

# Applied Mathematics and Nonlinear Sciences 

Proof without words: Periodic continued fractions

Amara Chandoul ${ }^{\dagger}$<br>Departamento de Matemática, Universidade de Brasília, Campus Universitário Darcy Ribeiro Brasília - DF 70910-900, Brazil

Submission Info
Communicated Juan Luis García Guirao
Received 6th February 2019
Accepted 22nd March 2019
Available online 26th April 2019


#### Abstract

In this paper, We give a generalization the resut of Roger B. Nelsen, by giving a closed form expression for $x=$ $\left[a_{0}, a_{1}, \cdots, a_{k}, \overline{b_{1}, \cdots, b_{m}}\right]$,


Keywords: Continued fractions, periodic, proof without words.
AMS 2010 codes: $65 \mathrm{H} 04,11 \mathrm{Y} 65,13 \mathrm{M} 10$.

## 1 Introduction

Let $x:=x_{0}$ be a real number. Set $a_{0}=[x]$, the greatest integer in $x$ and $\frac{1}{x_{0}-a_{0}}$ its complete quotients.
Set $a_{i}=\left[x_{i}\right]$, the greatest integer in $x_{i}$ and $x_{i+1}=\frac{1}{x_{i}-a_{i}}$ for all $i \geq 1$. Then,

$$
x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots}}}
$$

The algorithm stops after finitely many steps if and only if $x$ is rational. The above expansion is called The simple continued fraction of $x$. It is customarily written $x=\left[a_{0}, a_{1}, \cdots, a_{n}, \cdots\right]$.

We call convergents of $x$ the reduced fractions difined by:
$\frac{p_{0}}{q_{0}}=a_{0}$,
$q_{0}$

[^0]$\frac{p_{1}}{q_{1}}=a_{0}+\frac{1}{a_{1}}$,
$\frac{p_{n}}{q_{n}}=a_{0}+\frac{1}{a_{1}+} \frac{1}{a_{2}+} \frac{1}{a_{3}+} \cdots \frac{1}{a_{n}}, \cdots$.
If there exists $k \geq 0$ and $m>0$ such that whenever $r>k$, we have $a_{r}=a_{r+m}$, the continued fraction is said periodic, with period $\left(b_{1}, \cdots, b_{m}\right)=\left(a_{k+1}, \cdots, a_{k+m}\right)$ and pre-period $\left(a_{0}, a_{1}, \cdots, a_{k}\right)$, which can be written for simplicity $x=\left[a_{0}, a_{1}, \cdots, a_{k}, \overline{b_{1}, \cdots, b_{m}}\right]$. These so-called periodic continued fractions are precisely those that represent quadratic irrationalities.
We find a closed form expression for $x=\left[a_{0}, a_{1}, \cdots, a_{k}, \overline{b_{1}, \cdots, b_{m}}\right]$, which generalized a previous resut of Roger B. Nelsen.

## 2 Main result

Lemma 1. Let $x>0$ such that $x=a+\frac{b}{c x}$, then $x=\frac{1}{2}\left(a^{2}+\sqrt{a^{2}+4 \frac{b}{c}}\right)$
Proof. Consider the Following figure:


We have $(2 x-a)^{2}=a^{2}+4 \frac{b}{c}$, then $x=\frac{1}{2}\left(a^{2}+\sqrt{a^{2}+4 \frac{b}{c}}\right)$.
Lemma 2. If $x=\left[\overline{a_{0}, a_{1}, \cdots, a_{n}}\right]$, then $x=\frac{p_{n}-q_{n-1}}{q_{n}}+\frac{p_{n-1}}{q_{n} x}$.
Proof. We have $x=\left[\overline{a_{0}, a_{1}, \cdots, a_{n}}\right]=\left[a_{0}, a_{1}, \cdots, a_{n}, x\right]=\frac{p_{n} x-p_{n-1}}{q_{n} x-q_{n-1}}$. Then, $q_{n} x^{2}=\left(p_{n}-q_{n-1}\right)+p_{n-1}$. which gives $x=\frac{p_{n}-q_{n-1}}{q_{n}}+\frac{p_{n-1}}{q_{n} x}$. Completing the proof.
Theorem 3. The periodic continued fraction $\left[\overline{a_{0}, a_{1}, \cdots, a_{n}}\right]$ equals

$$
\frac{1}{2}\left[\left(\frac{p_{n}-q_{n-1}}{q_{n}}\right)^{2}+\sqrt{\left(\frac{p_{n}-q_{n-1}}{q_{n}}\right)^{2}+4 \frac{p_{n-1}}{q_{n}}}\right] .
$$

