
Open Access. © 2019 Alicia Cordero et al., published by Sciendo.
This work is licensed under the Creative Commons Attribution alone 4.0 License.

Applied Mathematics and Nonlinear Sciences 4(1) (2019) 43–56

Applied Mathematics and Nonlinear Sciences
https://www.sciendo.com

Stability analysis of fourth-order iterative method for finding multiple roots of non-
linear equations

Alicia Cordero1†, Jai P. Jaiswal2, Juan R. Torregrosa1.

1Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València,
Cno. de Vera s/n, 46022 Valencia Spain
2Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal,
M.P.-462051, India

Submission Info

Communicated by Juan Luis García Guirao
Received 21st January 2019

Accepted 26th February 2019
Available online 19th April 2019

Abstract
The use of complex dynamics tools in order to deepen the knowledge of qualitative behaviour of iterative methods for
solving non-linear equations is a growing area of research in the last few years with fruitful results. Most of the studies
dealt with the analysis of iterative schemes for solving non-linear equations with simple roots; however, the case involving
multiple roots remains almost unexplored. The main objective of this paper was to discuss the dynamical analysis of the
rational map associated with an existing class of iterative procedures for multiple roots. This study was performed for cases
of double and triple multiplicities, giving as a conjecture that the wideness of the convergence regions of the multiple roots
increases when the multiplicity is higher and also that this family of parametric methods includes some specially fast and
stable elements with global convergence.
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1 Introduction

With the advancement of computer algebra, finding higher-order multi-point methods, not requiring the
computation of second-order derivative for multiple roots, becomes very important and is an interesting task
from the practical point of view. These multi-point methods are of great practical importance since they over-
come theoretical limits of one-point methods concerning the order and computational efficiency. Further, these
multi-point iterative methods are also capable to generate root approximations of high accuracy.
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Here, discuss the dynamical analysis of iterative methods for finding a zero of a continuously differentiable
function f : R→ R that is, a solution ξ of the nonlinear equation f (x) = 0. In the case of simple roots, many
robust and efficient methods have been proposed with a high convergence order. Here, we focus in the case of
a root ξ of multiplicity m > 1, namely, f (ξ ) = 0, f (k)(ξ ) = 0 for k = 1, . . . ,m− 1 and f (m)(ξ ) 6= 0. It is well
known that the convergence order of iterative methods decreases in the presence of a multiple root. In this sense,
modifications in the iterative function can improve the behavior of the method. Newton’s method preserves the
second order convergence for multiple roots [6], with the modification given by

xn+1 = xn−m
f (xn)

f ′(xn)
.

This is quadratically convergent and is optimal in the sense of Kung and Traub [5]. Existing third and fourth-
order methods of finding simple roots to multiple roots have been extended (see, for example, [7]- [9]). However,
the number of families of optimal iterative methods for finding multiple roots of nonlinear equations available
in the literature, such as [1]- [10], is very much reduced.

Recently, Hueso et al. [4] considered the following fourth-order iterative method

yn = xn−
2m

m+2
f (xn)

f ′(xn)
,

xn+1 = xn−
[

s1 + s2h(yn,xn)+ s3h(xn,yn)+ s4h(yn,xn)
2
]

f (xn)

f ′(xn)
,

(1)

where h(xn,yn) =
f ′(yn)
f ′(xn)

, µ = 1− 2
m+2 , b = 2m

m+2 ,

s1 = − µ−1−2m

b(b−2m+bm)

(
µ

2+2m
(
−m2s4µ

2−2m−m2s3µ
−1+m +

2b(b−m)(b−2m+bm)s4µ−2m

m

+
bm2(b−2m+bm)s3µm

(b−m)2

)
+(−2bm+b2(1+m)+m2

µ)(s4µ
3 +µ

2m(−mµ + s3µ
m))

)
,

s2 =
µ−m

bm(−b+m)2(b−2m+bm)

(
2b5(1+m)s4 +6b3m2(3+m)s4−2b4m(5+3m)s4−m6

µ
2m

+2bm4(2s4 +µ
2m(m− s3µ

m))+b2m3(−2(7+m)s4 +µ
2m(−m+ s3µ

m +ms3µ
m))

)
,

s3 =
m3µ−3m(−8s4 +8mµ2m +12m2µ2m +6m3µ2m +m4µ2m)

8(2+m)3 ,

and s4 is a real free parameter.
Here, our main concern is to discuss the dynamical analysis of the rational map associated with the above

mentioned scheme for multiple roots. First, we are going to recall some dynamical concepts of complex dynam-
ics (see [3]) that we use in this work. Given a rational function R : Ĉ→ Ĉ, where Ĉ is the Riemann sphere, the
orbit of a point z0 ∈ Ĉ is defined as:

{z0,R(z0),R2(z0), . . . ,Rn(z0), ...}.

