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Abstract

The method of isospectral network reduction allows one the ability to reduce a network while preserving the network’s
spectral structure. In this paper we describe a number of recent applications of the theory of isospectral reductions. This
includes finding hidden structures, specifically latent symmetries, in networks, uncovering different network hierarchies,
and simultaneously determining different network cores. We also specify how such reductions can be interpreted as dy-
namical systems and describe the type of dynamics such systems have. Additionally, we show how the recent theory of
equitable decompositions can be paired with the method of isospectral reductions to decompose networks.

Keywords: Isospectral Network Reductions; Latent Symmetry; Network Hierarchy, Network Core; Equitable Decomposition

To the memory of Valya Afraimovich

1 Introduction

Arguably one of the major scientific buzzword of our time is “Big Data." Most often when talking about
Big Data people are referring to some large network belonging to one of the social, biological, or technological
sciences. In practice, the ways these networks are analyzed are as varied as the networks themselves. However,
in each case the hope is of finding some way of reducing these extremely large networks to smaller more
manageable systems while somehow maintaining the network’s important features.

In this paper we describe the theory of isospectral network reductions. This is a method that allows us
the ability to reduce a network while preserving the large majority of the network’s spectral structure, i.e. the
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eigenvalues and eigenvectors associated with the network. This method also preserves the structural features
of the network in that the paths and cycles of the original network are compressed into smaller paths and cy-
cles, respectively, to create the reduced network. The reason we choose to maintain the spectral structure of a
network is that a network’s spectral properties encode various structural characteristics, including graph con-
nectivity, vertex centrality, and importantly symmetry (see [1], [2], [3], [4], among others). Additionally, for
dynamical networks, stability and other dynamic properties such as synchronization depend on the spectrum,
i.e. eigenvalues, of the network [5], [6], [7].

In this paper we review recent developments in the theory of isospectral reductions as well as introduce a
few new results. In particular we describe a number of recent applications of this theory that have been used
to analyze both real and theoretical networks. This includes using isospectral reductions to find (i) hidden
structures, specifically latent symmetries, in networks, (ii) uncover the hierarchical structure of network, and
(iii) simultaneously determine the core of a network.

To describe the concept of a hidden symmetry it is worth noting that real networks have a number of prop-
erties that distinguish them from many other graphs of interest. For instance, they tend to have right-skewed
degree distributions, high clustering coefficients, and the “small-world" property, etc. [8]. Additionally, real
networks generally contain a significant number of symmetries [9].

Intuitively, a graph automorphism describes how parts of a graph can be interchanged in a way that preserves
the graph’s overall structure. In this sense these smaller parts, i.e., subgraphs, are symmetrical and together
these subgraphs constitute a graph symmetry. The study of these symmetries has proven useful for a number of
reasons. First, understanding network symmetry helps us better understand the formation of particular networks
[10]. Symmetries can also provide information about vertex function and in the case of network function,
symmetries are known to be important to the processes of synchronization, etc.

In [11] the notion of a latent symmetry was introduced. A latent symmetry is a standard structural symmetry
in an isospectral reduction of the network. One particularly unique property of latent symmetries that is, to the
best of our knowledge, not possessed by any other type of symmetry is that it has a sense of scale. That is, we can
define a measure of latency for any latent symmetry, which one can think of as how deep the symmetry is buried
within the network. This is of particular interest since many real networks are known to have a hierarchical
structure in which statistically significant substructures, i.e. motifs, are repeated at multiple scales throughout
the network [12]. Recent findings suggest that not only are motifs to be found at multiple levels in a real network,
but so are symmetries. Thus one can study a network’s hierarchical structure of symmetries to better understand
the interplay of network structure and function, in particular the network’s multiple levels (scales) of redundancy.

To emphasize the usefulness of this notion we give a number of examples of real-world networks which
exhibit latent symmetries. We also describe a number of spectral properties regarding latent symmetries, includ-
ing showing that if two vertices are latently symmetric then they have the same eigenvector centrality i.e. the
same importance in the network using this metric. We also argue that latent symmetries have relevance in the
real world by showing that they are more likely to occur in networks generated using standard network growth
models. Additionally, we present a new method for decomposing a network around a latent symmetry. The
result is a number of smaller networks whose collective eigenvalues are the same as the original network.

The second application of isospectral reductions we consider has to do with the analysis of social networks.
An important aim of social network analysis is to uncover the hierarchical structure of a given network. By hier-
archical structure we mean determining which members are more or less important to the network. Because of
the importance of understanding this hierarchical structure numerous methods have been proposed to determine
the position of a member within a given group or, more generally, the network at large. This includes the use of
network correspondence, normalized degree, closeness centrality, betweenness centrality, eigenvector centrality,
to name just a few (see, for instance, [13] and the references therein). Here, we describe a new approach, found
in [14], for determining the hierarchical structure of a network based on the theory of isospectral reductions.

In an isospectral reduction a network is reduced over a subset of its vertex set. This set can be any subset of
the network’s vertices. In fact, if we consider the dual of a network, in which vertices and edges are interchanged,
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this set could be any subset of the network’s edges. To create a hierarchy we require a reduction criterion or rule
I' that states which network vertices (edges) are important and which are less important to the network. Any
criterion that selects a specific set of vertices (edges) can be used for this purpose, which makes this process
quite flexible. A network hierarchy is created by sequentially reducing a given network to smaller and smaller
networks using some fixed reduction criterion. Those vertices (edges) that remain in the network through more
reductions are considered to be more important to the network than those that are removed in earlier reductions.

