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Abstract
Many investigations related to the analytical solutions of the nonlinear sub-diffusion equation exist. In this paper, we
investigate the conditions under which the analytical and the approximate solutions of the nonlinear sub-diffusion equation
and the nonlinear sub-advection dispersion equation exist. In other words, the problems of existence and uniqueness of
the solutions the fractional diffusion equations have been addressed. We use the Banach fixed Theorem. After proving
the existence and uniqueness, we propose the analytical and the approximate solutions of the nonlinear sub-diffusion, and
the nonlinear sub-advection dispersion equations. We analyze the impact of the sub-diffusion coefficient, the advection
coefficient and the dispersion coefficient in the diffusion processes. The homotopy perturbation Laplace transform method
has been used in this paper. Some numerical examples are provided to illustrate the main results of the article.
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1 Introduction

In fluids mechanics, there exist two categories of processes. Transport process when the process moves
substance through hydrosphere and atmosphere. Transformation process when the process changes the substance
of interest into another substance. The diffusion process belongs to the first category, subject of research in this
paper. The diffusion satisfies two properties: firstly, it is random in nature, and the transport is from the regions
with high concentration to the areas with low concentrations. For a classic example, we have the diffusion
of perfume into an empty room. The diffusion equations have attracted many researchers in these last two
decades. The diffusion equation has been used in many areas of mathematics, statistics, probability and physics.
The diffusion equations exist in the probability models, in the microscopic models and the mesoscopic models.
There exist various type of diffusion equations: The Chapman Kolmogorov equation, the Fokker Plank equation
(known as the diffusion dispersion equation or convection equation), and the particle diffusion equation obtained
with Fickian law’s.

There exist many investigations related to the diffusion and fractional diffusion equations. The first works
were proposed by Robert Brown in 1827 [1]. The Brown works were extended later in 1905 by Einstein [4].
In 1905, Person modeled the Brownian motion as a random walk [11]. In [6], Henry et al. have modeled
the diffusion equation in the context of the fractional order operators. In [14, 16], Sene propose the analytical
solution of the fractional diffusion equation, the works make a connection between the Fourier sine and the
Laplace transformations. In [15], Sene propose the approximate solution of the fractional diffusion reaction
equation using the homotopy perturbation Laplace transform method. Statistical interpretation of the fractional
diffusion equation is investigated by Santos in [2, 3]. The list of works is long, we summarize them in the
following references [5, 8–10].

In this paper, we introduce a new model of the particle diffusion equation. We mainly use Fick’s law to
establish the diffusion equation. The Fokker Plank equation is defined by

∂u
∂ t

= µ
∂ 2u
∂x2 −η

∂u
∂x

, (1)

where for instant µ denotes the advection coefficient and η represents the dispersion coefficient. Our motivation
is to study the behavior of the diffusion processes when the advection term ∂ 2u

∂x2 is replaced by the nonlinear

subdiffusion term ∂

∂x

(
u ∂u

∂x

)
and the diffusion parameters vary. The obtained diffusion equation is called the

nonlinear sub-diffusion equation dispersion equation expressed as

∂u
∂ t

= µ
∂

∂x

(
u

∂u
∂x

)
−η

∂u
∂x

, (2)

where µ denotes the sub-advection coefficient and η represents the dispersion coefficient. Firstly, we investigate
the existence and the uniqueness of the solution of the introduced model. Secondly, we propose the homotopy
perturbation Laplace transform method for getting the approximate solution of the proposed model. It will be
helpful to observe the behaviors of the approximate solutions of the nonlinear sub-diffusion dispersion equation
graphically.

