n,e〉= 〈b,e〉= 0.

For the curve α in G4, we have the following Frenet-Serret equations [16]:

t′ = κ(s)n(s),
n′ = τ(s)b(s),
b′ =−τ(s)n(s)+σ(s)e(s),
e′ =−σ(s)b(s).

3 Second Binormal motions of curves in the four-dimensional Galilean space G4.

Let γ̂0 : I −→ G4, be a regular curve in four-dimensional Galilean space G4.
Consider the family of curves Ct : γ̂(ŝ, t), where γ̂(ŝ, t) : I ⊂ x ∈ [0,∞) → G4, with intial curve

γ̂0 = γ̂(ŝ,0). Let γ̂(ŝ, t) be the position vector of a point on the curve at the time t and at the arc length ŝ. The
time parameter t is the parameter for the deformation Ct of the curve. The arc-length of the curve is defined by

ŝ(û, t) =
ˆ û

0

√
g(σ̂ , t)dσ̂ .

where
√

g = ‖γ̂(σ̂ , t)‖. Then the element of the arc-length is dŝ =
√

g(û, t)dû, and the operator
∂

∂ ŝ
satisfies the

following
∂

∂ ŝ
=

1√
ĝ

1
∂ û

,
∂ ŝ
∂ û

=
√

g.
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Definition 3.1. The curve γ̂(ŝ, t) and its flow ∂ γ̂(ŝ,t)
∂ t in four-dimensional Galilean space G4 are said to be

inextensible if
.

ŝ =
∂

∂ t
‖γ̂(

.

ŝ, t)‖= 0, i.e. gt = 0 [14]. (3.1)

Hence, the arclength of curve γ̂(ŝ, t) is preserved.
The second binormal motions of the curves can be expressed by the velocity vector field

γ̂t =
∂ γ̂

∂ t
= v e. (3.2)

where {t,n,b,e}is the orthonormal Frenet Frame to the curve Ct and v is the velocity vector in the direction of
second binormal vector e and it is a function of curvature k̂(ŝ, t),torsion τ̂(ŝ, t).
Theorem 3.1 The time evolution equations of the curvature and torsion for the inextensible timelike curve Ĉt

are given by:
kt = vστ (3.3)

and
τt = ψs−φσ (3.4)

where ϕ =
[−2vsσ − vσ ]

k
and φ =

[
vss− vσ2

]
k

.

Proof. Take the û derivative of (3.2), then

γ̂tu =
∂v
∂ s

∂ s
∂u

e+ v
∂e
∂ s

∂ s
∂u

=
√

g(vse− vσb). (3.5)

Since

γ̂u =
∂ γ̂

∂ s
∂ s
∂u

=
√

gt

then
γ̂ut = tt

√
g+

gt

2
√

g
t. (3.6)

Since the derivatives with respect to u and t commute, then

γ̂ut = γ̂tu. (3.7)

Substituting from (3.7) and (3.5) into (3.6), then

gt = u,

tt = vse− vσb. (3.8)

Take the u derivative of the second equation of (3.8), then

ttu ==
√

g(vστn+(−2vsσ − vσ)b+(vss− vσ
2)e). (3.9)

Since

tu =
∂ t
∂ s

∂ s
∂u

= kn
√

g. (3.9)

Taking the t derivative of (3.9), then we have

tut =
√

g(ktn+ knt). (3.10)

Since tut = ttu, we obtain
kt = vστ.
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On the other hand, we write
knt = (−2vsσ − vσ)b+(vss− vσ

2)e

or
nt =

1
k

[
(−2vsσ − vσ)b+(vss− vσ

2)e
]
. (3.11)

If we choose ϕ =
[−2vsσ − vσ ]

k
and φ =

[
vss− vσ2

]
k

,then we rewrite the equation of (3.11) as following

nt = ψb+φe. (3.12)

Taking the u derivative of (3.12), then we have

ntu =
√

g((ψs−φσ)b+(−τψ)n+(ψσ +φs)e) . (3.13)

Since

nu =
∂n
∂ s

∂ s
∂u

=
√

gτb (3.14)

Taking the t derivative of (3.14), then we have

nut =
√

g(τtb+ τbt) . (3.15)

From (3.13) and (3.15), then we have
τt = ψs−φσ . (3.16)

Thus
τbt = (−τψ)n+(ψσ +φs)e. (3.17)

Since
bt =−ψn+(

ψσ +φs

τ
)e. (3.18)

If we take K =
ψσ +φs

τ
, then the time evolution equation for the first binormal vector b to the curve Ĉt is

given as follows:
bt =−ψn+Ke. (3.19)

Taking the u derivative of (3.19), then we have

btu =
√

g(−(ψ +K)τb−ψsn+Kse). (3.20)

Since

bu =
∂b
∂ s

∂ s
∂u

=
√

g(−τn+σe). (3.21)

Taking the t derivative of (3.21), then we have

but =
√

g(−τtn− τnt +σte+σet). (3.22)

Since btu = but , then by substituting from (3.20) and from (3.22) into this equation, then we have the time
evolution equation for the torsion τt :

τt = ψs and Ks = σt . (3.23)

Thus
−(ψ +K)τb =−τnt +σet
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also
σet = τnt − (ψ +K)τb.

or
et =−

τ

σ
Kb+

τ

σ
φe

where τ second curvature function, σ third curvature function, K =
ψσ +φs

τ
, ψ =

−2vsσ − vσ

K
and

φ =
vss− vσ2

K
. Hence, the theorem holds.

Theorem 3.2 The time evolution of the Serret Frenet frame for the curve can be given in matrix form:
t
n
b
e


t

=


0 0 −vσ vs

0 0 ψ φ

0 −ψ 0 K

0 0 − τ

σ
K

τ

σ
φ




t
n
b
e

 .
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