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Abstract
We consider a heteroclinic network in the framework of winnerless competition, realized by generalized Lotka-Volterra
equations. By an appropriate choice of predation rates we impose a structural hierarchy so that the network consists of
a heteroclinic cycle of three heteroclinic cycles which connect saddles on the basic level. As we have demonstrated in
previous work, the structural hierarchy can induce a hierarchy in time scales such that slow oscillations modulate fast
oscillations of species concentrations. Here we derive a Poincaré map to determine analytically the number of revolutions
of the trajectory within one heteroclinic cycle on the basic level, before it switches to the heteroclinic connection on the
second level. This provides an understanding of which parameters control the separation of time scales and determine the
decisions of the trajectory at branching points of this network.
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1 Introduction

Nonlinear dynamics of heteroclinic networks is frequently found in ordinary differential equations under
certain constraints like symmetries [1] or delay [2]. It is predicted in models of coupled phase oscillators [2, 3],
vector models [2], pulse-coupled oscillators [4] and models of winnerless competition [5] that we consider in the
following. Applications are manifold and range from social [6, 7] and ecological [5, 8] systems, to computation
[4] and neuronal [9–16] networks. As it was emphasized in the work of V. Afraimovich and his coworkers [5,
9,10,12, 17], heteroclinic sequences in models of winnerless competition predict transient dynamics that shares
features with cognitive dynamics: being simultaneously sensitive to the input and robust against perturbations.
According to [17], heteroclinic dynamics may describe the binding between different information modalities in
the brain (without an intrinsic hierarchy) [9], or chunking dynamics, which the brain uses to perform information
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processing of long sequences by splitting them into shorter information items [10]. There the hierarchy in time
scales of chunking dynamics results from additional equations to the generalized Lotka-Volterra equations.

In our previous work [18] we considered a hierarchical heteroclinic network composed of a (large, superor-
dinated) heteroclinic cycle (LHC) of three (small) heteroclinic cycles (SHCs). Each of these SHCs incorporates
three saddles, corresponding to single species that temporarily survive out of the nine species in total. In [18] we
have demonstrated how an appropriate choice of predation rates can steer the trajectory through the heteroclinic
network in a desired way. The choice of predation rates is determined by conditions on the eigenvalues of the
Jacobian at the saddles. In particular we observed a separation of time scales between the (fast) oscillations
within the SHCs and the (slow) oscillations in the LHC that modulate the fast oscillations such that the scales
differ by an order of magnitude. It is this aspect that is of interest in view of applications to neuronal dynamics,
where a modulation of fast oscillations via slow ones is commonly observed among the multiple time scales in
the brain.

In this paper we derive a Poincaré map that allows to predict how many revolutions the trajectory stays
within an SHC before it switches to a heteroclinic connection of the LHC, provided that we start already in the
vicinity of a saddle. The subsequent evolution of the trajectory is not covered by this map: after the switch
towards a heteroclinic connection of the LHC it may either turn to a new, second SHC, or stay within the LHC.
In section 2 we present the model with the choice of predation rates, in section 3 we derive the Poincaré map
and present its predictions in section 4 before concluding in section 5.

2 The model

We consider a hierarchical heteroclinic network as described in [18], which consists of three small hetero-
clinic cycles (SHCs) that are the saddles of a large heteroclinic cycle (LHC), c.f. fig. 1. The defining equation
is

∂tsi = si− γs2
i −∑

j 6=i
Ai, jsis j i ∈ {1, . . . ,9} , (1)

where si ∈ R+
0 in the original Lotka-Volterra context denotes the concentration of species i, γ the death

rate, while the set of Ai, j constitutes the predation matrix A, which determines the topology of the hetero-
clinic network. For simplicity, we define the index j for given i of Ai j directly by the five index functions
j = es(i) = ((i + 2) mod 9) + 1 (that returns the index of the expanding small direction es(i)), in analogy
el(i) = (i mod 3) + 1+ 3b i−1