2 Constructive equations

In this section, we introduce new mathematical model in physics. We present the constructive equations
related to the nonlinear sub-diffusion equation and nonlinear sub-advection dispersion equation. The Fick first
[16] and second laws give the diffusion equation described by the following differential equation

∂u
∂ t

= µ
∂ 2u
∂x2 , (3)
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where µ denotes the diffusion coefficient. Let’s the flux F of the diffusing material be nonlinear and represented
by the following relation

F =−µu
∂u
∂x

, (4)

Applying the Fick second law to both sides of Eq. (4), we arrive at a known nonlinear sub-diffusion equation
described by the equation

∂u
∂ t

=−∂F
∂x

= µ
∂

∂x

(
u

∂u
∂x

)
, (5)

where µ denotes the sub-diffusion coefficient. We will in the next section investigate in the existence and the
uniqueness of the solution of the nonlinear sub-diffusion equation described by Eq. (5). If the condition of the
validity of this model exist, what is the analytical or the approximate solution? What is the method, we will use
to get the solution? The questions which we will try to bring the answers in details in the next sections? Let’s
the advection-dispersion equation described by the following equation

∂u
∂ t

= µ
∂ 2u
∂x2 −η

∂u
∂x

, (6)

where µ denotes the advection coefficient and η represents the dispersion coefficient. In physics and the real-
life problem; the advection coefficient is generally nonlinear. It proves the limits of the model described in
Eq. (6). The novelty in our modeling is, we substitute the advection coefficient term in Eq. (6) by a sub-
advection coefficient term in the form of equation Eq. (4). Summarising, the new obtained model is called
the nonlinear sub-advection dispersion equation. The following equation will represent the differential equation
under consideration

∂u
∂ t

= µ
∂

∂x

(
u

∂u
∂x

)
−η

∂u
∂x

, (7)

where µ denotes the sub-advection coefficient, and η represents the dispersion coefficient. Does the solution
of this model exist, it is unique? If the solution exists, what is the method to get this solution? Can we depict
the solution to analyze the diffusion processes of the nonlinear sub-advection dispersion equation (7)? What
are the impact of the diffusion parameters in the diffusion processes? This model will help for studying the
diffusion processes of the fluid flow through the stationary porous landscape, and debris material introduced in
the literature by Pudasaini, see in.

3 Homotopy perturbation Laplace transform method

In this section, we propose a new method for applying the homotopy perturbation method [7]. Let’s the
solutions of the diffusion Eq. (5) and Eq. (7) exist. The technique consists of introducing the usual Laplace
transformation into the resolution of the differential equation. In other words, the method combines both the
usual Laplace transform and the homotopy perturbation method. Let’s the initial boundary condition defined by
the following form

∂ mu(x,0)
∂ tm = um(x) (8)

For the possible use of the usual Laplace transform, we rewrite Eq. (5) in the following form

∂u
∂ t

= µ
∂ 2u2

∂x2 (9)

Applying the Laplace transform into Eq. (9), and using the boundary condition (8), we obtain the following
relationships

ū(x,s) =
1
s

[
µ

∂ 2

∂x2

]
ū2(x,s)+

1
sn

[
sn−1u0(x)+ ...+un−1(x)

]
(10)
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where ū(x,s) denotes the Laplace transform of the function u(x, t). Using homotopy parameter, Eq. (10) can be
rewritten in the following form

ū(x,s) =
q
s

[
µ

∂ 2

∂x2

]
ū2(x,s)+

1
sn

[
sn−1u0(x)+ ...+un−1(x)

]
(11)

where q denotes the homotopy parameter taking it value into [0,1]. Using homotopy procedure the solution of
Eq. (11) is expressed in the following form

ū(x,s) =
∞

∑
i=0

qiūi(x,s) (12)

Replacing Eq. (12) into Eq. (11), it yields that

∞

∑
i=0

qiūi(x,s) =
q
s

[
µ

∂ 2

∂x2

][
∞

∑
i=0

qiūi(x,s)

]2

+
1
sn

[
sn−1u0(x)+ ...+un−1(x)

]
(13)

By comparing the homotopy parameter q, we get from equation Eq. (13), the following iterative differential
equations

q0 : ū0(x,s) =
1
sn

[
sn−1u0(x)+ ...+un−1(x)

]
;

q1 : ū1(x,s) =
1
s

[
µ

∂ 2

∂x2

]
ū2

0(x,s);

q2 : ū2(x,s) =
1
s

[
µ

∂ 2

∂x2

]
ū2

1(x,s);

q3 : ū3(x,s) =
1
s

[
µ

∂ 2

∂x2

]
ū2

2(x,s)

