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Abstract

The exact solution is calculated for fractional telegraph partial differential equation depend on initial boundary value
problem. Stability estimates are obtained for this equation. Crank-Nicholson difference schemes are constructed for this
problem. The stability of difference schemes for this problem is presented. This technique has been applied to deal with
fractional telegraph differential equation defined by Caputo fractional derivative for fractional orders oo = 1.1, 1.5, 1.9.
Numerical results confirm the accuracy and effectiveness of the technique.
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Introduction and Preliminaries

Fractional differential equations have many implementations in finance, engineering, physics and seismol-
ogy [1-3]. These type equations are solvable with restpect to variables time and space. Some difference schemes
are given for the space-fractional heat equations in [4—7, 18-22]. A new difference scheme for time fractional
heat equation based on the Crank-Nicholson method has been presented in [5]. Orsingher and Beghin [14] have
presented the Fourier transform of the fundamental solutions to time-fractional telegraph equations of order 2¢.
In [15], the time-fractional advection dispersion equations have been presented. In [16], Liu has studied frac-
tional difference approximations for time-fractional telegraph equation. Modanli and Akgiil [12] have worked
the second-order partial differential equations by two accurate methods. Finally, Modanli and Akgul [13] have
solved the fractional telegraph differential equations by theta-method. For more details see [23-27].

In this study, the Crank-Nicholson difference schemes method has been applied to fractional derivatives to
get numerical results.
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Now, we examine the following fractional telegraph equations

( 9%ult, 9% Luft, 9%u(t,
i+ T — G () = £(1,%),

0<x<L 0<t<T,1<0<2,
(1)
u(0,x) =ri(x), u;(0,x) =r2(x), 0<t <T,

L u(t,Xr) =u(t,Xg) =0, Xp <x < Xg.

Here, ri(x), r2(x) are smooth function defined with the space [0,T], f(¢,x) is smooth function defined with
the space (0,L) x (0,7) and u(t,x) is unknown function with the domain [0,L] x [0,T]. For the equation (1),
the Crank-Nicholson finite difference scheme method is applied. With using this method, obtained numerical
results are very good and efficient for given examples.

Definition 1. The Caputo fractional derivative D*u(t,x) of order a with respect to time is defined as:

aa;’fi’x) = D{u(t,x) )
9%u(p,x)

R / 1
- Tn—a)/ (t=p)*t dp®
0

dp, (n—1<a<n)

and for ¢ = n € N defined as:

~ 9%(t,x)  J"u(t,x)
- Jte o

D%u(t,x)

Definition 2. First-order approach difference method for the computation of the problem (1) has been
presented as:

k=1
DFUS = gac Y b\ (US T —UKIY), 3)
j=0
where g r = % and bga) =(j+1)2%— 2,

Next section, we shall give Crank-Nicholson difference scheme for fractional order telegraph differential
equation.

1 Crank-Nicolson Difference Scheme and its Stabilty

Using the formula (3) and definition of Crank-Nicholson first order difference schemes, we can construct
the following difference scheme formula for (1) as:
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k+l 2M +uk 1
+abe

1 k+1
_p((unil

A= fltx), 1 <a <2,

The formula (4) can be rewriten as:

k+1

n+l+(

(_222) Upiq +( 2h2)

k
+5 (T ) 4 8o Y bﬁa)
=0

—T8a,tbkra (%) = f,f,l <<

= f(tk,xn)a

1 0
u) = ry(xy), "

f

k
uO—

uk, =0,0<k<N.

We can write the above system in matrix form as

Aup g1+ Buy +Cup oy = (9

n’ }![""’MnN:I7 gDn = I:(pg’(p}!l7"'7(p1]’>/:|T and (pﬁ

B(ny1)x(n+1) are the matrices of the following form,

where u, = [u’,u

000 ...
011...
__ 1
212
000 ...
1000 ...

(L4 h A+ Dul T+ (= )b+ (

— 2k ) (= 2uf - uf )

i+ (=

2,

=r((x), 0<n<M,

)

165
! =y ) S )
= fi
“4)
+54+13)
h2
ik
&)
(6)

= f(t;ﬁxn) + Tga7fbkr2(xn). Here A(N+1)><(N+1) and
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1 0 0 0 ]
a_b()ga’f b"_ga,fr C O
—blga,r a“‘ga,r(bl _bO) b+ga,r 0
B = ,
—bi18a,r (bx—2—bi3)8at (bx—3 —br—4)8a,1 --- c
L _bkga,r (bk _bkfl)g(x,r (bkfl _bk72)ga,r b‘f‘boga,r_
Wherea:%,b:—%—&—h]—z—i—%andc: %—l—h]—z—l—%.