3 c (expanding large), cs(i) = es2(i) (contracting small), cl(i) = el2(i) (contract-
ing large) and tv(i) = {1, . . . ,9}\{i,es(i),el(i),cs(i),cl(i)} for transverse directions at saddle σi. The resulting
topology of the hierarchical heteroclinic network is displayed in fig. 1. We set Ai,i = 0, Ai,cs(i) = c, Ai,cl(i) = d,
Ai,es(i) = e, Ai,el(i) = f , and Ai,tv(i) = r. By this degeneracy of parameter values we guarantee Z3×Z3 permuta-
tion symmetry (both between species within one SHC and between the SHCs). As we have shown in [18], we
can steer the trajectory along selected paths of the heteroclinic network and guarantee its stability via conditions
on the eigenvalues of the Jacobian at the corresponding saddles. These conditions imply for the remaining rate
parameters:

0 < e < f < γ ∧ c > 2γ− e ∧ d > 2γ− e ∧ r > γ . (2)

An important property of eq. (1) is that the coordinate planes are invariant sets. This guarantees the existence
of heteroclinic orbits. Usually such invariant planes are the result of reflection symmetries in the equations of
motion. Here, such a symmetry is not manifest. However, since we restricted si≥ 0, we can extend our definition
to include negative values by making the coordinate change si 7→ r2

i . This yields symmetric dynamics in the other
29−1 hyperoctants, related by the reflections ρi : ri 7→ −ri. In the new coordinates (and after rescaling time by
a factor of 2 for convenience) the equations (1) read

∂tri = ri− γr3
i −∑

j 6=i
Ai, jrir2

j i ∈ {1, . . . ,9} . (3)
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Fig. 1 Sketch of the topology of the hierarchical heteroclinic network. Black and grey dashed lines mark heteroclinic
orbits with arrows indicating their directions. The red solid line gives an example for a trajectory in the vicinity of the
network.

They are now equivariant under the nine reflections ρi, i.e., ∂t(ρkri) = ρk(∂tri). Due to this, the heteroclinic
network is structurally stable to perturbations as long as they do not break these symmetries.

Another effect of this coordinate change is a simplification of the linearized dynamics at the saddles. The
Jacobian of eq. (3), evaluated at a saddle (ri 6= 0∧ r j = 0∀ j 6= i), has only entries on its diagonal, while the
Jacobian of eq. (1) has additional entries in one row. In the following section we shall see why this simplification
is useful.

While in all of the following we work with eq. (3), our results are still valid for the special case si ≥ 0∀i,
corresponding to eq. (1) after reversing the coordinate change.

3 Poincaré sections and return map

Our goal is to construct a Poincaré map to determine the number of revolutions in an SHC before the
trajectory turns to the heteroclinic connection of the LHC. We derive the return map by proceeding in the
standard way, e.g. similarly to [19]. First, we determine local maps φabc that characterize the dynamics in the
vicinity of each saddle. Then, we argue about the form of the global maps ψbc, which transport the trajectory
between the saddles’ vicinities. Next, we compose local map and global map to find the transition map that
describes one third of a revolution. Finally, three applications of the transition map yield the full return map.

For the local map, we linearize the dynamics at the example of saddle 1 (r∗1 = γ−1/2,r∗j = 0∀ j 6= 1). Therefore
we use local coordinates, i.e., we introduce u1 = r1− γ−1/2 and consider {u1,r2 . . .r9} small, so that terms of
order 2 will be neglected. Thus, the linearized equations are

∂tu1 =−2u1 , ∂tr2 = (1− e
γ
)r2 , ∂tr3 = (1− c

γ
)r3 ,

∂tr4 = (1− f
γ
)r4 , ∂tr5 = (1− r

γ
)r5 , ∂tr6 = (1− r

γ
)r6 , (4)

∂tr7 = (1− d
γ
)r7 , ∂tr8 = (1− r

γ
)r8 , ∂tr9 = (1− r

γ
)r9 .