... :
...

qn+1 : ūn+1(x,s) =
1
s

[
µ

∂ 2

∂x2

]
ū2

n−1(x,s) (14)

When the homotopy parameter q converges to 1 at each step, it follows from Eq. (14), the solution of equation
Eq. (13) is expressed by

Qn (x,s) =
∞

∑
i=0

ūi (x,s) (15)

Applying the inverse of the Laplace transform to both sides of Eq. (15), we get the approximate solution of the
nonlinear sub-diffusion equation (5) given by

u(x, t) = L −1 (Qn (x,s)) . (16)

where L represents the usual Laplace operator.
In this subsection, we apply the homotopy perturbation Laplace transform method on the nonlinear sub-

advection dispersion equation (7) under boundary condition defined by

∂ mu(x,0)
∂ tm = um(x) (17)

We reapeat the same procedure as in the previous subsection. We rewriite Eq. (7) in the following form

∂u
∂ t

= µ
∂ 2u2

∂x2 −η
∂u
∂x

(18)
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Applying the Laplace transform into Eq. (18), and using the boundary condition Eq. (17), we obtain the
following relationships

ū(x,s) =
1
s

[
µ

∂ 2

∂x2

]
ū2(x,s)− 1

s

[
η

∂

∂x

]
ū(x,s)+

1
sn

[
sn−1u0(x)+ ...+un−1(x)

]
, (19)

where ū(x,s) denotes the Laplace transform of the function u(x, t). Using homotopy parameter, Eq. (19) can be
expressed in the following form

ū(x,s) =
q
s

[
µ

∂ 2

∂x2

]
ū2(x,s)− q

s

[
η

∂

∂x

]
ū(x,s)+

1
sn

[
sn−1u0(x)+ ...+un−1(x)

]
(20)

where q denotes the homotopy parameter taking values into [0,1]. Using the homotopy procedure the solution
of Eq. (20) is expressed in the following form

ū(x,s) =
∞

∑
i=0

qiūi(x,s) (21)

Replacing Eq. (21) into Eq. (20), it’s yields that the relation

∞

∑
i=0

qiūi(x,s) =
q
s

[
µ

∂ 2

∂x2

][
∞

∑
i=0

qiūi(x,s)

]2

− q
s

[
η

∂

∂x

][
∞

∑
i=0

qiūi(x,s)

]
+

1
sn

[
sn−1u0(x)+ ...+un−1(x)

]
(22)

By comparing the homotopy parameter q, we get from equation Eq. (22), the following iterative differential
equations

q0 : ū0(x,s) =
1
sn

[
sn−1u0(x)+ ...+un−1(x)

]
;

q1 : ū1(x,s) =
1
s

[
µ

∂ 2

∂x2

]
ū2

0(x,s)−
1
s

[
η

∂

∂x

]
ū0(x,s);

q2 : ū2(x,s) =
1
s

[
µ

∂ 2

∂x2

]
ū2

1(x,s)−
1
s

[
η

∂

∂x

]
ū1(x,s);

q3 : ū3(x,s) =
1
s

[
µ

∂ 2

∂x2

]
ū2

2(x,s)−
1
s

[
η

∂

∂x

]
ū2(x,s)

... :
...

qn+1 : ūn+1(x,s) =
1
s

[
µ

∂ 2

∂x2

]
ū2

n−1(x,s)−
1
s

[
η

∂

∂x

]
ūn−1(x,s) (23)

Let consider the homotopy parameter q converging to 1 at each step, the solution of Eq. (20) is represented in
the following form

Qn (x,s) =
∞

∑
i=0

ūi (x,s) (24)

Applying the inverse of Laplace transform to both sides of Eq. (24), we get the approximate solution of the
nonlinear sub-diffusion dispersion equation (7) represented by

u(x, t) = L −1 (Qn (x,s)) . (25)

where L denotes the Laplace transform operator.
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4 Existence and uniqueness of the nonlinear sub-diffusion equation

