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Abstract
In the current paper, we carry out an investigation into the exact solutions of the (3+1)-dimensional space-time fractional
modified KdV–Zakharov–Kuznetsov (fractional mKdV–ZK) equation. Based on the conformable fractional derivative and
its properties, the fractional mKdV–ZK equation is reduced into an ordinary differential equation which has been solved
analytically by the variable separated ODE method. Various types of analytic solutions in terms of hyperbolic functions,
trigonometric functions and Jacobi elliptic functions are derived. All conditions for the validity of all obtained solutions
are given.

Keywords: The (3+1)-dimensional space-time fractional mKdV–ZK; the variable separated ODE method; solitons and periodic wave
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1 Introduction

Fractional differential equations (FDEs) have become under remarkable consideration as being the gener-
alisation form of the differential equations of integer order and due to their roles in the modelling of several
physical processes. Many nonlinear phenomena in physics can be described via FDEs such as chemical physics,
optical fibers, plasma, electromagnetic waves, diffusion processes, vibrations in a nonlinear string and etc [1–5].
Seeking different types of solutions to FDEs for such phenomena has become the subject of interest for re-
searchers. Thus, a lot of powerful mathematical methods have been applied to obtain exact analytic solutions
of FDEs, namely, the extended tanh-function method [6, 7], the exp-function method [8, 9], the sub-equation
method [10, 11], the improved tan(φ/2)-expansion method [12, 13], the (G′/G)-expansion method [14, 15],
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the modified trial equation method [16, 17], the new extended direct algebraic method [18, 19], the extended
sinh-Gordon equation expansion method [20, 21], the unified method [22] and so on.

One of the important physical model is the (3+1)-dimensional space-time fractional modified KdV–
Zakharov–Kuznetsov (fractional mKdV–ZK) equation [23–25] of the form

Dα
t u+δu2Dα

x u+D3α
x u+Dα

x D2α
y u+Dα

x D2α
z u = 0, (1)

where 0 < α ≤ 1 and δ is an arbitrary constant. This model is developed for a plasma comprised of cool and hot
electrons and a species of fluid ions [26]. Recently, Sahoo and Ray [10] have applied the improved fractional
sub equation method with the aid of Jumarie’s modified Riemann–Liouville derivative for space-time fractional
mKdV–ZK equation and they derived exact solutions. Then, the fractional derivatives in the sense of modified
Riemann–Liouville derivative and three different solution methods have been employed by Guner et. al. [27]
to obtain a variety of exact solutions to equation (1). Moreover, using the ansatz method and the functional
variable method, Guner [28] examined exact analytic solutions for equation (1) and constructed singular soliton
solutions. In the two latter studies, the fractional complex transform method is used to reduce equation (1) into
ordinary differential equation (ODE). However, in a recent study, this transformation has been proved to be
incorrect by Herzallah [29]. Subsequently, all obtained solutions by means of this method are wrong.

The present study focuses on investigating the exact analytic solutions to space-time fractional mKdV–ZK
equation using the variable separated ODE method [30, 31]. The structure of this work is organised as follows.
In Section 2, we introduce the definition of conformable fractional derivative [32] and its properties which will
be utilised to reduce FDE into an ODE. Section 3 contains the description of variable separated ODE method and
the technique of implementing it to ODEs. In Section 4, the proposed method will be applied to construct the
solitons and periodic wave solutions of space-time fractional mKdV–ZK equation. Then, the behaviour of some
obtained solutions is displayed graphically. Finally, our discussions and conclusions are presented in Section 5.

2 Conformable fractional derivative

Khalil, et. al. [32] introduced a completely new definition of fractional calculus with the limit operator which
is more natural and effective on satisfying some conventional properties than the existing fractional derivatives.
The definition of conformable fractional derivative is given as follows:

Definition 1. Let f : (0,∞)−→ R, then the conformable fractional derivative of f of order α is defined as

Dα
t f (t) = lim

ε→0

f (t + εt1−α)− f (t)
ε

(2)

for all t > 0, α ∈ (0,1).

It is said that if the conformable fractional derivative of f of order α exists, then f is α-differentiable. The
conformable fractional derivative satisfies the properties shown in the following theorems:

Theorem 1. Let α ∈ (0,1] and f = f (t),g = g(t) be α-differentiable at a point t > 0, then:

1. Dα
t (a f +bg) = aDα

t f +bDα
t g, for all a,b ∈ R.

2. Dα
t (t

µ) = µ tµ−α , for all µ ∈ R.

3. Dα
t ( f g) = f Dα

t g+gDα
t f .

4. Dα
t

(
f
g

)
= gDα

t f− f Dα
t g

g2 .
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Moreover, if f is differentiable, then Dα
t ( f (t)) = t1−α d f

dt .

Theorem 2. Let f : (0,∞) −→ R be a function such that f is differentiable and also α-differentiable. Let g be
a function defined in the range of f and also differentiable; then, one has the following rule:

Dα
t ( f g)(t) = t1−αg′(t) f ′(g(t)), (3)

where prime denotes the classical derivatives with respect to t.

Remark 1. We may use the notation ∂ α

∂ tα f for Dα
t ( f (t)) to denote the conformable fractional derivatives of f

with respect to the variable t of order α .

