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Abstract
In this work, we deal with a new type of differential equations called anticipated backward doubly stochastic differential
equations. We establish existence and uniqueness of solution in the case of non-Lipschitz coefficients.

Keywords: Anticipated backward doubly stochastic differential equation, non-lipschitz coefficients, Itô’s representation formula and
Gronwall lemma.
AMS 2010 codes: 60H05, 60G44.

1 Introduction

Backward stochastic differential equations (BSDEs in short) were first introduced by Pardoux and Peng [4].
They proved an existence and uniqueness result under Lipschitz condition. Since then many efforts have been
made in relaxing the Lipschitz assumption of the generator of the BSDEs (see among others Mao [3] and Wang
and Huang [7]). Few years later, the same authors considered in [5] a new type of BSDEs, that is a class of
backward doubly stochastic differential equations (BDSDEs in short) with two different directions of stochastic
integrals. These equations are extensively used in the study of stochastic partial differential equations (SPDEs).
Their link with SPDEs in the case of Lipchitzian drift was established in [5]. The key point of solvency of such
equations is the martingale representation theorem. In this spirit, Bally and Matoussi [1] gave the probabilistic
representation of the solution in Sobolev space of semilinear SPDEs in terms of BDSDEs.
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On the other hand, Peng and Yang [6] introduced the following type of anticipated backward stochastic
differential equations (ABSDEs in short){

−dYt = f
(
t,Yt ,Zt ,Yt+δ (t),Zt+ζ (t)

)
dt−ZtdWt , 0≤ t ≤ T,

Yt = ξt , Zt = ηt , T ≤ t ≤ T +K,

where δ and ζ are given nonnegative deterministic functions. In these equations, the generator includes not only
the values of solutions of the present but also the future. In [6], the authors obtained the existence and unique-
ness of the solution of ABSDE under Lipschitz assumption, gave the comparison theorem for one dimensional
ABSDEs and finally they solved a stochastic control problem by showing the duality between linear stochastic
differential delay equations and ABSDEs.

This paper is devoted to the following anticipated BDSDEYt = ξT +

ˆ T

t
f (r,Yr,Zr,Yr+δ (r),Zr+ζ (r))dr+

ˆ T

t
g(r,Yr,Zr)dBr−

ˆ T

t
ZrdWr, 0≤ t ≤ T,

Yt = ξt , Zt = ηt , T ≤ t ≤ T +K
(1.1)

where K is a positive constant, ξ., η. are given stochastic processes and δ ,ζ : [0,T ]→ R+ are continuous func-
tions satisfying:
(A1) : t +δ (t)≤ T +K, t +ζ (t)≤ T +K.
(A2) : There exists M ≥ 0 such that for 0≤ t ≤ T and non negative integrable function h,

ˆ T

t
h(r+φ(r))dr ≤M

ˆ T+K

t
h(r)dr, φ ∈ {δ ,ζ}.

The paper is organized as follows. In section 2, we study first solvability of our equation in the case of
Lipschtzian coefficients. Using this result, in section 3 we prove existence and uniqueness of solution with
coefficients satisfying rather weaker conditions.

2 Preliminaries

Let Ω be a non-empty set, F a σ−algebra of sets of Ω and P a probability measure defined on F . The
triplet (Ω,F , P) defines a probability space, which is assumed to be complete. For a fix real 0 < T ≤ ∞, we
assume given two mutually independent processes:

• an `−dimensional Brownian motion (Bt)0≤t≤T ,

• a d−dimensional Brownian motion (Wt)0≤t≤T .

We consider the family (Ft)0≤t≤T given by

Ft = FW
t ∨F B

t,T , 0≤ t ≤ T, Gs = FW
0,s∨F B

s,T+K , 0≤ s≤ T +K,

where for any process {ϕt}t≥0, F ϕ

s,t = σ{ϕr−ϕs, s ≤ r ≤ t}∨N , F ϕ

t = F ϕ

0,t . Here N denotes the class of
P−null sets of F . Note that (Ft)0≤t≤T does not constitute a classical filtration.
For k ∈ N∗ we consider the following sets (where E denotes the mathematical expectation with respect to the
probability measure P):

• L2(GT ,Rk) the space of GT -measurable random variable such that E
[
|ξT |2

]
<+∞.
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• S 2
[0,T ](G ,Rk) the space of Gt−adapted càdlàg processes

Ψ : [0,T ]×Ω−→ Rk, ||Ψ||2S 2(Rk) = E
(

sup
0≤t≤T

|Ψt |2
)
< ∞.