We analysed the phase plane of the map R by classifying the starting points from the asymptotic behaviour of
their orbits. z f ∈ Ĉ is called a fixed point of R if R(z f ) = z f . A periodic point z of period p > 1 is a point such
that Rp(z) = z and Rk(z) 6= z, for k < p. A preperiodic point is a point z that is not periodic but there exists a k > 0
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such that Rk(z) is periodic. A critical point z∗ is a point where the derivative of the rational function vanishes,
R′(z∗) = 0. Moreover, a fixed point z f is called attractor if |R′(z f )| < 1, superattractor if |R′(z f )| = 0, repulsor
if |R′(z f )| > 1 and parabolic if |R′(z f )| = 1. So, a superattracting fixed point is also a critical point. The fixed
points that are not associated with the roots of the polynomial are called strange fixed points.

On the other hand, the basin of attraction of an attractor α ∈ Ĉ is defined as the set of starting points whose
orbits tend to α:

A(α) = {z0 ∈ Ĉ : Rn(z0)→ α,n→ ∞}.

In the Fatou set of the rational function R, F (R) is the set of points z ∈ Ĉ whose orbits tend to an attractor
(fixed point, periodic orbit or infinity). Its complementary set in Ĉ is the Julia set, J (R). That is, the basin of
attraction of any fixed point belongs to the Fatou set and the boundaries of these basins of attraction belong to
the Julia set.

By using these tools of complex dynamics, we study the general convergence of family (1) on polynomials
with multiple roots of multiplicity 2 and 3. It is known that the roots of a polynomial can be transformed by
an affine map with no qualitative changes on the dynamics of the family. So, we can use the polynomials
p(z) = (z−a)2(z−b) and q(z) = (z−a)3(z−b).

The rest of the paper is organised as follows. In Section 2 the complex dynamics of the family is studied on
low-degree polynomials with multiplicity m = 2, by means of an analysis and the strange fixed points and their
stability, the critical points and confirming the results by dynamical planes, showing curious behaviour in terms
of stability and convergence to the roots. In Section 3 this study is extended to the case of multiplicity 3, finding
the similitude and differences with respect to the case of double roots. Finally, some conclusions and remarks
are presented in Section 4.

2 Dynamical analysis of polynomials with double roots in the complex plane

In order to study the stability of the family on polynomials with double roots, the operator of the family on
p(z) is calculated, obtaining a rational function that depends, not only on s4, but also on parameters a and b. In
order to eliminate these parameters, the following transformation is usually applied.

Blanchard [3] considered the conjugacy map (a Möbius transformation)

h(z) =
z−a
z−b

,

with the following properties:

i) h(∞) = 1, ii) h(a) = 0, (iii) h(b) = ∞,

and proved that, for quadratic polynomials, Newton’s operator is conjugate to the rational map z2. In what
follows, we use this transformation in order to avoid the appearance of parameters a and b in the rational
functions resulting from applying the fixed point operator of the iterative method on polynomials p(z) and q(z).

Next, we are going to analyze, under the dynamical point of view, the stability and reliability of the members
of the proposed family. First, we will study the fixed points of the rational function that are not related to the
original roots of the polynomial and then the free critical points, that is, the critical points of the associated
rational function different from 0 and ∞.

For p(z), the operator associated with family (1) is the rational function Mp(z,s4,a,b) depending on the
parameters s4, a and b. On the other hand, operator Mp(z,s4,a,b) on p(z) is conjugated to operator Op(z,s4),

Op(z,s4) = (h◦M ◦h−1)(z) =
N1

D1
, (2)
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where

N1 = z4(112+388z+546z2 +409z3 +196z4 +66z5 +10z6 + z7 + s4(−2−2z+ z2)3),

D1 = 256+896z+1168z2 +528z3−8(37+ s4)z4−4(125+6s4)z5−3(87+4s4)z6 +4(−17+4s4)z7

+(−2+6s4)z8 +(8−6s4)z9 +(−1+ s4)z10.