At saddle 1, the trajectory takes one of two paths: either to saddle 2 (staying inside the SHC) or onwards to
saddle 4, c.f. fig. 2(a). Each possibility is described by its own local map, φ312 and φ314, respectively. The domain
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Fig. 2 (a) Schematic sketch of the vicinity of saddle σ1, including the cross-sections studied in section 3 together with
the local maps φ312 and φ314 and the global map ψ12. (b) Sketch of phase space near the saddle σ1 showing contracting
small (r3), expanding small (r2), and radial (r1) directions. The solid line gives an example of a trajectory in the vicinity
of the heteroclinic network. Dashed lines mark the heteroclinic orbits. While the deviation x is highlighted in this
projection, y0 cannot be visualized without the r4 direction.

and codomains of these maps are the cross sections H in,3
1 = {(u1,r2 . . .r9) : r3 = h}, Hout,2

1 = {(u1,r2 . . .r9) : r2 =

h} and Hout,4
1 = {(u1,r2 . . .r9) : r4 = h}. The value of h > 0 thereby is the distance of the Poincaré sections from

the saddles. It must be chosen small enough that linearizing the dynamics is justified and the local maps φi jk
approximate the true dynamics sufficiently well. However, if h is chosen too small, the dynamics at the other
side of the section is not well approximated by the linearized dynamics of the global map (see below). With
respect to the Z3×Z3 symmetry, we set h the same for all cross sections without loss of generality.

We now integrate the linearized equations (4) from time T0 of crossing H in,3
1 to time T1 of hitting either Hout,2

1
or Hout,4

1 (whichever is first determines the subsequent path). We use the notation ri,0 = ri(T0) and ri,1 = ri(T1)
(and equally ui,0 = ui(T0) and ui,1 = ui(T1)). First we focus on the local map φ312 (at σ1, coming from σ3 and
going to σ2), i.e., staying in the SHC. Figure 2(b) shows a sketch. The integration yields

φ312(r1,0,r2,0,r3,0 = h,r4,0,r5,0,r6,0,r7,0,r8,0,r9,0) = (5)(
(γ−

1
2 +(r1,0− γ

− 1
2 ))(

r2,0
h )

2γ

γ−e ,h,( r2,0
h )

c−γ

γ−e h,( r2,0
h )−

γ− f
γ−e r4,0,(

r2,0
h )−

γ−r
γ−e r5,0,

(
r2,0
h )−

γ−r
γ−e r6,0,(

r2,0
h )

d−γ

γ−e r7,0,(
r2,0
h )−

γ−r
γ−e r8,0,(

r2,0
h )−

γ−r
γ−e r9,0

)
for r

γ− f
γ−e
2,0 > r4,0h

γ− f
γ−e−1 .

The map φ314 looks similar, but with its fourth coordinate replaced by h (it maps to Hout,4
1 ) and its second

coordinate by (
r4,0
h )−

γ−e
γ− f r2,0 < h. Note that the condition r

γ− f
γ−e
2,0 > r4,0h

γ− f
γ−e−1, distinguishing the domains of both

maps, reflects the fact that while the second coordinate of φ312 has already reached a distance h to the saddle,

the fourth coordinate of φ312, ( r2,0
h )−

γ− f
γ−e r4,0, lags behind, so it is still smaller than h.

We abstract from this concrete case to the general local mappings φcs(i),i,es(i) utilizing the index functions
from above. From eq. (5) we observe that

ri,1 = (γ−
1
2 +(ri,0− γ

− 1
2 ))(

res(i),0
h )

2γ

γ−e , r j,1 = (
res(i),0

h )−
γ−r
γ−e r j,0 ∀ j ∈ tv(i), (6)

res(i),1 = h, rel(i),1 = (
res(i),0

h )−
γ− f
γ−e rel(i),0, (7)

rcs(i),1 = (
res(i),0

h )
c−γ

γ−e h, rcl(i),1 = (
res(i),0

h )
d−γ

γ−e rcl(i),0 . (8)
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Next, we turn to the global map ψ1,2 : Hout,2
1 → H in,1

2 . We will assume that H in,1
2 is reached at time T2, and

define r j(T2) = r j,2. Since the original equations (3) are equivariant under the reflections ρi, the global maps
must as well fulfill this property, i.e., ψ1,2(ρir) = ρiψ1,2(r). More specifically: if