3 The variable separated ODE method

In this section we shall describe the technique of implementing the proposed method to FDEs in order to
extract exact analytic solutions. Suppose that a nonlinear conformable fractional partial differential equation,
say, in four independent variables x,y,z and t is given by

P(u,
∂ αu
∂ tα

,
∂ αu
∂xα

,
∂ αu
∂yα

,
∂ αu
∂ zα

,
∂ 2αu
∂ t2α

,
∂ 2αu
∂x2α

,
∂ 2αu
∂y2α

,
∂ 2αu
∂ z2α

, . . .) = 0, (4)

where u(x,y,z, t) is an unknown function, P is a polynomial in u and its partial derivatives, in which the highest
order derivatives and nonlinear terms are involved. This method consists of the following steps:

Step 1. Using the wave transformation

u(x,y,z, t) = φ(ξ ), ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
+ν

tα

α
, (5)

where k1,k2,k3 and ν are constants to be determined later, one can find

∂ αu
∂ tα

= ν
dφ

dξ
,

∂ αu
∂xα

= k1
dφ

dξ
,

∂ αu
∂yα

= k2
dφ

dξ
,

∂ αu
∂ zα

= k3
dφ

dξ
,

∂ 2αu
∂ t2α

= ν
2 d2φ

dξ 2 , . . . (6)

Employing (5) and (6), equation (4) is reduced into the following ODE

P(φ ,ν
dφ

dξ
,k1

dφ

dξ
,k2

dφ

dξ
,k3

dφ

dξ
,ν2 d2φ

dξ 2 ,k
2
1

d2φ

dξ 2 ,k
2
2

d2φ

dξ 2 ,k
2
3

d2φ

dξ 2 , . . .) = 0. (7)

Step 2. Assuming that equation (7) has the solution of the form

φ(ξ ) =
N

∑
j=−N

a j(d +F(ξ )) j, (8)

where a−N or aN might be zero, but both of them could not be zero simultaneously. The coefficients a j ( j =
0,±1,±2, . . . ,±N) and d are constants to be determined, whereas F(ξ ) satisfies the general elliptic equation of
the form

F ′2(ξ ) = c0 + c1F(ξ )+ c2F2(ξ )+ c3F3(ξ )+ c4F4(ξ ), (9)

where ci (i = 0,1,2,3,4) are constants. Recently, Sirendaoreji [31] presented five classifications of solutions
for equation (9) in accordance with the presence of coefficients ci (i = 0,1,2,3,4) and they are given as: (1)
c0 = c1 = 0, (2) c3 = c4 = 0, (3) c1 = c3 = 0, (4) c2 = c4 = 0, and (5) c0 = 0. Herein, we only concentrate on
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two cases which are Case I c0 = c1 = 0 and Case II c1 = c3 = 0, for convenience. Solution structures of both
cases are exhibited as follows.

Case I. c0 = c1 = 0:

F1(ξ ) =
2c2

ε
√

∆cosh(
√

c2ξ )− c3
, ∆ > 0, c2 > 0, (10)

F2(ξ ) =
2c2

ε
√
−∆sinh(

√
c2ξ )− c3

, ∆ < 0, c2 > 0, (11)

F3(ξ ) =
2c2

ε
√

∆cos(
√
−c2ξ )− c3

, ∆ > 0, c2 < 0, (12)

F4(ξ ) =
2c2

ε
√

∆sin(
√
−c2ξ )− c3

, ∆ > 0, c2 < 0, (13)

F5(ξ ) =−
c2

c3

[
1+ ε tanh

(√
c2

2
ξ

)]
, ∆ = 0, c2 > 0, (14)

F6(ξ ) =−
c2

c3

[
1+ ε coth

(√
c2

2
ξ

)]
, ∆ = 0, c2 > 0, (15)

F7(ξ ) =
ε
√

c4ξ
, c2 = c3 = 0, c4 > 0, (16)

F8(ξ ) =
4c3

c2
3ξ 2−4c4

, c2 = 0, (17)

where ∆ = c2
3−4c2c4, ε =±1.

Case II. c1 = c3 = 0:

F9(ξ ) = ε

√
− c2

2c4
tanh

(√
−c2

2
ξ

)
, ∆1 = 0, c2 < 0, c4 > 0, (18)

F10(ξ ) = ε

√
− c2

2c4
coth

(√
−c2

2
ξ

)
, ∆1 = 0, c2 < 0, c4 > 0, (19)

F11(ξ ) = ε

√
c2

2c4
tan
(√

c2

2
ξ

)
, ∆1 = 0, c2 > 0, c4 > 0, (20)

F12(ξ ) = ε

√
c2

2c4
cot
(√

c2

2
ξ

)
, ∆1 = 0, c2 > 0, c4 > 0, (21)

F13(ξ ) =

√
−c2m2

c4(m2 +1)
sn
(√

−c2

m2 +1
ξ

)
, c0 =

c2
2m2

c4(m2 +1)2 , c2 < 0, c4 > 0, (22)
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F14(ξ ) =

√
−c2m2

c4(2m2−1)
cn
(√

c2

2m2−1
ξ

)
, c0 =

c2
2m2(m2−1)

c4(2m2−1)2 , c2 > 0, c4 < 0, (23)

F15(ξ ) =

√
−c2

c4(2−m2)
dn
(√

c2

2−m2 ξ

)
, c0 =

c2
2(1−m2)

c4(2−m2)2 , c2 > 0, c4 < 0, (24)