• M 2
[0,T ](G ,Rk×d) the space of Gt−progressively measurable processes

Ψ : [0,T ]×Ω−→ Rk×d , ||Ψ||2M 2(Rk×d) = E
ˆ T

0
|Ψt |2 dt < ∞.

• C 2
G (0,T ) = M 2

[0,T ](G ,Rk)×M 2
[0,T ](G ,Rk×d) endowed with the norm

||(Y,Z)||2C 2
G (0,T ) = ||Y ||

2
M 2(Rk)+ ||Z||

2
M 2(Rk×d).

• B2
G (0,T ) = S 2

[0,T ](G ,Rk)×M 2
[0,T ](G ,Rk×d) endowed with the norm

||(Y,Z)||2B2
G (0,T ) = ||Y ||

2
S 2(Rk)+ ||Z||

2
M 2(Rk×d).

• S be the set of all nondecreasing, continuous and concave function ρ(·) : R+ → R+ satisfying ρ(0) = 0,
ρ(s)> 0 for s > 0 and

´
0+

du
ρ(u) =+∞.

Remark 2.1. For any ρ ∈ S, we can find a pair of positive constants a and b such that ρ(ν) ≤ a+ bν for all
ν ≥ 0.

We denote A = Ω× [0,T ]×Rk×Rk×d , f (r,0) = h(r,0,0,0,0), for all x,y ∈ Rk |x| the Euclidean norm of x
and denote by 〈x,y〉 the Euclidean inner product.

Definition 2.2. A pair of processes (Y,Z) is called a solution to ABDSDE (1.1), if (Y,Z) ∈B2
G (0,T +K) and it

satisfies eq.(1.1).

First we investigate the case of lipschitz coefficients.

3 The case of Lipschitz coefficients

In this subsection, we will mainly study the existence and uniqueness of the solution to ABDSDE (1.1) with
Lipschitz coefficients. For this purpose, we first make the following assumptions.

3.0.1 Assumptions

In the following, we assume that there exists ρ ∈ S such that f and g satisfy assumptions (H1).

(H1.1): There exists a constant c > 0 such that

| f (t,y,z,θ(r),ϕ(r))− f (t,y′,z′,θ ′(r),ϕ ′(r))|2 ≤ c(|y− y′|2 + |z− z′|2)
+EFt [|θ(r)−θ

′(r)|2 + |ϕ(r)−ϕ
′(r)|2],

for all (r,r′) ∈ [t,T+K], (t,y,z,θ(r),ϕ(r)), (t,y′,z′,θ ′(r),ϕ ′(r)) ∈A ×C 2
G (t,T +K).

(H1.2): There exists a constant 0 < α1 < 1 such that for any (t,y,z), (t,y′,z′) ∈ [0,T ]×Rk×Rk×d

|g(t,y,z)−g(t,y′,z′)|2 ≤ c|y− y′|2 +α1|z− z′|2.

(H1.3): For any (t,y,z) ∈ [0,T ]×Rk×Rk×d ,

E
[ˆ T

0
| f (s,0)|2ds

]
+E

[ˆ T

0
|g(s,y,z)|2ds

]
< ∞.

https://www.sciendo.com


12 S. Aidara. Applied Mathematics and Nonlinear Sciences 4(2019) 9–20

3.1 Existence and uniqueness of solution

Lemma 3.1. Suppose that (Yt ,Zt)0≤t≤T ∈ C 2
G (0,T +K) is the unique solution to the ABDSDE (1.1). Then

Y ∈S 2
[0,T ](G ,Rk).

Proof. Itô’s formula applied to eq.(1.1) yields, for 0≤ t ≤ T

|Yt |2 +
ˆ T

t
|Zr|2dr = |ξT |2 +2

ˆ T

t
〈Yr, f (r,Yr,Zr,Yr+δ (r),Zr+ζ (r))〉dr+2

ˆ T

t
〈Yr,g(r,Yr,Zr)dBr〉

−2
ˆ T

t
〈Yr,ZrdWr〉+

ˆ T

t
|g(r,Yr,Zr)|2dr. (3.1)

Using the fact that 2ab≤ εa2 +b2/ε for ε > 0 and assumptionn (H1.1), we deduce that

2E
ˆ T

t
〈Yr, f (r,Yr,Zr,Yr+δ (r),Zr+ζ (r))〉dr ≤ 1

ε
E
ˆ T

t
|Yr|2dr+ εcE

ˆ T

t
(|Yr|2 + |Zr|2)dr

+ εE
ˆ T

t
EFt [|Yr+δ (r)|2 + |Zr+ζ (r)|2]dr+2E

ˆ T

t
|Yr|| f (r,0)|dr.