Corollary 4 (Theorem [1] ). . The periodic continued fraction $[\overline{a, b}]$ equals

$$
\frac{1}{2}\left(a^{2}+\sqrt{a^{2}+4 \frac{a}{b}}\right)
$$

Corollary 5. The periodic continued fraction $[\overline{a, b, c}]$ equals

$$
\frac{1}{2}\left[\left(a+\frac{c-b}{b c+1}\right)^{2}+\sqrt{\left(a+\frac{c-b}{b c+1}\right)^{2}+4 \frac{a b+1}{b c+1}}\right] .
$$

Example 6. As examples, notice that $[\overline{1}]=[\overline{1,1,1}]=\frac{1}{2}(1+\sqrt{5}),[\bar{a}]=[\overline{a, a}]=[\overline{a, a, a}]=\frac{1}{2}\left(a^{2}+\sqrt{a^{2}+4}\right)$, $[\overline{3,1,2}]=\frac{1}{2}\left(\frac{100}{9}+\sqrt{\frac{148}{9}}\right)$.
Corollary 7. Let $x=\left[a_{0}, a_{1}, \cdots, a_{k}, \overline{b_{1}, \cdots, b_{m}}\right]$, be a periodic continued fraction, with period $\left(b_{1}, \cdots, b_{m}\right)$ and pre-period $\left(a_{0}, a_{1}, \cdots, a_{k}\right)$.
Note $\frac{p_{i}}{q_{i}}=\left[a_{0}, a_{1}, \cdots, a_{i}\right]$, for all $0 \leq i \leq k$ and $\frac{p_{j}^{\prime}}{q_{j}^{\prime}}=\left[b_{1}, \cdots, b_{j}\right]$ for all $0 \leq j \leq m$. Then,

$$
x=\frac{p_{k}\left(\frac{1}{2}\left[\left(\frac{p_{m}^{\prime}-q_{m-1}^{\prime}}{q_{m}^{\prime}}\right)^{2}+\sqrt{\left(\frac{p_{m}^{\prime}-q_{m-1}^{\prime}}{q_{n}}\right)^{2}+4 \frac{p_{m-1}^{\prime}}{q_{m}^{\prime}}}\right]\right)+p_{k-1}}{q_{k}\left(\frac{1}{2}\left[\left(\frac{p_{m}^{\prime}-q_{m-1}^{\prime}}{q_{m}^{\prime}}\right)^{2}+\sqrt{\left(\frac{p_{m}^{\prime}-q_{m-1}^{\prime}}{q_{n}}\right)^{2}+4 \frac{p_{m-1}^{\prime}}{q_{m}^{\prime}}}\right]\right)+q_{k-1}} .
$$

Example 8. As examples, notice that
$[1,2,3,4,5,2, \overline{1,1,1,4}]=\frac{225 \sqrt{7}+43}{157 \sqrt{7}+30}$,
$[1,2,2, n, \overline{1,2 n}]=\frac{7 \sqrt{n^{2}+2 n}+3}{5 \sqrt{n^{2}+2 n}+2}$,
$[1,2,2,1,4, n, \overline{n, 2 n}]=\frac{57 \sqrt{n^{2}+2}+10}{33 \sqrt{n^{2}+2}+7}$.

## 3 Conclusions

We find a closed form expression for $x=\left[a_{0}, a_{1}, \cdots, a_{k}, \overline{b_{1}, \cdots, b_{m}}\right]$, which generalized a previous resut of Roger B. Nelsen.

## Acknowledgment

The author would like to thank the editor and the anonymous referee who kindly reviewed the earlier version of this manuscript and provided valuable suggestions and comments.

## References

[1] Roger B. Nelsen (2018) Periodic Continued Fractions Via a Proof Without Words, Mathematics Magazine, 91:5, 364365, Doi:10.1080/0025570X.2018.1456151


[^0]:    ${ }^{\dagger}$ Departamento de Matemática, Universidade de Brasília, Campus Universitário Darcy Ribeiro Brasília - DF 70910-900, Brazil
    Email address: amarachandoul@yahoo.fr