To illustrate the usefulness of this method we apply it to the Southern Women Data Set, one of the most
well-studied of all social networks [15]. We find that for even the simplest reduction criteria that we consider
the results of our hierarchical analysis are consistent in a number of ways to previous results and importantly
also provide new information that is complementary to these earlier findings.

From a practical point of view, a reduction rule I" allows those studying a particular class of networks a way
of comparing the reduced topology of these networks and drawing conclusions about both the specialized and
original networks. It is worth mentioning here that the rule I' should be designed by the particular biologist,
chemist, physicist, etc. to have some significance with respect to the networks under consideration.

This process of finding the hierarchical structure of a network naturally leads to describing the process of an
isospectral reduction as a dynamic process (see [16] for details). Here we show how every reduction criterion I"
defines a dynamical system on the set of all networks. Although the particular dynamics of each system depends
on the the specific reduction criteria the dynamics of each system are the same in the following way. Every
graph under some number of iterations converges to an attractor, which is the collection of fixed points of the
corresponding dynamical system. This attractor represents the core of the network with respect to the chosen
criteria, which are the elements of the network deemed most important under the criteria.

We also discuss the notions of weak and strong spectral equivalences of networks and show that classes of
equivalence with respect to a weak spectral equivalence consists of a countable number of classes of strongly
spectrally equivalent networks. These results could be readily applicable to the analysis of any (directed or
undirected, weighted or unweighted) network.

This paper is organized as follows. In Section 2 we give a concise introduction to the theory of isospectral
reductions and give its main results. In Section 3 we discuss recent results related to the notion of latent symme-
tries and connect this idea with the theory of equitable decompostions. In Section 4 we describe how isospectral
reductions can be used to find network hierarchies and network cores. In Section 5 we describe how isospectral
reductions generate dynamical systems and what type of dynamics such systems have. In Section 6 we give
some closing remarks.

2 Theory of Isospectral Reductions

The standard method used to describe the topology of a network is a graph. Here, a graph G = (V,E,w) is
composed of a vertex set V, an edge set E, and a function w used to weight the edges of the graph. The vertex
set V represents the elements of the network, while the edges E represent the links or interactions between these
network elements. In some networks, it is useful to define a direction to each interaction. This is the case in
which an interaction between two network elements influences one but not the other. For instance, in a citation
network, in which network elements are papers and edges represent whether one paper cites another, papers can
only cite papers that have already been written. Thus each edge has a clearly defined direction. This type of
network is modeled as a directed graph in which each edge is directed from one network element to another. If
this does not apply, edges are not directed and we have an undirected graph.

The weights of the edges given by w measure the strength of these interactions. Some examples of weighted
networks include: social networks, where weights corresponds to the frequency of interaction between actors,
food web networks where weights measure energy flow, or traffic networks where weights measure how often
roads are used [8]. Here we consider networks with positive real-valued edge weights because they represent the
majority of weighted networks considered in practice. Though it is worth mentioning that the theory we present
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throughout the paper is valid for more general edge weights, e.g. complex-valued or more complicated weights
(see for instance [5]).

Let G = (V,E,w) be a weighted graph on n vertices representing a network. Its weighted adjacency matrix,
M = M(G), is an n X n matrix whose entries are given by

M. = {w(el-j) #0 ife,-j eFE
Y0 otherwise
in which e;; is the edge from vertex i to vertex j. Figure 1 gives an example of a directed weighted graph. The
graph’s weighted adjacency matrix is given in equation (3).

An unweighted graph can be considered to be a special case of a weighted graph where all edge weights are
equal to 1. The weighted adjacency matrix of an undirected graph is symmetric since each edge can be thought
of as a directed edge oriented in both directions. As an example Figure 2 in Section 3 shows an unweighted,
undirected graph together with its corresponding adjacency matrix.

It is also worth noting that there is a one-to-one relation between weighted graphs (networks) and their
corresponding weighted adjacency matrices M € R™" meaning that there is no more information presented in
one than the other. Often it is more convenient to work with matrices instead of graphs, though both are useful
ways to represent network structure. Graphs are typically used for network visualization while matrices are
better suited for network analysis [8]. Throughout the paper we will use graphs and matrices without ambiguity
to refer to the “graph of the network™ and the “matrix associated with the network”, respectively.

The main tool we use to analyze both real and theoretical networks throughout this paper is the method
of isospectral graph reductions. This is a graph operation which produces a smaller graph with essentially the
same set of eigenvalues as the original unreduced graph. This method for reducing the graph associated with
a network can be formulated both for the graph and equivalently for the adjacency matrix associated with the
network, i.e. an isospectral graph reduction and an isospectral matrix reduction, respectively. Both types of
reductions will be useful to us.

For the sake of simplicity, however, we begin by defining an isospectral matrix reduction. For this reduction
we need to consider matrices whose entries are rational functions. The reason is that, by the Fundamental
Theorem of Algebra, a matrix A € R™" has exactly n eigenvalues including multiplicities. In order to reduce
the size of a matrix while at the same time preserving its eigenvalues we need something that carries more
information than simple scalars. The objects we will use to preserve this information are rational functions. The
specific reasons for using rational functions can be found in [5], Chapter 1.

For a matrix M € R™" let N = {1,...,n}. If the sets R,C C N are proper subsets of N, we denote by Mzc
the |R| X |C| submatrix of M with rows indexed by R and columns indexed by C. We denote the subset of N
not contained in § by S, that is S is the complement of S. We also let W™ be the set of n X n matrices whose
entries are rational functions p(1)/g(1) € W, where p(1) and g(1) # 0 are polynomials with real coefficients in the
variable A with no common factors and deg(p(1)) < deg(q(A1)). The isospectral reduction of a square real-valued
matrix is defined as follows.