Applying (A2), we obtain finally

2E
ˆ T

t
〈Yr, f (r,Yr,Zr,Yr+δ (r),Zr+ζ (r))〉dr ≤

(
1
ε
+ ε(c+M)

)
E
ˆ T

t
|Yr|2dr

+ ε(c+M)E
ˆ T

t
|Zr|2dr+2E

ˆ T

t
|Yr|| f (r,0)|dr+ εME

ˆ T+K

T
(|ξr|2+|ηr|2)dr.

In addition, for any 0≤ t ≤ T , we have

E
ˆ T

t
|g(r,Yr,Zr)|2dr ≤ E

ˆ T

t
|g(r,Yr,Zr)−g(r,0,0)|2dr+E

ˆ T

t
|g(r,0,0)|2dr

≤ cE
ˆ T

t
|Yr|2dr+α1E

ˆ T

t
|Zr|2dr+E

ˆ T

t
g(r,0,0)|2dr.

Putting pieces together, we deduce from (3.1) that

E
ˆ T

t
|Zr|2dr ≤ E[|ξT |2]+MεE

ˆ T+K

T
(|ξr|2+|ηr|2)dr+

(
1
ε
+ε(c+M)+c

)
E
ˆ T

t
|Yr|2dr

+2E
ˆ T

t
|Yr|| f (r,0)|dr+E

ˆ T

t
|g(r,0,0)|2dr+(α1+ε(c+M))E

ˆ T

t
|Zr|2dr.

If we choose ε = ε0 satisfying 1/C0 = (1− [α1+ε0(c+M)])−1 > 0, we deduce that

E
ˆ T

t
|Zr|2dr ≤ 1

C0
E
[

Xt +2
ˆ T

t
|Yr|| f (r,0)|dr+

ˆ T

t
|g(r,0,0)|2dr

]
(3.2)

where putting C1 =
(

1
ε0
+ε0(c+M)+c

)
,

Xt =

[
|ξT |2 +Mε0

ˆ T+K

T
(|ξr|2+|ηr|2)dr+C1

ˆ T

t
|Yr|2dr

]
.
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By the same computations as before, we have

E[|ξT |2]+2E
ˆ T

t
〈Yr, f (r,Yr,Zr,Yr+δ (r),Zr+ζ (r))〉dr+E

ˆ T

t
|g(r,Yr,Zr)|2dr

≤ 1
C0

E
[

Xt +2
ˆ T

t
|Yr|| f (r,0)|dr+

ˆ T

t
|g(r,0,0)|2dr

]
. (3.3)

Moreover using again eq.(3.1), we have

E
(

sup
t≤r≤T

|Yr|2
)
≤ E[|ξT |2]+2E sup

t≤s≤T

(ˆ T

s
〈Yr, f (r,Yr,Zr,Yr+δ (r),Zr+ζ (r))〉dr

)
+2E sup

t≤s≤T

∣∣∣∣ˆ T

s
〈Yr,g(r,Yr,Zr)dBr〉

∣∣∣∣+2E sup
t≤s≤T

∣∣∣∣ˆ T

s
〈Yr,ZrdWr〉

∣∣∣∣
+

ˆ T

t
|g(r,Yr,Zr)|2dr. (3.4)

By Burkhölder-Davis-Gundy inequality, there exists a constant C > 0 which may vary from line to line such that

E sup
t≤s≤T

∣∣∣∣ˆ T

s
〈Yr,g(r,Yr,Zr)dBr〉

∣∣∣∣≤ 1
8

E
(

sup
t≤r≤T

|Yr|2
)
+C
ˆ T

t
|g(r,Yr,Zr)|2dr

2E sup
t≤s≤T

∣∣∣∣ˆ T

s
〈Yr,ZrdWr〉

∣∣∣∣≤ 1
8

E
(

sup
t≤r≤T

|Yr|2
)
+C
ˆ T

t
|Zr|2dr.