In this section, we prove the existence and the uniqueness of the solution of the nonlinear sub-diffusion
equation using Banach fixed Theorem. Let’s the function defined by

Ω(x,u) = µ
∂

∂x

(
u

∂u
∂x

)
=

µ

2
∂ 2u2

∂x2 . (26)

We begin by proving the function Ω is Lipchitz continuous. Let’s the function

Ω(x,u)−Ω(x,v) =
µ

2
∂ 2u2

∂x2 −
µ

2
∂ 2v2

∂x2 (27)

Applying the Euclidean norm, we obtain the following relationships

‖Ω(x,u)−Ω(x,v)‖ =
∥∥∥∥µ

2
∂ 2u2

∂x2 −
µ

2
∂ 2v2

∂x2

∥∥∥∥
≤ µ

2

∥∥∥∥∂ 2u2

∂x2 −
∂ 2v2

∂x2

∥∥∥∥
≤ µ

2

∥∥u2− v2∥∥ (28)

Using the fact u and v bounded, we can find a constant b such that we have the following relationships

‖Ω(x,u)−Ω(x,v)‖ ≤ µ

2

∥∥u2− v2∥∥≤ k‖u− v‖ (29)

where the constant k = bµ

2 is called Lipchitz constant. In the second step, we define an operator Tu : H → H
where H is a Banach space. Let’s the operator T expressed as the following form

Tu(x, t) =
ˆ t

0
Ω(x(s),u)ds (30)

We first prove the operator posed in Eq.(30) is well definite. We apply the Euclidean norm again to the following
equation

‖Tu(x, t)−u(x,0)‖ =
∥∥∥∥ˆ t

0
(Ω(x(s),u))ds

∥∥∥∥
≤
ˆ t

0
‖Ω(x(s),u)‖ds

≤ ‖Ω(x(s),u)‖
ˆ t

0
ds

≤ Ma (31)

where t ≤ a and the Lipchitz constant M comes from the fact, Ω is Lipchitz continuous. Thus, the operator T is
well defined. The next step is to prove the operator T is a contraction. We apply the Euclidean norm; we have
the following relationships

‖Tu(x, t)−T v(x, t)‖ =
∥∥∥∥ˆ t

0
(Ω(x(s),u)−Ω(x(s),v))ds

∥∥∥∥
≤
ˆ t

0
‖Ω(x(s),u)−Ω(x(s),v)‖ds

≤ ‖Ω(x(s),u)−Ω(x(s),v)‖
ˆ t

0
ds

≤ ka‖u− v‖ (32)
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Thus, by imposing ka≤ 1, the operator T defines a contraction. Recalling the classical Banach fixed Theorem,
we conclude the solution of the nonlinear sub-diffusion equation (5) exists and is unique. Note that, the problem
consisting of finding the analytical or approximate solution of Eq. (5) is well posed.

5 Existence and uniqueness of the nonlinear sub-advection dispersion equation

As in the previous section, we prove the existence and the uniqueness of the solution of the nonlinear sub-
advection dispersion equation using the Banach fixed Theorem. Let’s the function defined by

Φ(x,u) = µ
∂

∂x

(
u

∂u
∂x

)
−η

∂u
∂x

=
µ

2
∂ 2u2

∂x2 −η
∂u
∂x

(33)

Let’s prove the function Φ is Lipchitz continuous with a Lipschitz constant to be determined. Let’s the function

Φ(x,u)−Φ(x,v) =
µ

2
∂ 2u2

∂x2 −η
∂u
∂x
− µ

2
∂ 2v2

∂x2 +η
∂v
∂x

(34)

Applying the Euclidean norm and triangular inequality, we obtain the following relationships

‖Φ(x,u)−Φ(x,v)‖ =
∥∥∥∥µ

2
∂ 2u2

∂x2 −η
∂u
∂x
− µ

2
∂ 2v2

∂x2 +η
∂v
∂x

∥∥∥∥
≤ µ

2

∥∥∥∥∂ 2u2

∂x2 −
∂ 2v2

∂x2

∥∥∥∥+η

∥∥∥∥∂u
∂x
− ∂v

∂x

∥∥∥∥
≤ µ

2

∥∥u2− v2∥∥+η ‖u− v‖ (35)