Let us observe that the parameters a and b have been obviated in Op(z,s4).

2.1 Fixed and critical points

As we have seen, the fourth-order family of iterative methods (1), applied on the polynomial p(z), after
Möbius transformation, gives rise to the rational function (2), depending on parameter s4. It is clear that this ra-
tional function has not only 0 and ∞ as fixed points but also different strange fixed points (that do not correspond
to the roots of p(z)), r1(s4) = 1 and the roots of the high-degree polynomial,

pr(t) = 256+1152t +2320t2 +(2736+8s4)t3 +(2052+24s4)t4 +(1006+12s4)t5 +(336−16s4)t6

+(72−6s4)t7 +(4+6s4)t8 +(2− s4)t9,

that are denoted by ri(s4), i = 2, ...,10. Nevertheless, the complexity of the operator can be lower depending on
the value of the parameter, as we can see in the following result.

Theorem 1. The number of strange fixed points of operator Op(z,s4) is ten (including r1(s4) = 1, except for
s4 = 64), except in the following cases:

(i) For s4 = 370, there are nine strange fixed points and

Op(z,s4) = z4 −2848−8492z−3894z2 +6329z3 +2416z4−2154z5 +380z6 + z7

256+896z+1168z2 +528z3−3256z4−9380z5−4701z6 +5852z7 +2218z8−2212z9 +369z10 ,

(ii) For s4 = 64, there are nine strange fixed points and

Op(z,s4) =−z4 400+1548z+1770z2 +337z3−243z4 +75z5 + z6

256+1152z+2320z2 +2848z3 +2040z4 +4z5−1025z6−69z7 +313z8−63z9 ,

(iii) For s4 =−368, there are eight strange fixed points and

Op(z,s4) = z4 3056+9220z+4962z2−5479z3−2012z4 +2274z5−358z6 + z7

256+896z+1168z2 +528z3 +2648z4 +8332z5 +4155z6−5956z7−2210z8 +2216z9−369z10 ,

(iv) For s4 = 1, there are seven strange fixed points and

Op(z,s4) = z4 13+26z+18z2 +5z3 + z4

32+64z+26z2−25z3−28z4−8z5 +2z6 .

As we will see in the following, not only the number but also the stability of the fixed points depend on the
parameter of the family. The expression of the differential operator, necessary for analyzing the stability of the
fixed points and for obtaining the critical points, is

O′p(z,s4) =
N2

D2
, (3)

where

N2 = z3(2+ z)3(4+5z+2z2 + z3)(3584+15072z+25192z2 +19908z3 +5970z4−2145z5−3300z6

−1707z7−366z8−23z9 +24z10− z11 + s4(−2−2z+ z2)2

(−64−104z+84z2 +80z3−50z4−39z5−16z6 + z7)),
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and

D2 = (256+896z+1168z2 +528z3−8(37+ s4)z4−4(125+6s4)z5−3(87+4s4)z6 +4(−17+4s4)z7

+(−2+6s4)z8 +(8−6s4)z9 +(−1+ s4)z10)2.

As it comes from the double root of the polynomial, it is clear that z = 0 is always a superattracting fixed
point. However, the stability of z=∞ and the rest of fixed points change depending on the values of the parameter
s4. In the following results we establish the stability of both fixed points.

Theorem 2. The character of z = ∞ depends on s4 as follows:

(i) If |s4−1|< 1, then z = ∞ is an attractor, being superattractive if s4 = 1.

(ii) When |s4−1|= 1, z = ∞ is a parabolic point.

(iii) If |s4−1|> 1, then z = ∞ is repulsive.

Proof. In order to analyze the stability of z = ∞, its inverse relationship with z = 0 (induced by Möbius
transformation) is used to define the associated rational function:

In f (z,s4) =
1

Op(1/z,s4)
= z

(
s4(−1+2z(1+ z))3− (1+ z)

(
1+ z+4z2))

−1+ z(10+ z(−17+8z(−10+ z(−7+2z(1+ z)(5+4z)))))
−1+ z(−10+ s4(−1+2z(1+ z))3− z(66+ z(196+ z(409+2z(273+2z(97+28z))))))

The rest of the proof is straightforward as the stability function of the infinity is |In f ′(0,s4)|= |s4−1|.