Definition 2.1. (Isospectral Matrix Reduction) The isospectral reduction of a matrix M € R™" over the
nonempty subset S C N is the matrix

Rs(M) = Mss — Mgg(Msg — A" Mgg € WISXISI, (1)
The eigenvalues of a reduced matrix R = R(1) € W are defined to be solutions of the characteristic equa-
tion
det(R(1)—Al) =0,
which is an extension of the standard definition of the eigenvalues for a matrix with complex entries. By way
of notation we let (M) denote the set of eigenvalues of the matrix M including multiplicities. An important

aspect of an isospectral reduction is that the eigenvalues of the matrix M and the eigenvalues of its isospectral
reduction Rg (M) are essentially the same, as described by the following theorem [5].
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Theorem 2.2. (Spectrum of Isospectral Reductions) For M € R™" and a proper subset S C N, the eigenvalues
of the isospectral reduction Rg(M) are

o(Rs(M)) = o(M) - o(Mjs3).

That is, when a matrix M is isospectrally reduced over a set S, the set of eigenvalues of the resulting matrix
is the same as the set of eigenvalues of the original matrix M after removing any elements which are eigenvalues
of the submatrix Mss.

Phrased in terms of graphs (networks), if the graph G = (V, E, w) with adjacency matrix M is isospectrally
reduced over some proper subset of its vertices S C V then the result is the reduced graph Rs(G) = (S, &€, i) with
adjacency matrix Rg(M). Hence,

7(Rs(G)) = 7(G) - 7 (GIS),

where eigenvalues of a graph are the eigenvalues of a graph’s adjacency matrix and where G|S denotes the
subgraph of G restricted to the vertices not contained in S . It is worth noting that the matrix M and the submatrix
M55 often have no eigenvalues in common, in which case the spectrum is unchanged by the reduction, i.e.
o (Rs (M) = o(M).

One can also ask what happens to the eigenvectors of a matrix (graph) when it is reduced. Here an eigen-
vector of the reduced matrix R = R(1) € W™ corresponding to an eigenvalue Ay € o(R) is a vector v € crl
such that (R(Ag) — Apl)v = 0. In this case (A, V) is called an eigenpair of R. Since R(Ap) is a matrix with real or
complex valued entries an eigenvector of R(A) corresponding to Ag is simply an eigenvector of the matrix R(4p)
in the standard sense.

What happens to an eigenvector of a matrix (graph) as it is reduced is described by the following theorem.

Theorem 2.3. (Eigenvectors of Isospectral Reductions) Suppose M € R™" and S C N. If (A,V) is an eigenpair
of M and A ¢ 0(Mgg) then (A,vs) is an eigenpair of Rs(M), where Vs is the projection of v onto S, i.e. Vs are
the components of vV indexed by S.

This theorem states that under an isospectral reduction the eigenvectors of the matrix are preserved in the
sense that the eigenvectors of the reduced matrix are simply the projection of the original eigenvector onto the
vertices that the network was reduced over (see Theorem 1 in [17]).

Another useful type of network reduction also based on the theory of isospectral reductions is what we refer
to as an isoradial reduction. To define this we need the notion of the spectral radius of a matrix and an irreducible
matrix. The spectral radius of a matrix M € R"™" is defined to be

p(M) =max{ ||| 1€ (M)},

which is the size of the largest eigenvalue of M. Moreover, a graph G is strongly connected if for any two
vertices in the graph there exists a path in the graph which start at one vertex and ends at the other. A matrix is
irreducible if it is the adjacency matrix of a strongly connected graph.

Definition 2.4. (Isoradial Reduction) Let M € R™" be a nonnegative, irreducible matrix with spectral radius
p(M). If S € N then the matrix

Ps(M) = Mss — Mg5(Mss —p(M)D)~' Mg € REE! 2)
is the isoradial reduction of M over S.

Note that the isoradial reduction Pg(M), also known as the Perron complement [18], is the isospectral
reduction of M over S in which we let A = p(M). Hence, Ps (M) is a real-valued matrix. Note that the spectral
radius p(M) of a nonnegative irreducible matrix M € R™" is an eigenvalue of M, which has only one eigenvector
associated with it. We refer to this eigenvector as the leading eigenvector of M.

Regarding an isoradial reduction, the following results hold.
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Fig. 1 The network G consisting of six individuals is shown (above) where edge weights indicate the chance that
information is passed from one member of the network to one of its neighbors. The reduced network Rg(G) in which S
are the four members {1,2,3,4} is shown (left). By setting 1 = p(G) = 1 in Rg(G) the result is the isoradial reduction
Ps(G) shown (right). The edges in this reduction represent the probability that information is eventually passed from one
member of S to another in the original unreduced network G.

Theorem 2.5. (Properties of Isoradial Reductions) Let M € R™" be a nonnegative irreducible matrix and let
S CN. Then

(i) the isoradial reduction Ps(M) is also a non-negative and irreducible matrix with the same spectral radius,
i.e. o(M) = p(Ps(M)); and

(ii) if v is the leading eigenvector of M then its projection vy is the leading eigenvector of Ps(M).

Property (i) in Theorem 2.5 states that the spectral radius is unaffected by this type of reduction, hence the
name isoradial reduction. Property (ii) is analogous to Theorem 2.3, which tell us that the eigenvectors in an
isospectral reduction are projections of the eigenvectors of the original matrix (see Theorem 2.2 and 3.1 in [18],
respectively).