F16(ξ ) =
m2

2

√
−2c2

c4(2−m2)

sn
(√

−2c2
2−m2 ξ

)
1±dn

(√
−2c2
2−m2 ξ

) , c0 =
c2

2m4

4c4(2−m2)2 , c2 < 0, c4 > 0, (25)

F17(ξ ) =
1
2

√
2c2

c4(1−2m2)

sn
(√

2c2
1−2m2 ξ

)
1± cn

(√
2c2

1−2m2 ξ

) , c0 =
c2

2
4c4(1−2m2)2 , c2 > 0, c4 > 0, (26)

F18(ξ ) = ε

(
−4c0

c4

) 1
4

ds

(
(−4c0c4)

1
4 ξ ,

√
2

2

)
, c2 = 0, c0c4 < 0, (27)

F19(ξ ) = ε

(
c0

c4

) 1
4
[

ns

(
2(c0c4)

1
4 ξ ,

√
2

2

)
+ cs

(
2(c0c4)

1
4 ξ ,

√
2

2

)]
, c2 = 0, c0c4 > 0, (28)

where ∆1 = c2
2− 4c0c4, ε = ±1. Here, sn(ξ ) = sn(ξ ,m),cn(ξ ) = cn(ξ ,m),dn(ξ ) = dn(ξ ,m) are called the

Jacobian elliptic sine function, the Jacobian elliptic cosine function and the Jacobian elliptic function of the third
kind and 0 < m < 1 is the modulus of Jacobian elliptic function. The other Jacobian functions are generated by
these three kinds of functions as follows:

ns(ξ ) = 1/sn(ξ ), nc(ξ ) = 1/cn(ξ ), nd(ξ ) = 1/dn(ξ ),

sc(ξ ) = sn(ξ )/cn(ξ ), sd(ξ ) = sn(ξ )/dn(ξ ), cd(ξ ) = cn(ξ )/dn(ξ ),

cs(ξ ) = cn(ξ )/sn(ξ ), ds(ξ ) = dn(ξ )/sn(ξ ), dc(ξ ) = dn(ξ )/cn(ξ ). (29)

Step 3. The value of the positive integer N can be determined by balancing the highest order linear terms
with the nonlinear terms of the highest order emerging in equation (7).

Step 4. Substituting (8) and (9) into equation (7), we collect all terms with the same power of (d +F(ξ )).
Equating each coefficient of the resulting polynomial to zero, yields a set of algebraic equations for a j ( j =
0,±1,±2, . . . ,±N), ci (i = 0,1,2,3,4), kl (l = 1,2,3), d and ν .

Step 5. Substituting the values of the constants obtained by solving the algebraic equations extracted in Step
4 together with the solutions of equation (9) into (8), we arrive at different types of solutions for equation (4).

4 Application of the method to the (3 + 1)-dimensional space–time fractional mKdV–ZK equation

Now, we aim to solve the fractional mKdV–ZK equation (1) by applying the variable separated ODE method
described above. Thus, to deal with the complex form of equation (1) we will reduce it to an ODE using the
transformation (5). The substitution of the transformation (5) into equation (1) leads to

νφ
′+δk1φ

2
φ
′+ k1(k2

1 + k2
2 + k2

3)φ
′′′ = 0, (30)

where prime denotes the derivative with respect to ξ . Integrating equation (30) once with respect to ξ , we obtain

νφ +Aφ
3 +Bφ

′′ = 0, (31)

where A = δk1/3, B = k1(k2
1 + k2

2 + k2
3) and the integration constant is taken to be zero. Now, we assume that

equation (31) has a solution in the form of equation (8). The homogeneous balance between the term φ ′′ and the
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term φ 3 in equation (31) gives rise to N = 1. Hence, the solution to equation (31) is given in the form

φ(ξ ) =
a−1

(d +F(ξ ))
+a0 +a1(d +F(ξ )), (32)

where a−1, a0, a1 are unknown constants to be computed. Substituting equation (32) into equation (31) and
using equation (9), we obtain polynomials in (d +F(ξ )) j and (d +F(ξ ))− j, ( j = 0,1,2,3). Collecting all
coefficients of identical power of the resulting polynomials and equating each coefficient to zero, yield the
following set of algebraic equations

B(2a−1c4d4−2a−1c3d3 +2a−1c2d2−2a−1c1d +2a−1c0)+Aa3
−1 = 0, (33)

B(−6a−1c4d3 +
9
2

a−1c3d2−3a−1c2d +
3
2

a−1c1)+3Aa2
−1a0 = 0, (34)

B(6a−1c4d2−3a−1c3d +a−1c2)+A(3a2
−1a1 +3a−1a2

0)+νa−1 = 0, (35)

B(−2a−1c4d +
1
2

a−1c3−a1c2d +
3
2

a1c3d2−2a1c4d3 +
1
2

a1c1)+A(6a−1a0a1 +a3
0)+νa0 = 0, (36)

B(−3a1c3d +6a1c4d2 +a1c2)+A(3a−1a2
1 +3a2

0a1)+νa1 = 0, (37)

B(−6a1c4d +
3
2

a1c3)+3Aa0a2
1 = 0, (38)

2Ba1c4 +Aa3
1 = 0. (39)

Solving equations (33)–(39) gives the following cases of solutions.