We assume the functions u and v are bounded; it follows that we can find a constant b such that we have the
following relationships

‖Φ(x,u)−Φ(x,v)‖ ≤ µ

2

∥∥u2− v2∥∥+η ‖u− v‖ ≤ k‖u− v‖ (36)

where the constant k = bµ

2 +η represents the Lipchitz constant. Let’s define a operator Zu : H→ H where H is
Banach space. We define the operator Z as follows

Zu(x, t) =
ˆ t

0
Φ(x(s),u)ds (37)

We prove the operator posed in Eq.(37) is well definite. We apply the Euclidean norm again to the following
equation

‖Zu(x, t)−u(x,0)‖ =
∥∥∥∥ˆ t

0
Φ(x(s),u)ds

∥∥∥∥
≤
ˆ t

0
‖Φ(x(s),u)‖ds

≤ ‖Φ(x(s),u)‖
ˆ t

0
ds

≤ Ma (38)

where t ≤ a and the Lipchitz constant M comes from the fact, Φ is Lipchitz continuous. Thus, the operator Z is
well defined. The next step is to prove the operator T is a contraction. We apply the Euclidean norm; we have
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the following relationships

‖Zu(x, t)−Zv(x, t)‖ =
∥∥∥∥ˆ t

0
(Φ(x(s),u)−Φ(x(s),v))ds

∥∥∥∥
≤
ˆ t

0
‖Φ(x(s),u)−Φ(x(s),v)‖ds

≤ ‖Φ(x(s),u)−Φ(x(s),v)‖
ˆ t

0
ds

≤ ka‖u− v‖ (39)

Thus, by imposing ka≤ 1, the operator Z defines a contraction. Recalling the classical Banach fixed Theorem,
we conclude the solution of the nonlinear sub-diffusion equation (7) exists and is unique. Note that, the problem
consisting of finding the analytical or approximate solution of Eq. (7) is well posed.

6 Approximate solutions of the nonlinear sub-diffusion equation

This section contributes to describing briefly, the possible method to get the approximate solution of the
nonlinear sub-diffusion equation. We also analyze the behavior of the approximate solution in some particular
cases. We introduce the homotopy perturbation Laplace transform method for getting the approximate solution
of the nonlinear sub-diffusion equation. The following equation describes the nonlinear sub-diffusion equation
under consideration.

∂u
∂ t

= µ
∂

∂x

(
u

∂u
∂x

)
(40)

with initial Dirichlet boundary condition defined as

• u(x,0) = ex for x > 0

Let’s the first iteration, and the initial boundary condition u0(x,0)= ex, using Eq. (14), we have the following
equation defined by

ū0(x,s) =
ex

s
(41)

Applying the inverse of Laplace transform to both sides of Eq. (41), we obtain the analytical solution of Eq.
(40) given by

u0(x, t) = u(x,0) = ex (42)

Let’s the second iteration, and the initial boundary condition u1(x,0) = 0, using Eq. (14), we have the following
equation defined by

ū1(x,s) =
2µe2x

s2 (43)

Applying the inverse of the Laplace transform to both sides of equation (43), we obtain the following analytical
solution

u1(x, t) = 2tµe2x. (44)

Let’s the third iteration, and the initial boundary condition u2(x,0) = 0, using Eq. (14), we have the following
equation

ū2(x,s) =
64µ3e4x

s4 (45)

Applying the inverse of Laplace transform to both sides of Eq. (45), we obtain the analytical solution of Eq.
(45) given by

u2(x, t) =
32
3

t3
µ

3e4x. (46)
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Let’s the fourth iteration, and the initial boundary condition u3(x,0) = 0, using Eq. (14), we have the following
equation

ū3(x,s) =
2621440µ7e8x

s8 (47)

Applying the inverse of Laplace transform to both sides of Eq. (47) and inverting it, we obtain the analytical
solution of Eq. (47) given by

u3(x, t) =
32768

63
t7

µ
7e8x. (48)

Let’s the fifth iteration, and the initial boundary condition u4(x,0) = 0, using Eq. (14), we have the following
equation

ū4(x,s) =
137438953472×15!µ15e16x

59535s16 (49)

Applying the inverse of Laplace transform to both sides of equation (49), we obtain the analytical solution of
Eq. (49) given by

u4(x, t) =
137438953472

59535
t15

µ
15e16x. (50)

...
and so on, we use the same manner in other steps.