We note here that analogous to an isospectral graph reduction we can also define the isoradially reduced
graph. For a graph G with adjacency matrix M and vertex subset S let Ps(G), which is the graph whose weighted
adjacency matrix is Ps (M), be the isoradial graph reduction of G over S. The isoradially reduced graph can
in some ways be more convenient for analysis since it must have real-valued edge weights, as opposed to the
rational function weights which result from isospectral reductions.

As an example of this process of isospectral and isoradial reduction consider the following.

Example 2.6. (Information Transfer on Reduced Networks) Consider the network G shown in Figure 1. In this
network the weighted edge from vertex i to j represents the probability that individual i passes on information
to individual j. Suppose the network G is isospectrally reduced over the set of four individuals S = {1,2,3,4}.
The result is the isospectral reduction Rs(G) shown in Figure 1 (bottom, left). By letting A =1 in Rg(G), i.e. the
spectral radius of G, the result is the isoradial reduction Ps(G) shown bottom right. Here both the isospectral
and isoradial reduction of the network G are constructed by first partitioning the network’s adjacency matrix M
into the block matrix

(0010[10]

1000[00

A@SMw}:000100 3
0000[0 1]

0loo[0Z%

0011

O Wil

S Wi
= O

RI— O
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Then using equations (1) and (2) we construct the reductions

A A 11
LTI 350
RsM)=\o o o 1 | @dPsMD=1001]
31 1 31
0 0 &5 a0 0033

where we set A =1 in Rg(M) to create the isoradial reduction Ps(M).

It is worth noting that both reductions preserve the path structure of the original network. That is, there is
a directed edge from vertex i in S to vertex jin S in the reduced network(s) if and only if there is a path from
vertex i in S to vertex jin S in the unreduced network G.

The reduced matrix Ps (M) gives us the probabilities that information is eventually passed from one member
of S to another member of S, which has the following consequences. Suppose we view the way in which a
specific piece of information is passed through the network G as a random-walk. If v is the normalized leading
eigenvector of G then its ith component represent the relative time that this information spends at vertex i on a
long walk through the network.

Note that by Theorem 2.5 the leading eigenvector of Ps(G) is the vector v restricted to the entries indexed
by the members of S. That is, on a long walk through either G or its reduction Rg(G) the relative time that the
information spends at any of the individuals in S is the same. Hence, the dynamic properties of a random walk
on the network are preserved under this reduction.

This is only true of the particular eigenvalue A =1, i.e. the network’s spectral radius, and its eigenvector
v in Ps(G). If instead of letting A = 1 we leave A as a variable, as in Rg(G), then not only does the reduced
network Rs(G) have all the same eigenvalues as the original network G but also the same eigenvectors up to
projection onto S (see Theorem 2.3). Letting A = 1 makes the reduced network easier to work with but leaving A
as a variable preserves, to a large extent, the spectral structure of the network. The point is that by so doing we
preserve important structural and dynamics properties of the network G.

In the following sections we show how this theory of isospectral reductions can be used to find hidden
structures within networks, determine network hierarchies, and uncover network cores.

3 Latent Network Symmetries

In this section we consider the types of latent structures that can emerge when a network is reduced via an
isospectral reduction. The particular type of structure we consider is the notion of a graph symmetry (network
symmetry), which have received considerable attention in the literature [19], [10], [20]. A graph’s symmetries
are described by the graph’s set of automorphisms. Intuitively, a graph automorphism describes how parts of a
graph can be interchanged in a way that preserves the graph’s overall structure. In this sense these parts, i.e.,
subgraphs, are symmetrical and together constitute a graph symmetry. For example, consider the graph in Figure
2. Here, it is easy to visually identify the symmetry between the yellow vertices 6 and 8, since transposing them
would not change the graph’s structure. Formally, a graph automorphism of G is defined to be a permutation
¢ : V — V of the graph’s vertices V that preserves weights between the network’s vertices.

Definition 3.1. (Graph Automorphism) An automorphism ¢ of a weighted graph G = (V, E,w) is a permutation
of the graph’s vertex set V such that the weighted adjacency matrix M satisfies M;; = My4(j) for each pair of
vertices i and j in E.

In the case of an unweighted graph, this definition is equivalent to saying vertices i and j are adjacent in
G if and only if ¢(i) and ¢(j) are adjacent in G. A collection S of vertices in V are symmetric if for any two
elements a,b € S there exists an automorphism ¢ of G such that ¢(a) = b. As an example, vertices 6 and 8 in
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Fig. 2 An example of an unweighted, undirected graph G and its corresponding adjacency matrix M(G). The graph has
the symmetry given by the automorphism ¢ = (68). The symmetric vertices 6 and 8 are highlighted yellow.

4,7,ﬂ177,
|

6 32 31
A2-2-2 A2-2-2

Fig. 3 (Left) The undirected graph G from Figure 2 which has both standard and latent symmetries. Red vertices 2 and 3
are latently symmetric. Yellow vertices 6 and 8 have a standard symmetry between them, but 4 is latently symmetric to
both of 6 and 8. (Right) The isospectral reduction of the top graph over vertices 2 and 3, showing the latent symmetry
between these two vertices

Figure 2 are symmetric since the permutation ¢ that transposes 6 and 8 and fixes all other vertices of G (written
in permutation cycle notation as ¢ = (68)), is an automorphism of G.

Structural symmetries in networks are often analyzed as they can provide information about network ro-
bustness as well as the function of specific vertices [21]. Often some of the same type of information can be
extracted from a set of vertices which are “nearly” symmetric. There are a number of ways which have been
proposed to precisely define a “near” symmetry [10]. Our method, presented originally in [11], involves finding
structural symmetries in a reduced version of the network.