Case I. In this case, c0 = c1 = 0. This case has seven different sets of coefficients for the solution of equation
(32) displayed as follows.

Set I. a0 =−d
√
−2c4B

A , a1 =
√
−2c4B

A , a−1 = 0, ν =−c2B, c3 = 0

u(x,y,z, t) = ε

√
6c2(k2

1 + k2
2 + k2

3)

δ
sech(

√
c2ξ ) , (40)

where c2 > 0 and δ > 0.

u(x,y,z, t) = ε

√
−

6c2(k2
1 + k2

2 + k2
3)

δ
csch(

√
c2ξ ) , (41)

where c2 > 0 and δ < 0.

u(x,y,z, t) = ε

√
6c2(k2

1 + k2
2 + k2

3)

δ
sec
(√
−c2ξ

)
, (42)

u(x,y,z, t) = ε

√
6c2(k2

1 + k2
2 + k2

3)

δ
csc
(√
−c2ξ

)
, (43)

where c2 < 0 and δ < 0. In solutions (40)–(43), ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
− c2k1(k2

1 + k2
2 + k2

3)
tα

α
.

Set II. a0 =
(c3−4c4d)

4c4

√
−2c4B

A , a1 =
√
−2c4B

A ,a−1 = 0, ν = c2B
2 , c4 =

c2
3

4c2

u(x,y,z, t) =
1
2

ε

√
−

6c2(k2
1 + k2

2 + k2
3)

δ
tanh

(
1
2
√

c2ξ

)
, (44)

u(x,y,z, t) =
1
2

ε

√
−

6c2(k2
1 + k2

2 + k2
3)

δ
coth

(
1
2
√

c2ξ

)
, (45)
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where c2 > 0, δ < 0 and ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
+ c2k1

2 (k2
1 + k2

2 + k2
3)

tα

α
.

Set III. a0 =− (c3−4c4d)
4c4

√
−2c4B

A , a1 = 0, a−1 = d (c3−2c4d)
2c4

√
−2c4B

A , ν = c2B
2 , c4 =

c2
3

4c2

u(x,y,z, t) =
1
2

ε

√
−

6c2(k2
1 + k2

2 + k2
3)

δ

c2 +(c2− c3d) tanh
(1

2
√

c2ξ
)

(c2− c3d)+ c2 tanh
(1

2
√

c2ξ
) , (46)

u(x,y,z, t) =
1
2

ε

√
−

6c2(k2
1 + k2

2 + k2
3)

δ

c2 +(c2− c3d)coth
(1

2
√

c2ξ
)

(c2− c3d)+ c2 coth
(1

2
√

c2ξ
) , (47)

where c2 > 0, δ < 0 and ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
+ c2k1

2 (k2
1 + k2

2 + k2
3)

tα

α
.

Set IV. a0 =−
√

2B
A (c2− c4d2), a1 = 0, a−1 = d

√
2B
A (c2− c4d2), ν =−c2B, c3 =

2c2
d

This gives us the solutions (40)–(43).

Set V. a0 = 0, a1 =
√
−2c4B

A , a−1 = d2
√
−2c4B

A , ν = 2c2B, c3 =
c2
d , c4 =

c2
4d2

u(x,y,z, t) =
1
2

ε

√
−

6c2(k2
1 + k2

2 + k2
3)

δ

1+ tanh2 (1
2
√

c2ξ
)

tanh
(1

2
√

c2ξ
) , (48)

u(x,y,z, t) =
1
2

ε

√
−

6c2(k2
1 + k2

2 + k2
3)

δ

1+ coth2 (1
2
√

c2ξ
)

coth
(1

2
√

c2ξ
) , (49)

where c2 > 0, δ < 0 and ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
+2c2k1(k2

1 + k2
2 + k2

3)
tα

α
.

Set VI. a0 = 0, a1 =−
√
−2c4B

A , a−1 = d2
√
−2c4B

A , ν =−c2B, c3 =
c2
d , c4 =

c2
4d2

u(x,y,z, t) =
1
2

ε

√
−

6c2(k2
1 + k2

2 + k2
3)

δ

sech2 (1
2
√

c2ξ
)

tanh
(1

2
√

c2ξ
) , (50)

u(x,y,z, t) =
1
2

ε

√
−

6c2(k2
1 + k2

2 + k2
3)

δ

csch2 (1
2
√

c2ξ
)

coth
(1

2
√

c2ξ
) , (51)

where c2 > 0, δ < 0 and ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
− c2k1(k2

1 + k2
2 + k2

3)
tα

α
.

Set VII. a0 =−2d
√
−2c4B

A , a1 =
√
−2c4B

A , a−1 = d2
√
−2c4B

A , ν =−4c2B, c3 =
c2
d , c4 =− c2

4d2

u(x,y,z, t) = 2ε

√
6c2(k2

1 + k2
2 + k2

3)

δ

1
2cosh2 (√c2ξ

)
−1

, (52)

where c2 > 0 and δ > 0.

u(x,y,z, t) = 2ε

√
6c2(k2

1 + k2
2 + k2

3)

δ

1
2cos2 (

√
−c2ξ )−1

, (53)

where c2 < 0 and δ < 0. In solutions (52) and (53), ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
−4c2k1(k2

1 + k2
2 + k2

3)
tα

α
.
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Case II. In the second case, c1 = c3 = 0. This case has five different sets of coefficients for the solution of
equation (32) shown as follows.