Finally, according to homotopy perturbation procedure, the approximate solution of the nonlinear sub-
diffusion equation (40) is given by

u(x, t) = u0(x, t)+u1(x, t)+u2(x, t)+u3(x, t)+ ...

= ex +2tµe2x +
32
3

t3
µ

3e4x +
32768

63
t7

µ
7e8x + ... (51)

The four-term approximate solution of the nonlinear sub-diffusion equation (40) is given by the following
expression:

u(x, t) = u0(x, t)+u1(x, t)+u2(x, t)+u3(x, t)

= ex +2tµe2x +
32
3

t3
µ

3e4x +
32768

63
t7

µ
7e8x (52)

Let’s analyze the behavior of the approximate solution of the nonlinear sub-diffusion equation (5). For
the interpretation, we suppose the sub-diffusion coefficient µ = 1. In Figure 6, we depict the behavior of the
approximate solution in two-dimensional spaces.

We first fixe the time to different increasing values, and we depict the figure 6 regarding space coordinates
x. The diffusion process follows the direction of the arrow. We note when the time increases the density of the
material increase too.

We first fixe the times to different decreasing values, and we depict the figure regarding space coordinates
x. The diffusion process follows the direction of the arrow. We note when the time increases the density of the
material increase (decrease) too.

Let’s fixe t = 0.5, and the sub-diffusion coefficient µ take different increasing values, we depict the figure
6 regarding space coordinates x. The diffusion process follows the direction of the arrow. We note, when the
sub-diffusion coefficient µ increase the density of the material increase too. We note same behaviour as above.

Let’s fixe t = 0.5, and the sub-diffusion coefficient µ take different decreasing values, we depict the figure
6 regarding space coordinates x. The diffusion process follows the direction of the arrow. We note, when the
sub-diffusion coefficient µ decrease the density of the material increase (decrease ) too.

Thus the sub-diffusion coefficient µ has a retardation effect in the diffusion processes, when it decreases and
acceleration effect when it increases.
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7 Approximate solution of the nonlinear sub-advection dispersion equation

In this section, we present the approximate solution of the nonlinear sub-advection dispersion equation.
We introduce the homotopy perturbation Laplace transform method for getting the approximate solution of the
nonlinear sub-advection dispersion equation. The following equation describes the nonlinear sub-advection
dispersion equation

∂u
∂ t

= µ
∂

∂x

(
u

∂u
∂x

)
−η

∂u
∂x

(53)
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with initial Dirichlet boundary conditions defined as

• u(x,0) = ex for x > 0

Let’s the first iteration equation obtained by Eq. (23), and let’s the initial boundary condition u0(x,0) = ex. We
have the following equation defined by

ū0(x,s) =
ex

s
(54)
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Applying the inverse of Laplace transform to both sides of Eq. (54), we obtain the analytical solution of Eq.
(54) given by

u0(x, t) = u(x,0) = ex (55)

Let’s the second iteration, and the initial boundary condition u1(x,0) = 0, using Eq. (23), we have to invert the
following equation

ū1(x,s) =
2µe2x

s2 − ηex

s2 (56)

Applying the inverse of Laplace transform to both sides of Eq. (56), we obtain the analytical solution of Eq.
(56) given by

u1 (x, t) = 2µte2x−ηtex (57)

For simplification, we continue the rest of the resolution by solving with induction, the nonlinear sub-advection
dispersion equation defined for all i≥ 1 by