Using isospectral reductions we can define a generalization of the notion of a graph symmetry.

Definition 3.2. (Latent Symmetries) We say a graph G has a latent symmetry if there exists a subset of vertices
which are symmetric in some isospectral reduction Rg(G) of G.

The reason we refer to such symmetries as latent symmetries is that they are difficult to see before the graph
reduction is performed, thus they are in some sense hidden within the network. Here, structural symmetries as
defined in Definition 3.1 will be referred to as standard symmetries to distinguish them from the latent symme-
tries defined in Definition 3.2. We note here that standard symmetries are a subset of latent symmetries since
reducing a graph G = (V, E,w) over its entire set of vertices preserves the graph, i.e. Ry(G) = G.

Example 3.3. The graph in Figure 3 is an example of a graph with both standard and latent symmetries. In this
figure, colors correspond to groups of vertices which are latently symmetric e.g. vertices 2 and 3. We note that
the yellow vertices 6 and 8 form a standard graph symmetry since transposing the two vertices, (i.e. switching
their labels), does not change the graph structure of the graph G. When G is reduced over vertices 4 and 6 (or 4
and 8), the resulting reduced graph contains a standard symmetry, i.e. 4 and 6 (4 and 8) are latently symmetric.
Also reducing G over the red vertices 2 and 3 results in a graph with symmetry as shown on the right of Figure
3.
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Fig. 4 (Left) A network representation of the largest strongly connected component of all Wikipedia webpages in the
“logic puzzle” category [22]. Vertices represent webpages while the direct edges represent hyperlinks between them. Red
vertices are symmetric and the yellow vertex is latently symmetric with the two red vertices. (Right) A Metabolic network
of the eukaryotic organism Arabidopsis Thaliana [23]. Latently symmetric vertices are colored red.

In the above example we reduce the graph to two vertices before discovering the latent symmetry, i.e. the
automorphism in the reduced graph is a simple transposition. In general, we may actually find larger groups of
vertices with symmetric after reducing the graph.

Some properties of standard symmetries extend to latent symmetries. Like standard symmetries, latent
symmetries are transitive. By this we mean that if there exists a latent symmetry between vertices a and b and a
latent symmetry between the vertices b and c in a graph, there must be a latent symmetry between vertices a and
c. We note, however, in this scenario there is no guarantee that there exists of subset of vertices S such that a,b,
and c are all is symmetric in Rg(G), i.e. a, b and ¢ may not be latently symmetric as a set. This is in contrast to
standard symmetries where for any set of vertices that are pairwise symmetric are all symmetric as a set.

Another useful concept we can explore regarding latent symmetries is the scale at which the symmetry is
found within the network.

Definition 3.4. (Measure of Latency) Let G = (V,E,w) be a graph with n vertices and let S be a subset of its
vertices which are latently symmetric. This latent symmetry can be said to have a measure of latency M, defined
as

n—|T|

M(S) = PR

where T C 'V is a maximal set of vertices such that the vertices S are symmetric in Ry (G).

From this definition it is clear that 0 < M(S) < 1 since |T| > |S|. Moreover, if the vertices S are symmetric in
the unreduced graph, i.e. are symmetric in the standard sense, then 7 = V and M(S) = 0. On the other hand, if
there is no possible choice of a vertex set T for which Ry (G) has a symmetry between the vertices in S, except
for § =T, then M(S) = 1. This is the most “hidden" a latent symmetry can be since it requires reducing the
entire graph to the set S before the symmetry can be seen. We note that although this is an interesting measure,
it can be computationally difficult to find since it requires finding the largest possible reducing set under which
a symmetry forms.

Example 3.5. For the graph G in Figure 3 we have shown that vertices 2 and 3 are latently symmetric as they
are symmetric in the reduced graph R 3,(G). However, we actually do not need to reduce to such a small
graph to see this symmetry. In fact, 2 and 3 are symmetric in the graph R 3438,(G), but are not symmetric in
any reduction over five or more vertices. Thus the largest reducing set T in which this symmetry appears must
contain four elements. Thus, M({2,3}) = Z:Igl = % =2/3.
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The measure of latency we give to a network symmetry gives the symmetry a size or a scale within the
network. This is reminiscent of one of the hallmarks of real networks in which specific structures, known as
motifs, are found at multiple scales within the network [24], [25].

3.1 Latent Symmetries in Real Networks

The first question one might have concerning latent symmetries is the extent to which they are actually
observed in real network data. Here we consider two very different real-world networks which contain latently
symmetric vertices.

Example 3.6. Consider the web graph shown in Figure 4 (left) which represents all Wikipedia pages contained
in the category “Logic Puzzles” in August 2017. Each vertex represents a webpage and directed edges represent
hyperlinks between webpages [22]. The two red vertices are symmetric in this graph, while the yellow vertex
is pairwise latently symmetric with the two red vertices. For the vertices which are latently symmetric one can
calculate their measure of latency to be M({1,3}) = 1/30 = 0.033.

A second example of a latent symmetry in real-world network data is in the metabolic network for the
cellular processes in Arabidopsis thaliana, a eukaryotic organism [23]. This is a biological network of chemical
reactions. Figure 4 (right) shows the the largest strongly connected component of this network. Here vertices
represent cellular substrates (as well as intermediary states) and edges represent metabolic pathways. The red
vertices highlighted in the figure (right) have a latent symmetry between them. These vertices are again very
close to being symmetric, which is quantized by their measure of latency of M(S) = .0231.