Set I. a0 =−d
√
−2c4B

A , a1 =
√
−2c4B

A , a−1 = 0, ν =−c2B

u(x,y,z, t) = εm

√
6c2(k2

1 + k2
2 + k2

3)

δ (m2 +1)
sn
(√
− c2

m2 +1
ξ

)
, (54)

where c0 =
c2

2m2

c4(m2+1)2 , c2 < 0 and δ < 0. As m→ 1, solution (54) reduces to

u(x,y,z, t) = ε

√
3c2(k2

1 + k2
2 + k2

3)

δ
tanh

(√
−c2

2
ξ

)
. (55)

u(x,y,z, t) = εm

√
6c2(k2

1 + k2
2 + k2

3)

δ (2m2−1)
cn
(√

c2

2m2−1
ξ

)
, (56)

where c0 =
c2

2m2(m2−1)
c4(2m2−1)2 , c2 > 0 and δ > 0. As m→ 1, solution (56) reduces to solution (40).

u(x,y,z, t) = ε

√
6c2(k2

1 + k2
2 + k2

3)

δ (2−m2)
dn
(√

c2

2−m2 ξ

)
, (57)

where c0 =
c2

2(1−m2)

c4(2−m2)2 , c2 > 0 and δ > 0. As m→ 1, solution (57) reduces to solution (40).

u(x,y,z, t) = εm2

√
3c2(k2

1 + k2
2 + k2

3)

δ (2−m2)

sn
(√
− 2c2

2−m2 ξ

)
1+ ε dn

(√
− 2c2

2−m2 ξ

) , (58)

where c0 =
c2

2m4

4c4(2−m2)2 , c2 < 0 and δ < 0. As m→ 1, solution (58) becomes

u(x,y,z, t) = ε

√
3c2(k2

1 + k2
2 + k2

3)

δ

tanh
(√
−2c2ξ

)
1+ ε sech

(√
−2c2ξ

) . (59)

u(x,y,z, t) = ε

√
−

3c2(k2
1 + k2

2 + k2
3)

δ (1−2m2)

sn
(√

2c2
1−2m2 ξ

)
1+ ε cn

(√
2c2

1−2m2 ξ

) , (60)

where c0 =
c2

2
4c4(1−2m2)2 , c2 > 0 and δ < 0. As m→ 0, solution (60) degenerates to

u(x,y,z, t) = ε

√
−

3c2(k2
1 + k2

2 + k2
3)

δ

sin
(√

2c2ξ
)

1+ ε cos
(√

2c2ξ
) , (61)

and as m→ 1, solution (60) reduces to solution (59). In solutions (54)–(61), ξ = k1
xα

α
+k2

yα

α
+k3

zα

α
−c2k1(k2

1 +

k2
2 + k2

3)
tα

α
.

Set II. a0 = 0, a1 = 0, a−1 =
√
−2c0B

A , ν =−c2B, d = 0

u(x,y,z, t) = ε

√
6c2(k2

1 + k2
2 + k2

3)

δ (m2 +1)
ns
(√
− c2

m2 +1
ξ

)
, (62)

https://www.sciendo.com


Solitons and other solutions of (3 + 1)-dimensional fractional mKdV–ZK equation 297

where c0 =
c2

2m2

c4(m2+1)2 , c2 < 0 and δ < 0. As m→ 0, solution (62) degenerates to solution (43) while as m→ 1,
solution (62) reduces to

u(x,y,z, t) = ε

√
3c2(k2

1 + k2
2 + k2

3)

δ
coth

(√
−c2

2
ξ

)
. (63)

u(x,y,z, t) = ε

√
6c2(m2−1)(k2

1 + k2
2 + k2

3)

δ (2m2−1)
nc
(√

c2

2m2−1
ξ

)
, (64)

where c0 =
c2

2m2(m2−1)
c4(2m2−1)2 , c2 > 0 and δ > 0. As m→ 0, solution (64) degenerates to solution (42).

u(x,y,z, t) = ε

√
6c2(1−m2)(k2

1 + k2
2 + k2

3)

δ (2−m2)
nd
(√

c2

2−m2 ξ

)
, (65)

where c0 =
c2

2(1−m2)

c4(2−m2)2 , c2 > 0 and δ > 0.

u(x,y,z, t) = ε

√
3c2(k2

1 + k2
2 + k2

3)

δ (2−m2)

1+ ε dn
(√
− 2c2

2−m2 ξ

)
sn
(√
− 2c2

2−m2 ξ

) , (66)

where c0 =
c2

2m4

4c4(2−m2)2 , c2 < 0 and δ < 0. As m→ 0, solution (66) gives rise to solution (43) and as m→ 1,
solution (66) changes to

u(x,y,z, t) = ε

√
3c2(k2

1 + k2
2 + k2

3)

δ

1+ ε sech
(√
−2c2ξ

)
tanh

(√
−2c2ξ

) . (67)

u(x,y,z, t) = ε

√
−

3c2(k2
1 + k2

2 + k2
3)

δ (1−2m2)

1+ ε cn
(√

2c2
1−2m2 ξ

)
sn
(√

2c2
1−2m2 ξ

) , (68)

where c0 =
c2

2
4c4(1−2m2)2 , c2 > 0 and δ < 0. As m→ 0, solution (68) transforms to

u(x,y,z, t) = ε

√
−

3c2(k2
1 + k2

2 + k2
3)

δ

1+ ε cos
(√

2c2ξ
)

sin
(√

2c2ξ
) , (69)

and as m→ 1, solution (68) degenerates to solution (67). In solutions (62)–(69), ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
−

c2k1(k2
1 + k2

2 + k2
3)

tα

α
.