Theorem 3. The character of the strange fixed point z = 1 is as follows (except for s4 = 64):

(i) If |s4−64|> 432, then z = 1 is an attractor and it cannot be a superattractor.

(ii) When |s4−64|= 432, z = 1 is a parabolic point.

(iii) If |s4−64|< 432, then z = 1 is a repulsor.

Proof. It can been easily seen that

O′p(1,s4) =
432

64− s4
.

So, ∣∣∣∣ 432
64− s4

∣∣∣∣≤ 1 is equivalent to 432≤ |64− s4|.

Let us consider s4 = a+ ib as an arbitrary complex number. Then,

4322 ≤ 642−128a+a2 +b2,

that is,

(a−64)2 +b2 ≥ 4322.

Therefore,

|O′p(1,s4)| ≤ 1 iff |64− s4| ≥ 432.

In addition, if s4 is such that |64−s4|< 432, then |O′p(1,s4)|> 1 and z = 1 is a repulsive point, provided s4 6= 64,
for which z = 1 is not a fixed point.
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The analysis of the stability function of the strange fixed points, |O′p(ri(s4),s4)|, where i = 1,2, . . . ,10 gives
us relevant information about their stability and, therefore, on the whole stability of the iterative methods of the
class. In case i = 1, this function is quite simple and can be studied analytically (Theorem 3) (see the stability
function in Figure 1(a)); in other cases, the analytical expression of the strange fixed points is not available
(as they are known as a roots of a certain high-degree polynomial), and thus, they are studied graphically. In
Figure 1(b), the stability functions of ri(s4), for i = 2,3, . . . ,10, are plotted, presenting a big area in the region
[0,10]× [−4,4] of the complex plane where one of them is attracting. However, out of this region and inside the
much bigger are of repulsion of z = 1, only the roots are attracting fixed points.

(a) s1(s4) = 1 (b) si(s4),i = 2,3, . . . ,10

Fig. 1 Stability functions of the strange fixed points

Regarding the critical points, they are calculated by solving O′p(z,s4) = 0 and are presented in the following
result. The relevance of the knowledge of the free critical points (critical points different from those associated
with the roots) is the following known fact: each invariant Fatou component is associated with, at least, one
critical point.

Theorem 4. The free critical points of operator Op(z,s4) are cr1 =−1, cr2 =−2, cr3 =
1
2(−1− i

√
15), cr4 =

1
2(−1+ i

√
15), which are preimages of the strange fixed point z = 1 (called pre-periodic critical points), and the

roots of polynomial

pc(t) = 3584−256s4 +(15072−928s4)t +(25192−496s4)t2 +(19908+1248s4)t3 +(5970+792s4)t4

+(−2145−996s4)t5 +(−3300−612s4)t6 +(−1707+156s4)t7 +(−366+114s4)t8

+(−23+25s4)t9 +(24−20s4)t10 +(−1+ s4)t11,

are denoted by cri, i = 5,6, ...,15. So, the number of free critical points (including the pre-periodic ones) is
fifteen, except in the following cases:

(i) For s4 = 14, cr7 = 0 and there are only fourteen free critical points.

(ii) For s4 = 64, there are only thirteen free critical points.

(iii) For s4 = 1, cr2 =−2 is not a free critical point and there are only ten free critical points.

(iv) For s4 = 0, cr14 = cr3, cr15 = cr4 and cr1 = −1 are not free critical point and there are only nine free
critical points.
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2.2 Dynamical planes

In this section, we show, by means of dynamical planes, the qualitative behaviour of the different elements
of the proposed family by using the conclusions obtained in the analysis of the stability of strange fixed points.

The dynamical plane associated with a value of the parameter s4, that is, obtained by iterating an element
of family, is generated by using each point of the complex plane as initial estimation (we have used a mesh of
800×800 points). We paint in blue the points whose orbit converges to infinity, in orange the points converging
to zero (with a tolerance of 10−3), in green, red, etc. the points whose orbit converges to one of the strange fixed
points and in black the points whose orbit reaches the maximum number of 80 iterations without converging to
any of the fixed points. The colour is brighter for lower number of iterations needed to converge. Moreover, all
fixed points appear marked as a white circle in the figures, with a white star if the fixed point is an attractor and
with a white square if the point is critical.