It is worth mentioning that it is an open question whether latently symmetric vertices have similar or com-
plementary functions within a network. The answer is likely that both are possible and is presumably network
dependent. An important point is that once a latent symmetry has been found, an expert in the field which studies
the specific network may be able to better answer these questions.

It is also worth emphasizing that both of the real networks we consider in this section have symmetries at
different scales. That is, both have standard and latent symmetries which are not standard. We can think of this
as symmetries at multiple levels which leads to what one could refer to as a hierarchy of symmetries. It is also an
open question as to how such symmetries might be distributed at various scales through a typical real network.

3.2 Eigenvector Centrality

In the previous subsection we presented examples of latent symmetries in real-world networks. In this
subsection we present evidence to support the claim that latent symmetries capture some type of hidden structure
in a network. Specifically we show that when two vertices are latently symmetric they must have the same
eigenvector centrality, which is a standard measure of how important a vertex is compared to the other vertices
in the network. This result suggests that the notion of a latent symmetry is indeed a natural extension of the
standard notion of symmetry since vertex symmetries in the standard sense have the same eigenvector centrality
and is therefore an important structural concept that can be used to analyze real networks.

Eigenvector centrality is a widely used metric in network analysis [8]. In fact, it is the basic principle used by
“Google” to rank the webpages in the World Wide Web [26]. It is calculated by ranking the vertices by the value
of the corresponding entry in the leading eigenvector of the network’s adjacency matrix. To define eigenvector
centrality, suppose v is the leading eigenvector of a network G. The eigenvector centrality of a vertex i is the i
entry in v, or v;.

One interesting property of latent symmetries is that if two vertices in a network are latently symmetric,
then they will also have the same eigenvector centrality. That is, using the metric of eigenvector centrality,
latently symmetric vertices have the same importance in the network. This suggests that latent symmetries
reveal something as important as the presence of a standard symmetry in the underlying structure of a network.

Theorem 3.7. (Eigenvector Centrality and Latent Symmetries) Let G = (V, E,w) be a graph (directed or undi-
rected) with nonnegative edge weights which is strongly connected. If there exists a set L C'V of vertices that are
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latently symmetric, then these vertices all have the same eigenvector centrality.

We can strengthen the conclusion of Theorem 3.7 for the case of undirected graphs (undirected networks).
We do this by searching for symmetry in an isoradial reduction Pg(G) of the graph as opposed to the isospectral
reduction of the network.

Theorem 3.8. (Isoradial Reductions and Eigenvector Centrality) Let G be an undirected connected graph.
Vertices i, j have the same eigenvector centrality if and only if they are symmetric in the isoradial reduction

Pl p(G).

The reason we began our discussion of hidden symmetries using isospectral reductions instead of the com-
paratively simpler isoradial reductions is that by using isospectral reductions we have a smaller class of sym-
metries. If there is a symmetry in the isoradial reduction Ps(G) this does not always correspond to a latent
symmetry in Rg(G). That is, an isoradial reduction cannot be used to find latent symmetries in general. Further,
we do not gain any new information regarding network symmetries from an isoradial reduction for directed
graphs where Theorem 3.8 does not hold.

In the following subsection we consider to what extent these latent symmetries are found in models of
network growth.

3.3 Latent Symmetries and Network Growth Models

Real-world networks are constantly evolving and typically growing (see [27] for a review of the evolving
structure of networks). A number of network formation models have been proposed to describe the type of
growth observed in these networks. The purpose of this section is to demonstrate that, like standard symmetries,
latent symmetries appear to be a hallmark of such networks. To determine how likely it is of finding a latent
symmetry in a given network, we perform a number of numerical experiments. In these experiments we count
how many latent symmetries occur in randomly generated graphs. We focus these numerical experiments on
directed networks, where latent automorphisms are more likely to occur.

The most well-known class of network growth models are those related to the Barabasi-Albert model [28]
and its predecessor the Price model [29]. In these models elements are added one by one to a network and are
preferentially attached to vertices with high degree, i.e. to vertices with a high number of neighbors or some
variant of this process [30], [31], [32]. These models are devised to create networks that exhibit some of the
most widely-observed features found in real networks such as scale-free degree distributions. We choose to
generate networks using this theoretical model to understand whether latent symmetries are likely to appear in a
real-network setting.

In our experiments, we generate 1000 graphs with 180 vertices using the Barab4si-Albert model for a num-
ber of different a-values, where a determines how strongly new vertices are preferentially attached. We then
count how many of the resulting graphs have at least one standard symmetry and how many have at least one
latent symmetry. Figure 5 plots the percentage of graphs generated for each value of @ which have a standard
symmetry (left) and latent symmetry (right). Notice that both plots essentially decrease as « increases, demon-
strating that as graphs are generated in a way less like preferential attachment, we find less symmetry at any
scale. Though there are fewer total latent symmetries than real symmetries, they both follow the same general
trend, suggesting the process of creating standard and latent symmetries are correlated. This also suggests that
mechanisms which allow for a greater number of standard symmetries also allow for the formation of more la-
tent symmetries. Exactly what this mechanism is and how it operates even in these experiments is an interesting
and open question. One possibility is that having regions of low edge density among collections of vertices
creates an environment where symmetries are more likely to occur randomly. Thus a method which generates
a network using preferential attachment concentrates most of the connection around vertices with high degree
(hubs), allowing other vertices to have a lower density of edges.

In what follows we show how finding latent symmetries can be used to approximate the spectrum and in
particular the spectral radius of a network.
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Fig. 5 The left figure plots the percentage of graphs which were generated using preferential attachment that contain a
standard symmetry. The horizontal axis (plotted logarithmically) gives different values of a, the parameter which controls
how strongly each edge is attached preferentially. The right is the same figure in which the occurrences of latent
symmetries are plotted.