Then we have

”n:an+1”n+l+ﬁn+1a I<k<M. (7)
Next we should determine the matrices o, and 8, above. Using the Dirichlet boundary conditition
u(0,¢) =u(0,L)=0,0<r<T,

we obtain up = aju; + f3;. From that, we can choose o = Ow+1)x(n+1) and B, = Op.1)- Substitute u, =
Opiins1 + B,y and u,—1 = Quu, + B, into the equation (7), then

(A+ By +A0 011 )it + (BB, +AB, | +ABN) = @

Thus, we get

A+Bot, 1 +Aa,0, 1 =0,
Bﬁn-}-l +Aanﬁn+l +AB” = (pn'

Thus, we obtain the following equalities

Ot = —(B+Aa,) A,
ﬁn+l = (B+Aan)7l((pn_ABn)’

where 1 <n <M.

For the stability, implementing the technique of analyzing the eigenvalues of the iteration matrices of the
schemes.

Let p(A) be the spectral radius of a matrix A, which indicates the maximum of the absolute value of the
eigenvalues of the matrix A. We can write the following results.

Theorem 1. The difference scheme (5) is stable.

Proof. From the method [15], we should prove that p(o,) < 1,1 <n <M.
p(a;) =0 < 1is clearly.

plaz) = [|-B"Al| < |[|-B~"|[ 1]l = 4l
1g{pgiz{}71 \akk\* Z Iakml}

= ‘ MM 21#‘ _ iz g
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If p(oy) < 1, let us calculate p(0,41).

0 0 0..00 0
1
— hfl—(x ] 1...00 0
—ztetitema 2%,
A=—

0 0 0..00 0

1

0 0 0..00 2

2411y Tl=®
2ttt 22 %avri v

We know that a,; = p(a,) and 0 < p(a,) < 1 for 2 <i < N+ 1. Then, we can obtain that p(ct,+1) < 1. As a
result, we obtain the desired result with induction. O]

Remark 2. Using Matlab programming for N =M =10, a =1.5,0<t<1,0<x<mand h= %, tau = %
we obtain the following spectral radius of a matrix as:

p(o1) =0, p(az) =0.0482, p(ax3) =0.0484, p(0a4) = 0.0485, p(as) = 0.0482, p (o) =0.0487, p(a7) =
0.0487, p(og) = 0.0475, p(ag) = 0.0487 and p(a109) = 0.0486.

These final results prove the stability estimation of the Theorem 1.

Remark 3. Applying the method in [16, 17], we can get the convergence of the method from stability and
consistency of the proposed method.

Now, we give numerical applications for the fractional telegraph partial differential equation by Crank-
Nicholson method.

2 Numerical implementation

Example . We take into consideration the following fractional telegraph partial differential equation:

321.[ , 311—1 . 32 , . 4—a 3
M) 4 O P (g, x) = sinx(6 + 6 sy + 27 + 1)),

O<x<mO<t<l, l<a<?2,
®)
u(0,x) =sinx, u,(0,x) =0, 0<r <1,

u(t,0)=u(t,m)=0,0<x<m.

The exact solution is given as u(t,x) = (£ + 1) sinx. We implement difference schemes method to solve the
problem. We utilize a procedure of modified Gauss elimination method for difference equation (8). We obtain
the maximum norm of the error of the numerical solution by:

€= max lu(t,x) — u(ty,xn)|,
n=0,1,...M
k=0,1,2...,N

where uf = u(t,x,) is the approximate solution. The error analysis in Table 1 gives our error analysis for

difference schemes method.
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Table 1. Error Analysis

T=1,h="5

The difference scheme (8) In method [13]
o

N=M=40 1.5 | 0.0040 0.0242

N=M=280 1.5 54707 x 10~* | 0.0118

N=M=160 1.5 | 0.0022 0.0058

1.1 ] 7.0178 x 10~*
N=100,M =10 | 1.5 | 0.0045
1.9 | 0.0093
1.1 | 3.4496 x 10~*
N=225M=15 [ 1.5 | 0.0040
1.9 [ 0.0083
1.1]2.0762x10~*
N =400,M =20 | 1.5 | 0.0034
1.9 [ 0.0079

We have compared Crank-Nicholson finite difference scheme method by the theta method [13] for the vari-
able values N = M = 40,80, 160. From these comparisons, we see that this method is more effective then the
method used in [13].

3 Conclusion

In this work, stability estimates were presented for fractional telegraph differential equations. Stability
inequalities were given for the difference schemes method. We applied the difference schemes-method for
investigating fractional telegraph partial differential equations. Approximate solutions were obtained by this
method. MATLAB software program was utilized for all results.
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