Set III. a0 =−d
√
−2c4B

A , a1 = 0, a−1 =
(c2+2c4d2)

2c4

√
−2c4B

A , ν =−c2B, c0 =
c2

2
4c4

u(x,y,z, t) = ε

√
6c2(k2

1 + k2
2 + k2

3)

δ

√
−c2c4 +

√
2c4d tanh

(√
− c2

2 ξ
)

2c4d +
√
−2c2c4 tanh

(√
− c2

2 ξ
) , (70)

u(x,y,z, t) = ε

√
6c2(k2

1 + k2
2 + k2

3)

δ

√
−c2c4 +

√
2c4d coth

(√
− c2

2 ξ
)

2c4d +
√
−2c2c4 coth

(√
− c2

2 ξ
) , (71)
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where c2 < 0, c4 > 0 and δ < 0. Note that when d = 0 solution (70) converts to solution (63) whereas solution
(71) turns to solution (55).

u(x,y,z, t) = ε

√
−

6c2(k2
1 + k2

2 + k2
3)

δ

√
2c4d tan

(√ c2
2 ξ
)
−√c2c4√

2c2c4 tan
(√ c2

2 ξ
)
+2c4d

, (72)

u(x,y,z, t) = ε

√
−

6c2(k2
1 + k2

2 + k2
3)

δ

√
2c4d cot

(√ c2
2 ξ
)
−√c2c4√

2c2c4 cot
(√ c2

2 ξ
)
+2c4d

, (73)

where c2 > 0, c4 > 0 and δ < 0. In solutions (70)–(73), ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
− c2k1(k2

1 + k2
2 + k2

3)
tα

α
.

Set IV. a0 =−1
2

√
−2B

A (c2 +2c4d2), a1 = 0, a−1 = d
√
−2B

A (c2 +2c4d2), ν = B
2 (c2−6c4d2), c0 = c4d4

u(x,y,z, t) = ε
m+1

2

√
−

6c2(k2
1 + k2

2 + k2
3)

δ (m2 +1)

1−
√
−msn

(√
− c2

m2+1 ξ

)
1+
√
−msn

(√
− c2

m2+1 ξ

) , (74)

where c0 =
c2

2m2

c4(m2+1)2 , c2 < 0, δ > 0 and ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
+ (m−1)2−4m

2(m2+1) c2k1(k2
1 + k2

2 + k2
3)

tα

α
. As m→ 1,

solution (74) becomes

u(x,y,z, t) = ε

√
−

3c2(k2
1 + k2

2 + k2
3)

δ

1− i tanh
(√
− c2

2 ξ
)

1+ i tanh
(√
− c2

2 ξ
) . (75)

where ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
− c2k1(k2

1 + k2
2 + k2

3)
tα

α
. Using the relation tanh(θ) = −i tan(iθ) solution (75)

converts to

u(x,y,z, t) = ε

√
−

3c2(k2
1 + k2

2 + k2
3)

δ

1+ tan
(√ c2

2 ξ
)

1− tan
(√ c2

2 ξ
) , (76)

where c2 > 0 and δ < 0.

u(x,y,z, t) = ε

√
m2−1+m

2

√
−

6c2(k2
1 + k2

2 + k2
3)

δ (2m2−1)

1−
√
− m√

m2−1
cn
(√

c2
2m2−1 ξ

)
1+
√
− m√

m2−1
cn
(√

c2
2m2−1 ξ

) , (77)

where c0 =
c2

2m2(m2−1)
c4(2m2−1)2 , c2 > 0, δ < 0 and ξ = k1

xα

α
+ k2

yα

α
+ k3

zα

α
+ 2m2−1−6m

√
m2−1

2(2m2−1) c2k1(k2
1 + k2

2 + k2
3)

tα

α
.

u(x,y,z, t) = ε

√
1−m2 +1

2

√
−

6c2(k2
1 + k2

2 + k2
3)

δ (2−m2)

1−
√
− 1√

1−m2 dn
(√

c2
2−m2 ξ

)
1+
√
− 1√

1−m2 dn
(√

c2
2−m2 ξ

) , (78)

where c0 =
c2

2(1−m2)

c4(2−m2)2 , c2 > 0, δ < 0 and ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
+ 2−m2−6

√
1−m2

2(2−m2)
c2k1(k2

1 + k2
2 + k2

3)
tα

α
.

u(x,y,z, t) = ε

√
−

3c2(1−m2)(k2
1 + k2

2 + k2
3)

δ (1−2m2)

1+ ε cn
(√

2c2
1−2m2 ξ

)
− sn

(√
2c2

1−2m2 ξ

)
1+ ε cn

(√
2c2

1−2m2 ξ

)
+ sn

(√
2c2

1−2m2 ξ

) , (79)
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where c0 =
c2

2
4c4(1−2m2)2 , c2 > 0, δ < 0 and ξ = k1

xα

α
+ k2

yα

α
+ k3

zα

α
− (1+m2)c2k1(k2

1 + k2
2 + k2

3)
tα

α
. As m→ 0,

solution (68) transforms to

u(x,y,z, t) = ε

√
−

3c2(k2
1 + k2

2 + k2
3)