∂ui

∂ t
= µ

∂

∂x

(
ui−1

∂ui−1

∂x

)
−η

∂ui−1

∂x
(58)

under initial boundary condition defined by ui(x,0) = 0.
Let’s the third iteration, we solve the differential equation with initial boundary condition u2(x,0)= 0 defined

by

∂u2

∂ t
= µ

∂

∂x

(
u1

∂u1

∂x

)
−η

∂u1

∂x

= 32t2
µ

3e4x−18t2
µ

2
ηe3x +2t2

µη
2e2x−4tµηe2x + tη2ex (59)

Applying the Laplace transform to both sides of Eq. (59), and inverting it, we obtain the analytical solution of
the differential Eq. (59) given by

u2 (x, t) =
32
3

t3
µ

3e4x−6t3
µ

2
ηe3x +

2
3

t3
µη

2e2x−2t2
µηe2x +

1
2

t2
η

2ex (60)

Let’s the fourth itteration, we solve the differential equation with initial boundary condition u3(x,0) = 0 defined
by

∂u3

∂ t
= µ

∂

∂x

(
u2

∂u2

∂x

)
−η

∂u2

∂x

=
32768

9
t6

µ
7e8x−3136t6

µ
6
ηe7x +904t6

µ
5
η

2e6x−100t6
µ

4
η

3e5x

+
32
9

t6
µ

3
η

4e4x−768t5
µ

5
ηe6x +

1300
3

t5
µ

4
η

2e5x− 208
3

t5
µ

3
η

3e4x +3t5
µ

2
η

4e3x

+ 32t4
µ

3
η

2e4x−9t4
µ

2
η

3e3x +
1
2

t4
µη

4e2x− 128
3

t3
µ

3
ηe4x +18t3

µ
2
η

2e3x

− 4
3

t3
µη

3e2x +4t2
µη

2e2x− 1
2

t2
η

3ex. (61)

Applying the Laplace transform to both sides of Eq. (61), and inverting it, we obtain the analytical solution of
differential Eq. (61) given by
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u3 (x, t) =
32768

63
t7

µ
7e8x−448t7

µ
6
ηe7x +

904
7

t7
µ

5
η

2e6x− 100
7

t7
µ

4
η

3e5x +
32
63

t7
µ

3
η

4e4x

− 128t6
µ

5
ηe6x +

650
9

t6
µ

4
η

2e5x− 104
9

t6
µ

3
η

3e4x +
1
2

t6
µ

2
η

4e3x +
32
5

t5
µ

3
η

2e4x

− 9
5

t5
µ

2
η

3e3x +
1

10
t5

µη
4e2x− 32

3
t4

µ
3
ηe4x +

9
2

t4
µ

2
η

2e3x− 1
3

t4
µη

3e2x +
4
3

t3
µη

2e2x

− 1
6

t3
η

3ex. (62)

...
and so on, We use the same manner in other steps.

Finaly, according to the homotopy perturbation procedure, the approximate solution of the nonlinear sub-
diffusion dispersion Eq. (53) is given by

u(x, t) = u0(x, t)+u1(x, t)+u2(x, t)+u3(x, t)+ ... (63)

Let’s analyze the impact of the advection coefficient µ and the dispersion coefficient η is the diffusion
processes. Let’s two-terms approximate solution of the nonlinear sub-advection dispersion Eq. (53). It is given
by

u(x, t) = u0(x, t)+u1(x, t) (64)

In Figure 7, we depict the approximate solution of the nonlinear sub-advection dispersion equation in two-
dimensional space with µ = η = 1.
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Fig. 5 Profil in 3 dimensions

In Figure 7, we depict the approximate solution of the nonlinear sub-advection dispersion equation with
t = 0.6. We consider both µ and η take increase values. We note the profile of the nonlinear sub-advection
dispersion equation increase (decrease). The profiles follow the direction of the arrow in Figure 7. In Figure 7,
we depict the approximate solution of the nonlinear sub-advection dispersion equation with t = 0.6. We consider
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the values of the advection coefficient µ decrease and the values of the dispersion coefficient η increase. We
note the profile of the nonlinear sub-advection dispersion equation increase (decrease). The profiles follow the
direction of the arrow in Figure 7.
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Fig. 7 Profil in 3 dimensions