Some values of the parameter whose associated iterative method shows stable behavior with convergence
only to the "roots" (multiple z = 0 or simple z = ∞) are presented in Figure 2. Depending on the value of the
parameter, only the basin of attraction of z = 0 is observed (global convergence to the multiple root, as is shown
when we widen the rectangle where Figures 2(a) to 2(c) and 2(g) to 2(l) are plotted), or both z = 0 and z = ∞

appear (Figures 2(d), 2(e) and 2(f)).
On the other hand, unstable behaviour is found when we choose values of the parameter in the stability

region of attracting strange fixed points (Figures 3(a), 3(b), 3(e), 3(f) and 3(i)) or attracting periodic orbits
(Figures 3(c), 3(d), 3(g) and 3(h)). The periodic orbits are marked with yellow lines, with yellow circles at the
elements of the orbit (Figures 3(d) and 3(h)).

3 Complex dynamics on cubic roots

For q(z) = (z− a)3(z− b), the operator associated with family (1) is the rational function Mq(z,s4,a,b)
depending on parameters s4, a and b. On the other hand, by means of Möbius transformation, operator
Mq(z,s4,a,b) on q(z) is conjugated to operator Oq(z,s4),

Oq(z,s4) = (h◦M ◦h−1)(z) =
N3

D3
, (4)

where

N3 = z4(8000s4(−81−90z+15z2 +20z3)3 +729(9+5z)2(8430885+19582398z+19680084z2 +10889802z3

+3773466z4 +911250z5 +128700z6 +3750z7 +625z8)),

and

D3 = 2353579470675+7426850774130z+8915707713357z2 +3315802825188z3−42515280(81351+100s4)z4

−354294(14946147+40000s4)z5−669222(4780377+20000s4)z6 +5832(−168866289+440000s4)z7

+3645(−24326001+2600000s4)z8 +12150(3992733+184000s4)z9−16875(−1320219+121280s4)z10

−67500(−50787+11200s4)z11 +56250(−7047+2560s4)z12 +31250(−5103+2048s4)z13.

Let us observe that the parameters a and b have been obviated in Oq(z,s4).

3.1 Fixed and critical points

As we have seen, the fourth-order family of iterative methods (1), applied on the polynomial q(z), after
Möbius transformation, gives rise to the rational function (4), depending on parameter s4. It is clear that this ra-
tional function has not only 0 and ∞ as fixed points, but also different strange fixed points (that do not correspond
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(a) s4 =−3 (b) s4 =−2 (c) s4 =−2

(d) s4 = 1 (e) s4 = 1.5 (f) s4 = 2

(g) s4 = 14 (h) s4 = 15 (i) s4 = 15

(j) s4 = 50 (k) s4 = 64 (l) s4 = 64

Fig. 2 Dynamical planes with stable behavior
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(a) s4 =−380 (b) s4 =−350 (c) s4 =−1

(d) s4 =−1 periodic orbit (e) s4 = 2.5 (f) s4 = 3.808

(g) s4 = 370 (h) s4 = 370 periodic orbit (i) s4 = 0.99724+0.187187i

Fig. 3 Dynamical planes with unstable behavior

to the roots of q(z)): R1(s4) = 1 and the roots of the high-degree polynomial, are denoted by Ri(s4), i = 2, ...,13:

qR(t) = 2353579470675+9780430244805t +18696137958162t2 +(21514105454985+4251528000s4)t3

+(16345973527353+14171760000s4)t4 +(8450100030114+13384440000s4)t5

+(2959835140332−2566080000s4)t6 +(679038108930−9477000000s4)t7

+(90517688325−2235600000s4)t8 +(2871257625+2046600000s4)t9

−(123018750−756000000s4)t10 +(676603125−144000000s4)t11 +(170859375−64000000s4)t12.

Nevertheless, the complexity of the operator can be lower depending on the value of the parameter, as we can
see in the following result.
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Theorem 5. The number of strange fixed points of operator Oq(z,s4) is thirteen (including R1(s4) = 1, except
for s4 = 442333143/982600), excluding the following cases:

(i) For s4 = 442333143/982600, the fixed point operator is simplified. In this case, R1(s4) is not a fixed point
and there are twelve strange fixed points, obtained as roots of a polynomial of this degree.