δ

1+ ε cos
(√

2c2ξ
)
− sin

(√
2c2ξ

)
1+ ε cos

(√
2c2ξ

)
+ sin

(√
2c2ξ

) , (80)

where ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
− c2k1(k2

1 + k2
2 + k2

3)
tα

α
.

u(x,y,z, t) = εd

√
−

3c4(k2
1 + k2

2 + k2
3)

δ

1−
√
−2ds

(
d
√
−2c4ξ ,

√
2

2

)
1+
√
−2ds

(
d
√
−2c4ξ ,

√
2

2

) , (81)

where c2 = 0, c4 < 0 and δ > 0.

u(x,y,z, t) = εd

√
−

3c4(k2
1 + k2

2 + k2
3)

δ

1−ns
(

2d
√

c4ξ ,
√

2
2

)
− cs

(
2d
√

c4ξ ,
√

2
2

)
1+ns

(
2d
√

c4ξ ,
√

2
2

)
+ cs

(
2d
√

c4ξ ,
√

2
2

) , (82)

where c2 = 0, c4 > 0 and δ < 0. In solutions (81) and (82), ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
−3c4d2k1(k2

1 + k2
2 + k2

3)
tα

α
.

Set V. a0 = 0, a1 =
√
−2c4B

A , a−1 =
√
−2c0B

A , ν = B(6
√

c0c4− c2), d = 0

u(x,y,z, t) = ε

√
6c2(k2

1 + k2
2 + k2

3)

δ (m2 +1)

1−msn2
(√
− c2

m2+1 ξ

)
sn
(√
− c2

m2+1 ξ

) , (83)

where c0 =
c2

2m2

c4(m2+1)2 , c2 < 0, δ < 0 and ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
+ 6m−m2−1

m2+1 c2k1(k2
1 + k2

2 + k2
3)

tα

α
. As m→ 0,

solution (83) converts to solution (43) while as m→ 1, solution (83) degenerates to

u(x,y,z, t) = ε

√
3c2(k2

1 + k2
2 + k2

3)

δ

sech2 (√− c2
2 ξ
)

tanh
(√
− c2

2 ξ
) , (84)

where ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
+2c2k1(k2

1 + k2
2 + k2

3)
tα

α
.

u(x,y,z, t) = ε

√
6c2(k2

1 + k2
2 + k2

3)

δ (2m2−1)

√
m2−1−mcn2

(√
c2

2m2−1 ξ

)
cn
(√

c2
2m2−1 ξ

) , (85)

where c0 =
c2

2m2(m2−1)
c4(2m2−1)2 , c2 > 0, δ > 0 and ξ = k1

xα

α
+ k2

yα

α
+ k3

zα

α
+ 6m

√
m2−1−2m2+1

2m2−1 c2k1(k2
1 + k2

2 + k2
3)

tα

α
. As

m→ 0, solution (85) converts to solution (42) while as m→ 1, solution (85) degenerates to solution (40).

u(x,y,z, t) = ε

√
6c2(k2

1 + k2
2 + k2

3)

δ (2−m2)

√
1−m2−dn2

(√
c2

2−m2 ξ

)
dn
(√

c2
2−m2 ξ

) , (86)

where c0 =
c2

2(1−m2)

c4(2−m2)2 , c2 > 0, δ > 0 and ξ = k1
xα

α
+k2

yα

α
+k3

zα

α
+ 6
√

1−m2+m2−2
2−m2 c2k1(k2

1 +k2
2 +k2

3)
tα

α
. As m→ 1,

solution (86) reduces to solution (40).
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u(x,y,z, t) = 2ε

√
−

3c2(k2
1 + k2

2 + k2
3)

δ (1−2m2)
ns

(√
2c2

1−2m2 ξ

)
, (87)

where c0 =
c2

2
4c4(1−2m2)2 , c2 > 0, δ < 0 and ξ = k1

xα

α
+ k2

yα

α
+ k3

zα

α
+ 2(1+m2)

1−2m2 c2k1(k2
1 + k2

2 + k2
3)

tα

α
. As m→ 0,

solution (87) reduces to

u(x,y,z, t) = 2ε

√
−

3c2(k2
1 + k2

2 + k2
3)

δ
csc
(√

2c2ξ

)
, (88)

where ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
+2c2k1(k2

1 + k2
2 + k2

3)
tα

α
. As m→ 1, solution (87) becomes

u(x,y,z, t) = 2ε

√
3c2(k2

1 + k2
2 + k2

3)

δ
coth

(√
−2c2ξ

)
, (89)

where c2 < 0, δ < 0 and ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
−4c2k1(k2

1 + k2
2 + k2

3)
tα

α
.

u(x,y,z, t) = 2ε

√
3c2(k2

1 + k2
2 + k2

3)

δ (2−m2)
ds

(√
− 2c2

2−m2 ξ

)
, (90)

where c0 =
c2

2m4

4c4(2−m2)2 , c2 < 0, δ > 0 and ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
+ 4m2−2

2−m2 c2k1(k2
1 + k2

2 + k2
3)

tα

α
. As m→ 0,

solution (90) turns to solution (43) while as m→ 1, solution (90) reduces to

u(x,y,z, t) = 2ε

√
3c2(k2

1 + k2
2 + k2

3)