ψ1,2(u1,1,h,r3,1, . . .r j,1, . . .r9,1) = (h,r2,2,r3,2, . . .r j,2, . . .r9,2) , (9)

then by equivariance we also have

ψ1,2(u1,1,h,r3,1, . . .−r j,1, . . .r9,1) = (h,r2,2,r3,2, . . .−r j,2, . . .r9,2) . (10)

As a result, taking only lowest order terms into account we find

ψ1,2(u1,1,h,r3,1, . . .r9,1) = (h,a0 +a1u1,1 + ∑
j≥3

a jr2
j,1,b3r3,1, . . .b9r9,1) , (11)

for some constants ak,b3, . . .b9. Thus, there is no “mixing” of variables due to the reflection symmetries (apart
from the radial coordinate). Apparently Zn

2 symmetries in general support the assumption that the global map
acts as the identity [20]. We can thus derive the transition map gi = ψi,es(i) ◦φcs(i),i,es(i) by describing its action
on each coordinate, to find the variables r j at time T2, i.e., r j,2 ∈ H in,i

es(i).

(rcs(i),0)
′′ ≡ ri,2 = h, (rcs( j),0)

′′ ≡ r j,2 = b jr
− γ−r

γ−e

es(i),0r j,0 ∀ j ∈ tv(i), (12)

(ri,0)
′′ ≡ res(i),2 = f (ri,0,res(i),0), (rcs(el(i)),0)

′′ ≡ rel(i),2 = bel(i)r
− γ− f

γ−e

es(i),0rel(i),0, (13)

(res(i),0)
′′ ≡ rcs(i),2 = bcs(i)r

c−γ

γ−e

es(i),0h, (rcs(cl(i)),0)
′′ ≡ rcl(i),2 = bcl(i)r

d−γ

γ−e

es(i),0rcl(i),0 (14)

with f (ri,0,res(i),0) = a0 + a1(ri,0− γ−1/2)(
res(i),0

h )2γ/E +O(r2
j ). The second indices 0 and 2 represent in general

the time instants before and after application of the map gi. Upon the evolution in time, the role of the variables
ri, i ∈ {1, . . . ,9} changes with respect to their directions (es,el,cs,cl). What was a cs(i)-direction before the
map, becomes the direction i at the subsequent saddle. Thus we apply cs(i) to the indices at time T2 (terms in the
middle of eqs. (12) to (14)), using cs(es(i)) = i, cs(cs(i)) = es(i), etc. This way we trace back the origin of the
new directions. The arguments of the double primed terms show how the arguments transform under a generic

gi. For example, res(i),0 transforms to bcs(i)r
c−γ

γ−e

es(i),0h, which is the new variable rcs(i),2 assigned to the contracting
small direction at time T2.

From eqs. (5) and (8) it seems convenient to rescale the variables ri by h−1 and time by h. We thereby
remove the h-dependence of the condition entering eq. (5). A short calculation with eq. (3) shows that this
transformation requires to rescale all parameters (γ,c,d,e, f and r) by a factor of h2. To simplify the notation
we introduce the new parameters

C = h2(c− γ), D = h2(d− γ), E = h2(γ− e),F = h2(γ− f ),R = h2(γ− r) . (15)

Furthermore, it is convenient to rename the variables in a way that they refer at each saddle to the same kind of
direction (es,el,cs,cl, etc.). We thus identify

x = res(i),0, y0 = rel(i),0, yn = res(el(i)),0, yp = rcs(el(i)),0. (16)

The reason why we ignore the remaining variables will become clear in eq. (20) below. The transition map,
restricted to the four variables, gi(x,y0,yn,yp) : H in,cs(i)

i → H in,i
es(i), can now be applied repeatedly. In this way we
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construct the return map g(x,y0,yn,yp) : H in,cs(i)
i → H in,cs(i)

i by stepwise composition:

g1(x,y0,yn,yp) = (Âx
C
E , B̂nynx−

R
E , B̂pypx−

R
E , B̂0y0x−

F
E ) (17)

g2 ◦g1(x,y0,yn,yp) = (Ãx(
C
E )