(ii) For s4 = 40095/8, there are twelve strange fixed points: z = −3
5 , z = 1, z = 3

25

(
3±8

√
6
)

and the roots
of an 8th-degree polynomial.

(iii) For s4 =−19744461261/4913000, there are eleven strange fixed points of Oq(z,s4), calculated as z = 1,

z = 3
73

(
−37±8

√
2
)

and the roots of an 8th-degree polynomial.

(iv) For s4 = 2187/1000, there are nine strange fixed points (z = 1 and the roots of a polynomial of degree
eight).

(v) For s4 = 0, there are again nine strange fixed points (z = 1 and the roots of a polynomial of degree eight).

As we will see in the following, not only the number but also the stability of the fixed points depend on the
parameter of the family. The expression of the differential operator, necessary for analyzing the stability of the
fixed points and for obtaining the critical points, is

O′q(z,s4) =
N4

D4
, (5)

where

N4 = 1458z3(3+ z)4(9+5z)3(45+6z+5z2)
[
(16000s4(81+90z−15z2−20z3)2

(−98415−115911z+130491z2 +93636z3−51840z4−48735z5−14025z6−1950z7 +125z8)

−729(9+5z)2(−20487050550−49465642545z−45092237409z2−11214605763z3 +10551446127z4

+10478743686z5 +4604951574z6 +1167748650z7 +94138200z8−35569125z9−12853125z10

−1884375z11 +109375z12))
]
,

and

D4 =
[
2353579470675+7426850774130z+8915707713357z2 +3315802825188z3

−42515280(81351+100s4)z4−354294(14946147+40000s4)z5−669222(4780377+20000s4)z6

+5832(−168866289+440000s4)z7 +3645(−24326001+2600000s4)z8 +12150(3992733+184000s4)z9

−16875(−1320219+121280s4)z10−67500(−50787+11200s4)z11 +56250(−7047+2560s4)z12

+31250(−5103+2048s4)z13]2
.

Regarding the stability of the fixed points, it is clear that 0 is a superattractive fixed point. However, as in
case m = 2, the stability of the other fixed points change depending on the values of the parameter s4. In the
following results we establish the stability of z = ∞ and the strange fixed point z = 1, whose proofs are similar
to those of Theorem 3, and thus, they are omitted.

Theorem 6. The stability of the fixed point z = ∞ is defined as follows:

(i) If |s4− 5103
2048 |<

729
4096 , then z = ∞ is attracting and superattracting for s4 =

5103
2048 .

(ii) For |s4− 5103
2048 |=

729
4096 , z = ∞ is a parabolic point.
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(iii) If |s4− 5103
2048 |>

729
4096 , then z = ∞ is repulsive.

Theorem 7. The character of the strange fixed point z = 1 is as follows (except for s4 = 442333143/982600, as
in this case z = 1 is not a fixed point ):

(i) If |4913000s4−2211665715|> 21956126976, then z = 1 is an attractor and it cannot be a superattractor.

(ii) When |4913000s4−2211665715|= 21956126976, z = 1 is a parabolic point.

(iii) If |4913000s4−2211665715|< 21956126976, then z = 1 is a repulsor.

Let us remark that area of the complex plane where z = 1 is repulsive has been highly incremented with
respect to the case in m = 2 (see Figure 4). This makes the family even more stable, as the study of the stability
of the rest of strange fixed points establishes.

(a) z = ∞ (b) R1(s4) = 1

Fig. 4 Stability function of the fixed points z = ∞ and z = 1, for m = 3

Regarding the rest of strange fixed points, we remark some interesting aspects that have been stated both
numerical and graphically:

• Most of them are repulsive, for any complex value of parameter s4. Only four of them can be attractive or
superattractive.

• Four of the strange fixed points are superattracting if s4 ≈ 2.685± 0.378i. Around these values, their
respective stability functions are lower than one and they are attractive (see Figure 5(b)).

• In addition, one of these points is superattracting if s4 ≈ −2410.18± 331.827i. A big area surrounding
these two values of s4 forms the stability function of the strange fixed points (see also Figure 5(b)).

For the global behaviour of the strange fixed points, Figure 5(a) can be observed. In it, it is clear that,
except for values of parameter close to 2.5, the area around the origin is completely stable for the methods, as
the strange fixed points are repulsive. The rest of dangerous behaviour is, moreover, very far from the standard
values of a parameter in real applications.