3.4 Equitable Decompositions of Latent Symmetries

Another new application of latent symmetries, which we introduce here, is that they can be used in conjunc-
tion with the theory of equitable decompositions, a technique which was first introduced in [1]. The equitable
decomposition is a matrix (graph) decomposition technique which uses the automorphisms in a graph to decom-
pose an associated matrix into a collection of smaller matrices which collectively have the same eigenvalues as
the original matrix. We use these smaller matrices as weighted adjacency matrices for graphs. The result is a
collection of smaller graphs which collectively have the same spectrum as the original graph.

For a graph G with automorphism ¢, we define the relation ~ on V(G) by u ~ v if and only if v = ¢/(u) for
some non negative integer j. It follows that ~ is an equivalence relation on V(G), and the equivalence classes
are called the orbits of ¢. We use this notion to make the following definition.

Definition 3.9. (Uniform Automorphism) An automorphism ¢ of a graph G has uniform orbit size if every
orbit in ¢ has the same cardinality. We call such an automorphism a uniform automorphism and this common
cardinality is its size.

To describe how to perform an equitable decomposition on a graph with a uniform automorphism we need
the following definition.

Definition 3.10. (Automorhpism Tranversals) Let ¢ be a uniform automorphism of the graph G on n vertices
of size k > 1. Choose one vertex from each orbit, and let T be the set of these chosen vertices. We say that T is a
transversal of the orbits of ¢. Further we define the set

Te={¢'veT)
for €=0,1,...,k—1 to be the tth power of T. If k = 1 then ¢ = id is trivial and T = V(G).

Using these definitions, we present the theorem for equitably decomposing the adjacency matrix of a graph
with a uniform automorphism.

Theorem 3.11. (Uniform Equitable Decompositions [1]) Let G be a graph on n vertices, let ¢ be a uniform
automorphism of G of size k, let Ty be a transversal of the orbits of ¢, and let M be the weighted adjacency
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Fig. 6 The graph G (left) is isospectrally reduced over the red vertices resulting in the graph R,.4(G). The rational
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=0
Then

0(G) =0 (By)U---Ua(Bg-1).

The collection of B; matrices in this theorem constitute the decomposition of M, and we interpret these
matrices as adjacency matrices. Thus this theorem prescribes how to decompose a graph with a uniform auto-
morphism into a number of smaller graphs which collectively have the same eigenvalues as the original graph.

This theory can be used to search for the eigenvalues of a graph (network) since each of the resulting smaller
graphs collectively have the same eigenvalues as the original. More specifically, an equitable decomposition can
be used to find as well as estimate the spectral radius of a large graph.

A limitation to using this method is that the current theory of equitable decompositions only allows for
decomposing graphs that contain a standard automorphism. However, we show here that this method can be
directly extended to graphs with rational function entries. Hence, it is possible to equitably decompose a graph
that has a latent automorphism even if it does not have any standard automorphisms.

The procedure is to (i) isospectrally reduce a network to a smaller network with a symmetry, i.e. a latent
symmetry then (ii) use the theory of equitable decompositions to decompose the reduced graph into a number
of even smaller graphs. Because both steps preserve the graph’s spectrum (see Theorem 2.2), the collection of
the eigenvalues of the resulting small graphs is the same as the spectrum of the original graph.

We note that an isospectral reduction always maintains the spectral radius of the graph. Further, we know
that the graph’s spectral radius is always contained in the By matrix (see Proposition 4.3 in [33]). Therefore
we can simplify the process of finding the spectral radius of a network with a latent symmetry, as shown in the
following example.

Example 3.12. Consider the graph G in Figure 6 (left). When G is reduced over the red vertices, the result is
Red(G) in Figure 6 (right). In the reduced graph these vertices are symmetric and therefore latently symmetric.
Performing an equitable decomposition to break this graph around the four-fold symmetry in the reduced graph.
The result is four smaller graphs with adjacency matrices

_|pi/g1 | p2/q1l _|p3/g 1
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where py = 2x" +3x5 = 12x° — 15x* +20x° + 18x2 = 8x—4, pr(x) =3x% - 15x* + 181> — 4,
p3(x) = =2x7 + 320+ 12x7 — 15x* —20x3 + 18x% + 8x— 4, and g=x"- 6x° +9x> —3x.

The spectral radius of the graph is the spectral radius of the matrix By, which is p(Bg) ~ 3.5782. Thus finding
the spectral radius of G amounts to finding the spectral radius of the smaller graph associated with By. This is
much less work than solving the original characteristic polynomial of the graph which has degree 38 but relies
on finding a latent symmetry of G.

We note here that we have only extended the simplest result of the theory of equitable decompositions
dealing with uniform automorphisms. In fact, Theorem 3.11 can be extended to decomposing a graph over any
of its automorphisms, not just uniform automorphisms (see [1], [33]). With this in mind, finding any latent
symmetry of a graph can help give a lower bound on the graph’s spectral radius as each small graph we “break
oft” of the larger graph using equitable decomposition has eigenvalues which are a subset of the original graph.

Aside from symmetries there may be many other network structures that may be uncovered via isospectral
reduction. In the following section we consider the way in which isospectral reductions can be used to uncover
the hierarchical structure of a network.

4 Hierarchical Structure of Networks

An important aim of network analysis and specifically social network analysis is to determine the hierar-
chical structure of a given network. By hierarchical structure we mean determining which elements are more
or less important to the network. Because of the importance of understanding the hierarchical organization in
social networks numerous methods have been proposed to determine the position of a member within a given
group or, more generally, the network at large.