2
, B̃pypx−

R
E−

RC
E2 , B̃0y0x−

F
E−

RC
E2 , B̃nynx−

R
E−

FC
E2 ) (18)

g(x,y0,yn,yp) = g3 ◦g2 ◦g1(x,y0,yn,yp) = (19)

(Ax(
C
E )

3
,B0y0x−

F
E−

RC
E2−

RC2

E3 ,Bnynx−
R
E−

FC
E2 −

RC2

E3 ,Bpypx−
R
E−

RC
E2−

FC2

E3 ) ,

where B0,Bn,Bp and A remain as constants. For example, the components resulting from an application of
g1 can be read off from the transition map eqs. (12) to (14) as follows: the transformation of x follows from
the left equation in eq. (14), that of y0 from the right equation in eq. (12), using the index relations for index
0 = el(i) = cs( j) = j− 1, so that j = el(i)+ 1 = index n, of yn again from the right equation in eq. (12), now
with n = es(el(i)) = cs( j) = j− 1, so that j = el(i)+ 2 = index p, and for yp using the right equation from
eq. (13) and p = cs(el(i)). In the same way the actions of g2 and g3 can be derived.

The condition x
F
E > y0 must be fulfilled at every saddle. In total this yields

x
F
E > y0 , Âx

CF
E2 > B̂nynx−

R
E , Ãx

C2F
E3 > B̃pypx−

R
E−

RC
E2 (20)

as conditions for the domain of g(x,y0,yn,yp). If any condition of eq. (20) is violated, the trajectory will leave the
SHC during this revolution at the respective saddle. At this point it is clear why the restriction to four variables
is justified, as no other variables enter the conditions (20). All information about whether (and when) the switch
to the next SHC happens is contained in x,y0,yn and yp.

4 Results on the ratio between time scales

In the following, we estimate how long (in terms of revolutions) the trajectory spends near one SHC before
switching to the next. Roughly three times this duration defines the time scale of an LHC. This relation defines
a kind of ratio between time scales.

The idea behind the subsequent calculation is the following. Let us assume that we start at point 0 of fig. 3(a).
By applying the return map g, we find the coordinates of the next point 1. The system is still in the domain of
the SHC return map (below the line x

F
E ), so that a further application of g is in order. After the nth application,

the line x
F
E is crossed. Here, the system switches to the next SHC.

We start by recalling the condition for following the heteroclinic connections of the SHC, given by the
domain of the local map eq. (5) together with the definitions eq. (15):

F
E

<
logy0

logx
=: z . (21)

Note that the relevant variable z is the ratio between orders of magnitude of the two “deviations” x and y0
(more precisely, the distances in expanding directions from the saddles in the SHC and LHC). Every revolution
corresponds to applying the return map once. From eq. (19) we find

logy0

logx
7→ logy0 +β logx+ logB

α logx+ logA
, (22)

where α = C3

E3 and β =−F
E −

RC
E2 − RC2

E3 , B = B0 and A as before. Note that the undetermined constants A and B
can be traced back to eq. (19) to the parameters bk in eq. (11), which remain undetermined. Commonly, these
constants from the global maps are either irrelevant for the result (when only stability or convergence statements
should be made, as e.g. in [19,20]), or they are determined numerically if their exact values matter for the result
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Fig. 3 (a) Plot of the coordinates x = res(i) and yi = rel(i) of a real trajectory when passing H in,cs(i)
i ∀i ∈ 1,2,3 (red

⊙
).

The dynamics switches to the subsequent SHC when the line x
F
E is passed after the fifth iteration of the return map g.

Blue ××× mark the analytical prediction starting from point “0” assuming A = 1 = B in eq. (19). When the actual
coefficients A = 1.38,B = 2.42 (read off from the numerical data when the trajectory return to the section H in,cs(i)

i for the
first time) are initially inserted in eq. (19), which then is iteratively applied, the analytical predictions lie precisely on top
of the numerically obtained values. The small red circles below the larger ones indicate a visit of the second and third
saddle within the respective SHCs. (b) Same plot as in panel (a), now including also numerical values of switches
between saddles at the next SHC (green ���), together with the transition leading there (green ���).