For better understanding the behaviour of the elements of the family applied on polynomials with cubic
multiplicity, it is necessary to analyse the number of critical points of the associated operator, as a lower num-
ber decreases the number of attracting areas different from the roots. In the following result these items are
discussed, from the analysis of the equation O′q(z,s4) = 0.
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(a) Ri(s4), i = 2,3, . . . ,13 (b) A detail

Fig. 5 Stability functions of the strange fixed points Ri(s4), i = 2,3, . . . ,13 for m = 3

Theorem 8. The free critical points of rational function Oq(z,s4) are CR1 =−3, CR2 =−9/5, CR3 =
3
5(−1−

2i
√

6), CR4 = 3
5(−1+ 2i

√
6) and the roots CRi, i = 5,6, ...,18, of a 14th-polynomial, except in the following

cases:

(i) If s4 = 187353/1600, then CR6 = 0 and there are only seventeen free critical points.

(ii) For s4 = 442333143/982600, the operator is simplified and there are only sixteen free critical points.

(iii) If s4 = 2187/1000, then CRi =−3, i ∈ {1,5,6,7,8} is not a critical point and there are only thirteen free
critical points.

(iv) For s4 = 0, CR6 =CR7 =CR2 =−9/5; on the other hand, CR3 =
3
5(−1−2i

√
6) and CR4 =

3
5(−1+2i

√
6)

are not critical points. So, there are only twelve free critical points, z =−3, z =−9/5 and the roots of a
10th-degree polynomial.

Let us also remark that the first critical points CR1 = −3, CR2 = −9/5, CR3 =
3
5(−1− 2i

√
6) and CR4 =

3
5(−1+2i

√
6) are, for all values of s4, preimages of the fixed point z = 1. Therefore, they are preperiodic points

and their orbits depend on the stability of the strange fixed points they converge to.

3.2 Dynamical planes

In this section, some of the values of s4 that have appeared along the analysis are used to plot the respective
dynamical planes and observe the performance of the method. In the studied cases, convergence to the multiple
root z = 0 or to both z = 0 and z = ∞ are observed, depending on the value of the parameter. For the first case,
see Figures 6(a) to 6(e) and 6(g) to 6(i); regarding the former case, a dynamical plane for a superattracting z = ∞

is shown in Figure 6(f). As in the previous section, all the dynamical planes have been obtained by using a mesh
of 800×800 points and a maximum of 80 iterations.

There have been also appeared some values of s4 corresponding to unstable behaviour, under different cir-
cumstances, when we have analysed the stability region of attracting strange fixed points (Figures 7(b), 7(c),
7(e) and 7(f), but also some of them correspond to attracting periodic orbits Figures 7(a), 3(d), 3(g) and 3(h)).
The periodic orbits are marked with yellow lines, with yellow circles at the elements of the orbit. Let us also
remark that in any basin of attracting, including those of periodic orbits, some white square corresponding to
critical points appear.
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(a) s4 = 0 (b) s4 = 10 (c) s4 =−3

(d) s4 = 500 (e) s4 = 500, a detail (f) s4 = 5103/2048

(g) s4 = 442333143/982600 (h) s4 = 442333143/982600 a detail (i) s4 = 187353/1600

Fig. 6 Dynamical planes with stable behavior for m = 3

4 Conclusions

In this article, investigation has been made on the complex plane for class (1) to reveal its dynamical be-
haviour on polynomials with double and triple roots. The dynamical study of family (1) of iterative methods
allows us to select iterative schemes with good stability and reliability properties and detect iterative meth-
ods with dangerous numerical behaviour. Indeed, wide regions for parameter s4 have been obtained where the
schemes have very good stability properties, mainly for the multiple root. In fact, the simple root does not appear
as attracting fixed points for many values of the parameter.
Acknowledgement: This research was partially supported by Ministerio de Ciencia, Innovación y Universi-
dades PGC2018-095896-B-C22 and Generalitat Valenciana PROMETEO/2016/089.
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(a) s4 = 5 (b) s4 = 2.685+0.378i (c) s4 = 3.213

(d) s4 = 5066 (e) s4 = 40095/8 (f) s4 =−2410.18+331.827i

Fig. 7 Dynamical planes with unstable behavior
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