In Figure 7, we depict the approximate solution of the nonlinear sub-advection dispersion equation with
t = 0.6. We consider the values of the advection coefficient µ increase and the values dispersion coefficient
η decrease. We note the profile of the nonlinear sub-advection dispersion equation increase (decrease). The
profiles follow the direction of the arrow in Figure 7.
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In Figure 7, we depict the approximate solution of the nonlinear sub-advection dispersion equation with
t = 0.6. We consider the values of the parameters µ and η both decrease. We note the profile of the nonlinear
sub-advection dispersion equation increase (decrease). The profiles follow the direction of the arrow in Figure
7.
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8 Conclusion

In this paper, we have proposed a new model in diffusion equations: namely the nonlinear sub-diffusion
equation and the nonlinear sub-diffusion dispersion equation. We analyze the condition of the existence and
the uniqueness of the solutions of the proposed model. We also recommend a novel method for getting the
approximate solution. An important question can be considered for future word, does the solution exist when
the dispersion term is a sub-dispersion term.

References

[1] R. Brown, Microscopical observations on the particles contained in the pollen of plants and on the general existence
of active molecules in organic and inorganic bodies. Edin. Phil. Journal, 1828, 358-371, (1828).

[2] Santos, M.D.; Gomez, I.S. A fractional Fokker–Planck equation for non-singular kernel operators. J. Stat. Mech.
Theory Exp. 2018, 2018, 123205.

[3] Santos, M.D. Fractional Prabhakar Derivative in Diffusion Equation with Non-Static Stochastic Resetting. Physics
2019, 1, 40–58.

[4] A. Einstein, On the movement of small particles suspended in a stationary liquid demanded by the molecular kinetic
theory of heat, Ann. d. Phys., 17, 549-560, (1905).

[5] T. R. Goodman, The heat-balance integral and its application to problems involving a change of phase, Trans. ASME,
80, 335-342, (1958).

[6] B.I. Henry, T.A.M. Langlands and P. Straka, An Introduction to Fractional Diffusion, World Scientific Review, ,
(2009).

[7] S.J Liao, On the homotopy analysis method for nonlinear problems, Appl Math Comput, 147, 499-513 (2004).
[8] T.G. Myers Optimizing the exponent in the heat balance and refined integral methods, International Communications

in Heat and Mass Transfer, 36, 143-147, (2009).
[9] T.G. Myers Optimal exponent heat balance and refined integral methods applied to Stefan problems, International

Journal of Heat and Mass Transfer, 53, 1119-1127, (2010).
[10] S.L. Mitchell, T.G. Myers Application of Standard and Refined Heat Balance Integral Methods to One-Dimensional

Stefan Problems, Siam review, 52(1), 57-86, (2010).
[11] K. Pearson, The problem of the random walk, , Nature, 72, 294, (1905).
[12] N. Sene, Analytical solutions of Hristov diffusion equations with non-singular fractional derivatives, Chaos, 29,

023112, (2019).
[13] N. Sene, Stokes’ first problem for heated flat plate with Atangana–Baleanu fractional derivative, Chaos, Solitons &

Fractals, 117, 68-75, (2018).
[14] N. Sene, Solution of fractional diffusion equations and Cattaneo–Hristov diffusion model, Int. J. Anal. Appl.,17(2),

191-207, (2019).
[15] N. Sene, Homotopy Perturbation ρ- Laplace Transform Method and Its Application to the Fractional Diffusion

Equation and the Fractional Diffusion-Reaction Equation, Fractal Fract.,3, 14, (2019).
[16] N. Sene, Analytical solutions and numerical schemes of certain generalized fractional diffusion models, Eur. Phys. J.

Plus,134, 199, (2019).

https://www.sciendo.com

	Introduction
	Constructive equations
	Homotopy perturbation Laplace transform method
	Existence and uniqueness of the nonlinear sub-diffusion equation
	Existence and uniqueness of the nonlinear sub-advection dispersion equation
	Approximate solutions of the nonlinear sub-diffusion equation
	Approximate solution of the nonlinear sub-advection dispersion equation
	Conclusion