Using the above inequalities, we deduce from (3.4) that

3
4

E
(

sup
t≤r≤T

|Yr|2
)
≤ E[|ξT |2]+2E sup

t≤s≤T

(ˆ T

s
〈Yr, f (r,Yr,Zr,Yr+δ (r),Zr+ζ (r))〉dr

)
+C
ˆ T

t
|g(r,Yr,Zr)|2dr+CE

ˆ T

t
|Zr|2dr

Applying (3.2) and (3.3), we deduce that

3
4

E
(

sup
t≤r≤T

|Yr|2
)
≤ 2C

C0
E
[

Xt +2
ˆ T

t
|Yr|| f (r,0)|dr+

ˆ T

t
|g(r,0,0)|2dr

]
. (3.5)

Moreover, we have

4C
C0

E
ˆ T

t
|Yr|| f (r,0)|dr ≤ 1

4
E
(

sup
t≤r≤T

|Yr|2
)
+4
(

2C
C0

)2

E
(ˆ T

t
| f (r,0)|dr

)2

.

Hence gathering (3.2) and (3.5) we obtain

1
2

E
(

sup
t≤r≤T

|Yr|2
)
+E
ˆ T

t
|Zr|2dr ≤C2E

[
Xt +

(ˆ T

t
| f (r,0)|dr

)2

+

ˆ T

t
|g(r,0,0)|2dr

]
, (3.6)

where C2 is a positive constant (which may change from line to line).
Then, applying the fubini’s theorem to (3.6), this leads to

E
(

sup
t≤r≤T

|Yr|2
)
≤C2E

[
|ξT |2 +

ˆ T+K

T
(|ξr|2+|ηr|2)dr+

(ˆ T

t
| f (r,0)|dr

)2

+

ˆ T

t
|g(r,0,0)|2dr

]
+C3

ˆ T

t
E[ sup

r≤s≤T
|Ys|2]dr,
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where C3 = 2C1C2. Hence Gronwall’s inequality yields

E
(

sup
t≤r≤T

|Yr|2
)
≤+∞.

This implies that Y ∈S 2
[0,T ](G ,Rk). This completes the proof.

To solve our equations, we examine first the cases where the coefficients do not depend on the variables.
Namely, we consider the stochastic equation

Yt = ξT +

ˆ T

t
f (r)dr+

ˆ T

t
g(r)dBr−

ˆ T

t
ZrdWr, 0≤ t ≤ T. (3.7)

where f ∈M 2
[0,T ](G ,Rk), g ∈M 2

[0,T ](G ,Rk×`) and ξT ∈ L2(GT ,Rk).

Let us recall the following result which will be useful in the sequel (the proof is omitted since it is an
adaptation of Theorem 3.1 in Xu [9]).

Proposition 3.2. Given ξT ∈ L2(GT ,Rk), eq.(3.7) has a unique solution (Yt ,Zt)0≤t≤T ∈ C 2
G (0,T ).

We are now in position to give our main results of this section.

Theorem 3.3. Assume that the assumptions (A1), (A2) and (H1) are true and let ξT ∈ L2(GT ,Rk). Then for
any (ξ ,η) ∈ S 2

[T,T+K](G ,Rk)×M 2
[T,T+K](G ,Rk×d) the ABDSDE (1.1) has a unique solution (Yt ,Zt)0≤t≤T ∈

B2
G (0,T +K).

Proof. (i) Existence. Let us consider the mapping

Ψ : C 2
G (0,T +K)→ C 2

G (0,T +K),

(y,z)→ (Y,Z)

where the pair (Yt ,Zt)0≤t≤T+K ∈ C 2
G (0,T +K) is s.t. (Yt ,Zt)T≤t≤T+K = (ξt ,ηt) and it satisfies the equation

∀0≤ t ≤ T,

Yt = ξT +

ˆ T

t
f (r,yr,zr,yr+δ (r),zr+ζ (r))dr+

ˆ T

t
g(r,yr,zr)dBr−

ˆ T

t
ZrdWr,

∀t ∈ [T,T +K], Yt = ξt , Zt = ηt .

(3.8)

Thanks to Proposition 3.2, the mapping Ψ is well defined. Let (Y,Z) and (Ỹ , Z̃) be two solutions of eq.(3.8), i.e
:

(Y,Z) = Ψ(y,z) and (Ỹ , Z̃) = Ψ(ỹ, z̃).