δ
csch

(√
−2c2ξ

)
, (91)

where c2 < 0, δ < 0 and ξ = k1
xα

α
+ k2

yα

α
+ k3

zα

α
+2c2k1(k2

1 + k2
2 + k2

3)
tα

α
.

u(x,y,z, t) = ε(−c0c4)
1/4

√
3(k2

1 + k2
2 + k2

3)

δ

1+2ids2
(
(−4c0c4)

1/4ξ ,
√

2
2

)
dn
(
(−4c0c4)1/4ξ ,

√
2

2

) , (92)

where c2 = 0, c0c4 < 0 and δ > 0.

u(x,y,z, t) = ε(c0c4)
1/4

√
−

6(k2
1 + k2

2 + k2
3)

δ

1+
(

ns
(

2(c0c4)
1/4ξ ,

√
2

2

)
+ cs

(
2(c0c4)

1/4ξ ,
√

2
2

))2

ns
(

2(c0c4)1/4ξ ,
√

2
2

)
+ cs

(
2(c0c4)1/4ξ ,

√
2

2

) , (93)

where c2 = 0, c0c4 > 0 and δ < 0. In solutions (92) and (93), ξ = k1
xα

α
+k2

yα

α
+k3

zα

α
+6
√

c0c4k1(k2
1+k2

2+k2
3)

tα

α
.

In what follows, we depict the dynamics of solitons and periodic waves in the model of the (3+1)-
dimensional space-time fractional modified KdV–Zakharov–Kuznetsov equation to show a clear understanding
of the physical properties of obtained results. The numerical results of some of the derived solutions are exhib-
ited by selecting different values for the constants ε,δ ,α,c2 and kl (l = 1,2,3). For example, the 3D and 2D
plots of the bell-shaped solitary wave solution (40) are displayed in Figure 1 with ε = 1,k1 = 1,k2 = 1.2,k3 =
2.2,c2 = 1.5,δ = 2.5 when α = 0.95. Figure 2 shows the 3D and 2D plots of the kink-shaped solitary wave
solution (44) for ε =−1,k1 = 0.2,k2 = 1.5,k3 = 0.25,c2 = 0.5,δ =−1.2 when α = 0.9. In Figure 3, the 3D and
2D plots of the singular soliton solution (49) are depicted for ε = 1,k1 = 0.5,k2 = 1.5,k3 = 0.3,c2 = 1.3,δ =−1
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(a) 3D (b) 2D

Fig. 1 The solitary wave solution (40) for k1 = 1,k2 = 1.2,k3 = 2.2,c2 = 1.5,δ = 2.5,α = 0.95.

(a) 3D (b) 2D

Fig. 2 The kink wave solution (44) for k1 = 0.2,k2 = 1.5,k3 = 0.25,c2 = 0.5,δ =−1.2,α = 0.9.

(a) 3D (b) 2D

Fig. 3 The singular soliton solution (49) for k1 = 0.5,k2 = 1.5,k3 = 0.3,c2 = 1.3,δ =−1,α = 0.95.

when α = 0.95. Further to this, the 3D and 2D plots of the singular periodic solution (69) are described in Figure
4 for ε = 1,k1 = 1,k2 = 0.5,k3 = 1.5,c2 = 2,δ =−0.5 when α = 1. Figure 5 shows the 3D and 2D plots of the
singular periodic solution (88) for ε = 1,k1 =−1.5,k2 = 0.75,k3 = 1,c2 = 1.1,δ =−1.2 when α = 1. Figure 6
presents the 3D and 2D plots of the singular soliton solution (91) with ε =−1,k1 = 0.5,k2 =−0.5,k3 = 0.5,c2 =
−1.2,δ =−1.5 when α = 1.
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(a) 3D (b) 2D

Fig. 4 The singular periodic solution (69) for k1 = 1,k2 = 0.5,k3 = 1.5,c2 = 2,δ =−0.5,α = 1.

(a) 3D (b) 2D

Fig. 5 The singular periodic solution (88) for k1 =−1.5,k2 = 0.75,k3 = 1,c2 = 1.1,δ =−1.2,α = 1.

(a) 3D (b) 2D

Fig. 6 The singular soliton solution (91) for k1 = 0.5,k2 =−0.5,k3 = 0.5,c2 =−1.2,δ =−1.5,α = 1.

Remark 2. All of the results are calculated by using Maple, when t = 1 and z = 2 with the interval 0 < x, y≤ 10.

https://www.sciendo.com


Solitons and other solutions of (3 + 1)-dimensional fractional mKdV–ZK equation 303

5 Conclusions

In this study, we have investigated the exact analytic solutions to the (3+1)-dimensional space-time fractional
mKdV–ZK equation. By means of conformable fractional derivative and wave transformation, the fractional
mKdV–ZK equation is changed to an ODE. Then, the resulting ODE is solved by applying the variable separated
ODE method. All obtained solutions are verified by utilising symbolic computation. To shed light on the
behaviour of extracted results, some of derived solutions are displayed graphically. Moreover, it is found that
the implemented method is a powerful mathematical tool for solving ODE and provides more exact solutions
such as solitary, kink and periodic waves. Consequently, it can be applied to different physical models to generate
various types of solutions.
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