(as e.g. in [21]). If we numerically determine A and B, for our choice of parameters they turn out to be of order
1. Therefore neglecting their logarithms in eq. (22), we obtain

logy0

logx
7→ logy0 +β logx+ logB

α logx+ logA
≈ logy0 +β logx

α logx
⇔ z 7→ 1

α
(z+β ) , (23)

with α and β as given above. We now repeatedly apply eq. (23) to eq. (21):

F
E

< z y
F
E

<
1
α

z+
β

α
y

F
E

<
1

α2 z+
β

α2 +
β

α
y · · · , (24)

which generalizes to

F
E

<
1

αn z+β
α−n−1
1−α

, (25)

where we used the geometric series. Assuming equality and solving for n we find a closed expression for the
approximate number of revolutions that the system stays near the SHC for given parameters and initial condition
z > F

E :

n(z) = logα

(1−α)Ez+βE
(1−α)F +βE

. (26)

Note that z ∈ H in,cs(i)
i is an initial value on a cross section already near the heteroclinic network. For arbitrary

initial conditions, first transient dynamics lead towards the heteroclinic network and then determine the initial
values of z.

Up to now we have only taken into account y0 and neglected the remaining conditions in eq. (20). Thus,
any departure from one of the other two saddles will be perceived as the subsequent departure at saddle 1,
introducing an error in n of up to 2

3 . To account for the other two conditions we may either repeat the above
derivation accordingly and separately, starting from eq. (20); or, as we proceed in the following, transforming
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the initial condition so that we start g not at σ1, but at σ2 or σ3. We thus apply g1 and g2 ◦g1 to (x,y0,yn,yp) and
deduce

z1 =
logy0

logx
(27)

z2 =
log B̂nynx−

R
E

log Âx
C
E
≈ E logyn

C logx
− R

C
(28)

z3 =
log B̃pypx−

R
E−

RC
E2

log Ãx
C2

E2

≈
E2 logyp

C2 logx
− ER

C2 −
R
C

. (29)

As a result, for any initial condition (x,y0,yn,yp) ∈ H in,3
1 we find the number of revolutions n during which the

system stays near the SHC as

n = min{n(z1),
1
3 +n(z2),

2
3 +n(z3)} . (30)

In summary, the following approximations entered our calculation: Linearization of the dynamics in the
vicinity of the saddles (resulting in local maps), linearization of the global maps, and fixing the remaining
constants A and B to the value 1. The justification of the linearizations as well as setting A = B = 1 depend on
the choice of h. Note that while the distance h of Poincaré sections from the saddles cancels out of the final
results (eqs. (25) and (30)), the constants A and B do depend on h. How h should be chosen so that A = B = 1 is
a good approximation is subtle. As our tests have shown, if h is chosen too small, the approximation works less
well. There is an intermediate value of h (such as h = 0.1) so that the Poincaré section H in,cs(i)

i at this distance h
is best located in view of applying the local map on one side of the section and the global map on the other side
of the section. Otherwise the domains are not optimally located with respect to the approximations to apply.
Yet, the error that is introduced by A = B = 1 is small (npred. ≈ 4.97 vs. nnum. ≈ 5 in fig. 3(a)). Since setting
A = B = 1 enables the derivation of a closed expression at all, it is certainly useful to estimate the number of
revolutions in this way. (It should noticed that this number anyway fluctuates of the order of one as a function of
the very initial conditions, chosen in the beginning of the time evolution, which then – after transient dynamics
– lead to different initial values for z [18].)