Fix β ∈ R. The pair (Y ,Z) solves the ABDSDEY t =

ˆ T

t
∆ f (r)dr+

ˆ T

t
∆g(r)dBr−

ˆ T

t
ZrdWr, ∀0≤ t ≤ T,

∀t ∈ [T,T +K], Y t = 0, Zt = 0,
(3.9)

where for ρ ∈ {Y,Z},ρ = ρ− ρ̃ , ∆g(r) = g(r,yr,zr)−g(r, ỹr, z̃r) and

∆ f (r) = f (r,yr,zr,yr+δ (r),zr+ζ (r))− f (r, ỹr, z̃r, ỹr+δ (r), z̃r+ζ (r)).

https://www.sciendo.com


Backward doubly stochastic differential equations 15

Applying Ito’s formula, we obtain

E
[

eβ t |Y t |2 +β

ˆ T

t
eβ r|Y r|2dr+

ˆ T

t
eβ r|Zr|2dr

]
= 2E

ˆ T

t
eβ r〈Y r,∆ f (r)〉dr+E

ˆ T

t
eβ r|∆g(r)|2dr. (3.10)

Using the inequality 2ab≤ εa2 +b2/ε (where ε > 0 will be chosen later) and assumption (H1.1), we obtain

E
ˆ T

t
eβ r|∆g(r)|2dr ≤ cE

ˆ T+K

t
eβ r|yr|2dr+α1E

ˆ T+K

t
eβ r|zr|2dr.

Similarly, we have

2eβ r〈Y r,∆ f (r)〉 ≤ eβ r
ε|Y r|2 +

c
ε

eβ r(|yr|2 + |zr|2)+
1
ε

eβ rEFt
[
|yr+δ (r)|2 + |zr+ζ (r)|2

]
.

Which implies by virtue of condition (A2) that

2E
ˆ T

t
eβ r〈Y r,∆ f (r)〉dr ≤ εE

ˆ T+K

t
eβ r|Y r|2dr+

1
ε
(c+M)E

ˆ T+K

t
eβ r(|yr|2 + |zr|2)dr.

Therefore, we can write (where γ =
1
ε
(c+M)+c

1
ε
(c+M)+α1

)

E
(

eβ t |Y t |2
)
+(β − ε)E

ˆ T+K

t
eβ r|Y r|2dr+E

ˆ T+K

t
eβ r|Zr|2dr

≤
(

1
ε
(c+M)+ c

)
E
ˆ T+K

t
eβ r|yr|2dr+

(
1
ε
(c+M)+α1

)
E
ˆ T+K

t
eβ r|zr|2dr

=

(
1
ε
(c+M)+α1

)
E
ˆ T+K

t
eβ r [

γ|yr|2 + |zr|2
]

dr.

Hence if we choose ε = ε0 satisfying c =
(

1
ε0
(c+M)+α1

)
< 1, choose β = ε0 + γ , then we deduce

E
ˆ T+K

t
eβ r [

γ|Y r|2 + |Zr|2
]

dr ≤ cE
ˆ T+K

t
eβ r [

γ|yr|2 + |zr|2
]

dr.

Thus, the mapping Ψ is a strict contraction on C 2
G (0,T +K) and it has a unique fixed point

(Y,Z) ∈ C 2
G (0,T +K).

It remains to prove that the above solution is in B2
G (0,T + K). Indeed, by Lemma 3.1, we have

Y ∈S 2
[0,T ](G ,Rk). Thus, we obtain (Yt ,Zt)0≤t≤T ∈B2

G (0,T +K).

(ii) Uniqueness. Let (Y,Z) and (Ỹ , Z̃) two solutions of eq.(1.1). Itô’s formula applied to eq.(3.9) yields, for
0≤ t ≤ T

E[|Y t |2]+E
ˆ T

t
|Zr|2dr ≤ 2E

ˆ T

t
〈Y r,∆ f (r)〉dr+E

ˆ T

t
|∆g(r)|2dr. (3.11)

Using assumption (H1), we have :

2E
ˆ T

t
〈Y r,∆ f (r)〉dr ≤ (

1
ε
(c+M)+ ε)E

ˆ T

t
|Y r|2dr+

1
ε
(c+M)E

ˆ T

t
|Zr|2dr,

E
ˆ T

t
|∆g(r)|2dr ≤ cE

ˆ T

t
|Y r|2dr+α1E

ˆ T

t
|Zr|2dr.
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Hence if we choose ξ = ξ0 satisfying α = 1
ε0
(c+M)+α1 < 1 and denote c = c(ε0+1)+M

ε0
+ ε0, then using the

above inequalities, from (3.11), we obtain

E
(
|Y t |2

)
+(1−α)E

ˆ T

t
|Zr|2dr ≤ cE

ˆ T

t
|Y r|2dr.

Then we can use Gronwall’s inequality to deduce Y = 0 and Z = 0. This completes the proof.

4 The case of non-Lipschitz coefficients

In this subsection, we will mainly study the existence and uniqueness of the solution to ABDSDE (1.1) with
non-Lipschitz coefficients. For this purpose, we first make the following assumptions.

4.0.1 Assumptions

In the following, we assume that there exists ρ ∈ S such that f and g satisfy assumptions (H2).

(H2.1): There exists a constant c > 0 such that

| f (t,y,z,θ(r),ϕ(r))− f (t,y′,z′,θ ′(r),ϕ ′(r))|2 ≤ c(ρ(|y− y′|2)+ |z− z′|2)
+EFt [ρ(|θ(r)−θ

′(r)|2)+ |ϕ(r)−ϕ
′(r)|2],

for all (r,r′) ∈ [t,T+K], (t,y,z,θ(r),ϕ(r)), (t,y′,z′,θ ′(r),ϕ ′(r)) ∈A ×C 2
G (t,T +K).

(H2.2): There exists a constant 0 < α1 < 1 such that for any (t,y,z), (t,y′,z′) ∈ [0,T ]×Rk×Rk×d

|g(t,y,z)−g(t,y′,z′)|2 ≤ ρ(|y− y′|2)+α1|z− z′|2.

(H2.3): (H1.3) holds.

4.1 Existence and uniqueness of solution

We consider now the sequence (Θn)n∈N = (Y n,Zn)n∈N given by
Y 0

t = 0, Z0
t = 0, 0≤ t ≤ T +K,

Y n
t = ξT +

ˆ T

t
f (r,Y n−1

r ,Zn
r ,Y

n−1
r+δ (r),Z

n
r+ζ (r))dr+

ˆ T

t
g(r,Y n−1

r ,Zn
r )dBr−

ˆ T

t
Zn

r dWr, 0≤ t ≤ T,

Y n
t = ξt , Zn

t = ηt , T ≤ t ≤ T +K.
(4.1)

Thanks to Theorem 3.3, this sequence is well defined since the generators f (r,Y n−1
r , ·,Y n−1

r+δ (r), ·) and g(r,Y n−1
r , ·)

are Γ-Lipschitz. Let us state the following previous result

Lemma 4.1. Assume that the assumptions (A1), (A2) and (H2) are true and let ξT ∈ L2(GT ,Rk). Then for any
(ξ ,η) ∈S 2

[T,T+K](G ,Rk)×M 2
[T,T+K](G ,Rk×d) there exists a positive constant C′ such that

sup
n≥0

E|Y n
t |2 ≤C′(1+E[X ]), 0≤ t ≤ T +K (4.2)

where

X = |ξT |2 +
ˆ T+K

T
(|ξr|2 + |ηr|2)dr+

ˆ T

0
| f (r,0)|2dr+

ˆ T

0
|g(r,0,0)|2dr.
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Proof. For β > 0, apply Itô’s formula to eβ t |Y n
t |2,

E[eβ t |Y n
t |2]+βE

ˆ T

t
eβ r|Y n

r |2dr+E
ˆ T

t
eβ r|Zn

r |2dr = E[eβT |ξT |2]

+2E
ˆ T

t
eβ r〈Y n

r , f (r,Y n−1
r ,Zn

r ,Y
n−1
r+δ (r),Z

n
r+ζ (r))〉dr+E

ˆ T

t
eβ r|g(r,Y n−1

r ,Zn
r )|2dr.

Using the inequality 2ab≤ εa2 +b2/ε (where ε > 0 will be chosen later), we deduce from assumptions (H2.1)
and (H2.2)

E
ˆ T

t
eβ r|g(r,Y n−1

r ,Zn
r )|2dr ≤ E

ˆ T

t
eβ r|g(r,0,0)|2dr+E

ˆ T

t
eβ r [

ρ(|Y n−1
r |2)+α1|Zn

r |2
]

dr

and

2E
ˆ T

t
eβ r〈Y n

r , f (r,Y n−1
r ,Zn

r ,Y
n−1
r+δ (r),Z

n
r+ζ (r))〉dr ≤ ε

2
E
ˆ T

t
eβ r|Y n

r |2dr+
2
ε

E
ˆ T

t
eβ r| f (r,0)|2dr

+
2
ε

cE
ˆ T

t
eβ r (

ρ(|Y n−1
r |2)+ |Zn

r |2
)

dr+
2
ε

E
ˆ T

t
eβ rEFt

[
ρ(|Y n−1

r+δ (r)|
2)+ |Zn

r+ζ (r)|
2
]

dr. (4.3)

Applying condition (A2), the last term on the right-hand side of (4.3) is less than

2
ε

ME
ˆ T

t
eβ r [

ρ(|Y n−1
r |2)+ |Zn

r |2
]

dr+
2
ε

ME
ˆ T+K

T
eβ r [

ρ(|ξr|2)+ |ηr|2
]

dr.