So far the description is complete up to the point of leaving the current SHC. For the subsequent time
evolution we are interested in the questions of (i) whether the system will enter the next SHC or rather continue
along an LHC connection and (ii) how long (in terms of revolutions) the system will stay near the second SHC
if it goes there. Again let us start at saddle σ1 w.l.o.g. Leaving the first SHC corresponds to applying the local
map φ314 and the global map ψ14 thereafter. However, the form of this escape map G1 = ψ14 ◦ φ314 is not
covered by the generic form of gi if it should be used for answering the former questions, though locally the
condition at saddle σ4 is the same as the first one in eq. (20) (x

F
E > y0): When the trajectory approaches Hout,5

4
at distance r5 = h, r7 is required to be smaller than h to continue along the LHC. However, if this prediction
should be made at earlier times, from coordinates before the trajectory escapes at saddle 1 to saddle 4, the map
has to keep track on r7 ≡ w0 that enters condition eq. (31)

B̄1y
D
F
0 w0 <

(
Āy−

R
F

0 yn

) F
E
⇔ B̄1w0 < (Āyn)

F
E y−

R
E−

D
F

0 . (31)

This condition can be derived from the (locally valid) condition (x
F
E > y0) at saddle 4 by taking the inverse of

G1 = ψ14 ◦φ314 to obtain the coordinates prior to the escape from saddle 1. The condition (31) makes manifest
the need for r7.

To answer the second question as to the number of revolutions within the second SHC, further coordinates r8
and r9 must be pursued from the beginning in order to satisfy analogous conditions to the latter two in eq. (20).
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Accordingly the escape map Gi = G1 depends on seven coordinates

Gi(x,y0,yn,yp,w0,wn,wp) =
(

Āy−
R
F

0 yn, B̄1y
D
F
0 w0, B̄2y−

R
F

0 wn, B̄3y−
R
F

0 wp, . . . ,
)

(32)

of which we worked out the four locally relevant ones: apart from y0, playing now the role of the former x at
saddle 1, it depends on three more variables, w0,wn and wp corresponding to r7,r8 and r9 respectively. These
are taking over the role of the former y0, yn and yp, respectively, once the trajectory arrives at Hout,5

4 .
The escape from the first SHC, represented by Gi, is visualized in fig. 3(b), together with the following

revolutions within the second SHC consisting of σ4,σ5 and σ6. It should be further noticed that revolutions
within the second SHC start with φ145, unlike subsequent visits of σ4 where φ645 applies. Moreover, from
fig. 3(b) it can be seen that the “distances” yi of the trajectories to the LHC increase during revolutions within
a single SHC, but decrease from one SHC to the next SHC, while the distances x to the heteroclinics of both
SHCs decrease upon further revolutions, both results in accordance with the expectation.

5 Conclusions and Outlook

In summary, we have demonstrated how to construct a Poincaré map for a hierarchical heteroclinic network.
We worked out the map in detail for predicting the number of revolutions within a small heteroclinic cycle,
before the trajectory turns to the heteroclinic connection in the large cycle. The map reproduced the sensitivity
to the choice of certain rate parameters that we had numerically identified in previous work as the essential
ones for tuning the time scale separation between slow and fast oscillations. It also showed explicitly that the
variation of the number of revolutions within an SHC depends on the initial conditions just before entering the
SHC. We also indicated how to include more coordinates in the Poincaré map if its prediction should comprise
further decisions of the future time evolution of the trajectory (e.g., to turn to a second and third SHC).

A detailed understanding of the time scale separation may not only be relevant for applications in neuronal
dynamics, but also useful in connection with heteroclinic computing [4]. When heteroclinic computing is re-
alized with winnerless competition, a tuned number of revolutions in a heteroclinic cycle may cause a certain
amount of delay. Independently of whether the delay is desired or not, it is calculable via the Poincaré map.

If we furthermore include noise in our model of winnerless competition, it is an open and interesting question
what determines the dwell time for a stay near a saddle if the saddle is a heteroclinic cycle itself. Our preliminary
simulations indicate that a naive generalization of results of [2] is not applicable. According to the results of [2],
the time would be determined by the logarithm of the noise intensity and the eigenvalue of the most unstable
direction. Our results obtained via the Poincaré map – so far without noise – may provide a starting point for
calculating the dwell time under inclusion of noise.
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