Putting pieces together, we obtain finally

E[eβ t |Y n
t |2]+βE

ˆ T

t
eβ r|Y n

r |2dr+E
ˆ T

t
eβ r|Zn

r |2dr ≤ E[eβT |ξT |2]+
ε

2
E
ˆ T

t
eβ r|Y n

r |2dr

+

(
2
ε
(c+M)+1

)
E
ˆ T

t
eβ r

ρ(|Y n−1
r |2)dr+

(
2
ε
(c+M)+α1

)
E
ˆ T

t
eβ r|Zn

r |2dr

+
2
ε

ME
ˆ T+K

T
eβ r [

ρ(|ξr|2)+ |ηr|2
]

dr+
2
ε

E
ˆ T

t
eβ r| f (r,0)|2dr+E

ˆ T

t
eβ r|g(r,0,0)|2dr.

This implies thanks to Remark 2.1 that

E[eβ t |Y n
t |2]+βE

ˆ T

t
eβ r|Y n

r |2dr+E
ˆ T

t
eβ r|Zn

r |2dr ≤ E[eβT |ξT |2]+
ε

2
E
ˆ T

t
eβ r|Y n

r |2dr

+

(
2
ε
(c+M)+1

)
bE
ˆ T

t
eβ r|Y n−1

r |2dr+
(

2
ε
(c+M)+α1

)
E
ˆ T

t
eβ r|Zn

r |2dr

+
2
ε

ME
ˆ T+K

T
eβ r [b|ξr|2 + |ηr|2

]
dr+

2
ε

E
ˆ T

t
eβ r| f (r,0)|2dr+E

ˆ T

t
eβ r|g(r,0,0)|2dr+Cε

where Cε =
a
β

[ 2
ε
(c+2M)+1

]
eβ (T+K). Choose ε = ε0 such that β =

1
2
(ε0+1), C0 =Cε0 and

2
ε0
(M+c)+α1 =

1/2. Therefore, we obtain

E[eβ t |Y n
t |2]+

1
2

E
ˆ T

t
eβ r|Y n

r |2dr+
1
2

E
ˆ T

t
eβ r|Zn

r |2dr ≤
(

2
ε0
(c+M)+1

)
bE
ˆ T

t
eβ r|Y n−1

r |2dr

+E[eβT |ξT |2]+
2
ε0

ME
ˆ T+K

T
eβ r [b|ξr|2 + |ηr|2

]
dr+

2
ε0

E
ˆ T

0
eβ r| f (r,0)|2dr

+E
ˆ T

0
eβ r|g(r,0,0)|2dr+C0, 0≤ t ≤ T.
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This leads to

E[|Y n
t |2]+

1
2

E
ˆ T

t
|Y n

r |2dr+
1
2

E
ˆ T

t
|Zn

r |2dr ≤C′ (E[X ]+1)+C′E
ˆ T

t
|Y n−1

r |2dr, 0≤ t ≤ T

where C′ is a positive constant(which may vary from line to line).
In particular, putting qn(t) = supn∈N E[|Y n

t |2], we have

qn(t)≤C′ (E[X ]+1)+C′
ˆ T

t
qn(r)dr, 0≤ t ≤ T.

Gronwall’s inequality yields
sup
n∈N

E[|Y n
t |2]≤C′(1+E[X ]), 0≤ t ≤ T.

This immediately gives (4.2).

Now we establish the main result of this section.

Theorem 4.2. Assume that the assumptions (A1), (A2) and (H2) are true and let ξT ∈ L2(GT ,Rk). Then for any
(ξ ,η)∈S 2

[T,T+K](G ,Rk)×M 2
[T,T+K](G ,Rk×d) the ABDSDE (1.1) has a unique solution (Y,Z)∈B2

G (0,T +K).

Proof. (i) Existence. We consider the sequence defined in eq.(4.1). For a process ρ ∈ {Y,Z}, and n ∈N,m ∈N,
ρ

n,m
t = ρn

t −ρm
t , ∆g(n,m)(r) = f (r,Y n−1

r ,Zn
r )−g(r,Y m−1

r ,Zm
r ) and

∆ f (n,m)(r) = f (r,Y n−1
r ,Zn

r ,Y
n−1
r+δ (r),Z

n
r+ζ (r))− f (r,Y m−1

r ,Zm
r ,Y

m−1
r+δ (r),Z

m
r+ζ (r)).

Note that the pair (Y n,m
,Zn,m

) solves the following equationY n,m
t =

ˆ T

t
∆ f (n,m)(r)dr+

ˆ T

t
∆g(n,m)(r)dBr−

ˆ T

t
Zn,m

r dWr, 0≤ t ≤ T,

Y n,m
t = 0, Zn,m

t = 0, T ≤ t ≤ T +K.

By the same computations as in the proof of Lemma 4.1, we have

E|Y n,m
t |2 +

1
2

E
ˆ T

t
|Y n,m

r |2dr+
1
2

E
ˆ T

t
|Zn,m

r |2dr ≤C′E
ˆ T

t
ρ(|Y n−1,m−1

r |2)dr, 0≤ t ≤ T. (4.4)

Applying Fatou’s lemma and the fact that ρ ∈ S, we deduce that

q(t)≤C′
ˆ T+K

t
ρ(q(r))dr, 0≤ t ≤ T +K

where q(t) = limn,m→∞ supE|Y n,m
t |2, 0≤ t ≤ T +K. Therefore, we can use Bihari’s inequality to get q(t) = 0,

i.e. limn,m→∞ supE|Y n,m
t |2 = 0 for all 0≤ t ≤ T +K.

So, from inequality (4.4), we obtain

lim
n,m→∞

E
(
|Y n

t −Y m
t |2 +

ˆ T+K

t
|Zn

r −Zm
r |2dr

)
= 0, 0≤ t ≤ T +K.

Then, there exists (Y,Z) ∈B2
G (0,T +K) such that

lim
n→∞

E
(
|Y n

t −Yt |2 +
ˆ T+K

t
|Zn

r −Zr|2dr
)
= 0, 0≤ t ≤ T +K.
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Finally, taking limit in eq.(4.1) as n→+∞, we conclude that (Y,Z) solves
0≤ t ≤ T,

Yt = ξT +

ˆ T

t
f (r,Yr,Zr,Yr+δ (r),Zr+ζ (r))dr+

ˆ T

t
g(r,Yr,Zr)dBr−

ˆ T

t
ZrdWr,

Yt = ξt , Zt = ηt , T ≤ t ≤ T +K.

This shows that (Y,Z) ∈B2
G (0,T +K) solves ABDSDE (1.1). The proof of existence is complete.

(ii) Uniqueness. Let (Y i,Zi) ∈B2
G (0,T +K), i = 1,2 be two solutions of ABDSDE (1.1).

Define Y t = Y 1
t −Y 2

t , Zt = Z1
t −Z2

t , ∆g(r) = g(r,Y 1
r ,Z

1
r )−g(r,Y 2

r ,Z
2
r ) and

∆ f (r) = f (r,Y 1
r ,Z

1
r ,Y

1
r+δ (r),Z

1
r+ζ (r))− f (r,Y 2

r ,Z
2
r ,Y

2
r+δ (r),Z

2
r+ζ (r)).

We obtain the following equationY t =

ˆ T

t
∆ f (r)dr+

ˆ T

t
∆g(r)dBr−

ˆ T

t
ZrdWr, 0≤ t ≤ T,

Y t = 0, Zt = 0, T ≤ t ≤ T +K.

(4.5)

By the same computations as in Lemma 4.1 , we obtain

E[|Y t |2]+
1
2

E
ˆ T

t
|Y r|2dr+

1
2

E
ˆ T

t
|Zr|2dr ≤C′E

ˆ T

t
ρ(|Y r|2)dr, 0≤ t ≤ T.

This leads to

E[|Y t |2]≤C′E
ˆ T+K

t
ρ(|Y r|2)dr, 0≤ t ≤ T +K.

Using Fubini’s theorem and Jensen’s inequality, we deduce that

E|Y t |2 ≤C′
ˆ T+K

t
ρ(E|Y r|2)dr, 0≤ t ≤ T +K.

Then we can use Bihari’s inequality to obtain E|Y t |2 = 0, 0≤ t ≤ T +K. This implies Zt = 0.
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