In this section our goal is to use the theory of isospectral network reductions to partition the individuals of a
given social network into its core and periphery elements. By core we mean those elements that are deemed to
be most important to the network. Those not in the core are in some level of the network’s peripheral structure
and are considered less important to the network based on a given criterion.

The fact is that in creating a network hierarchy we need some initial measure or criterion that determines
which elements are more or less important in the network, e.g. some kind of centrality measure (see, for
instance, [8]). The type of criteria we require here in order for us to construct a network hierarchy is quite
general and can be defined as follows.

Definition 4.1. (Reduction Criteria) Let I be a rule that selects a unique nonempty subset I'(G) C V of vertices
of any network G = (V,E,w). If T is such a rule we call it a reduction criterion and let Ri(G) denote the reduction
Rr)(G). We let R{(G) = iRr(IR?_I(G)) denote the mth sequential reduction of G with respect to T

A simple reduction criterion that we will consider is the criterion Iy, that selects all vertices of a network
except those with minimal degree, i.e. vertices with the fewest number of neighbors. If all vertices of a graph
have minimal degree then 'y, selects all vertices of the graph. In fact, any network centrality measure can be
adapted to create a number of reduction criteria. However, many other criteria are possible. For instance, infor-
mation that is not necessarily part of the network can be used to create a reduction criterion such as biographical
data, topical data in edges, etc. The most natural candidate for developing such rules is the sociologist or expert
who is familiar with the particular network or class of networks.

Conversely, there are many rules that could be devised that are not what we would consider to be reduction
criteria. An example of this is the rule that randomly selects a vertex set from a graph. Since this does not give
us a unique set of network vertices it is not a reduction criterion. The point is that any reduction criteria can be
used to generate a unique isospectral reduction of a network. Other rules that are not reduction criteria may not,
which would make it impossible to talk about a specific hierarchy generated by such a rule.

The way in which a hierarchy of a network G = (V, E) is created is described in the following steps (see [14]).
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Fig. 7 A graphical realization of the DGG network Gpgg where there is an edge between W; and E; if W; attended E .
Following Freeman and Duquenne [34], yellow and orange vertices represent the first and second set of group events

&1 ={E|-Es} and &, = {E9—E 4}, respectively. Red vertices represent the joint meetings J = {Eg—FEy}. The blue, purple,
and green vertices represent the first, second, and third groups of women G| = {W;-W5, Wy}, G2 = {W1o—W;s5, W17, Wis),
and Gz = {Wg, Wie}, respectively.

Algorithm for Constructing Network Hierarchies via Isospectral Reductions

Step 1: Select a specific reduction criterion I'.

Step 2: For G = Gy and i > 1, sequentially create the isospectral reduction G; = Rir(G) where P; are the vertices
removed from the network at the ith step in this sequence.

Step 3: Stop when G471 = Gy

Step 4: Let h.,.(I') denote the core of the network, which is the vertex set of G,,, and let 4;(I') = P,,,—; denote
the ith peripheral level of the network foreach 1 <i<m-—1.

The sequence of reductions G,G1,Ga,...,G,, that results from Steps 1-4 describe which of the vertices are
most important in the network with respect to the criterion I', with those that are less important being removed
before those that are more important. The way in which we determine which vertices are in the core and in the
peripheral levels of the network is to designate those vertices that are removed in the first stage of this process
as the outermost peripheral level A,,(I'), those removed in the second stage as the peripheral level A,,_;(I'), and
so on until those that remain in the final stage are those vertices that make up the core A, (') of the network.

Here we use this procedure to analyze the hierarchical structure of the Southern Women Data Set. The reduc-
tion criteria we will use are fairly simple and are used first and foremost to illustrate this process. Despite their
simplicity, these criteria allow us to uncover a hierarchical structure that both complements previous findings as
well as provides new information regarding this well-studied data set.

The Southern Women Data Set, or the DGG network as it was originally investigated by Davis, Gardner,
and Gardner [15], is built from fourteen social events attended by eighteen women in 1936 in the town referred
to as Old City. This data is shown as the network Gpgg in Fig. 7 in which an edge between the eighteen women
W = {W, — Wig} and the fourteen events € = {E| — E'14} represent which women attended which events.

Because of the relatively small size of this data set and some of the not so obvious patterns it contains,
the group and hierarchical structure of this data set has been analyzed numerous times. The methods used in
this analysis include the use of network correspondence, normalized degree, closeness centrality, betweenness
centrality, eigenvector centrality, etc. Of these findings regarding the Southern Women Data Set, twenty-one of
them were surveyed by Freeman [13].

In each of these twenty-one investigations the group structure of the women’s social interactions is analyzed.
In eleven of these methods a hierarchical analysis is also given which rank the women in the groups they are
assigned to. The result of this analysis are shown in Table 1, which aside from the last four rows is a recreation of
Figure 10 from [Freeman 2003]. Each row of Table 1 represents a different approach to creating a hierarchy of the
women in the Southern Women Data Set. These are respectively (DGG 41) [15]; (HOMSO0) [35]; (BCH78) [36];
(DOR79) [37]; (BCHI1) [38]; (FW193) [39]; (FW293) [40]; (BE197) [41]; (S&F99) [42]; (ROBO0) [43]; and
(NEWO1) [44].
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Table 1 The core & periphery membership assignments of the women in the DGG network from 11 different studies are
shown above (see the survey [13]). The rankings are from left to right where different core and peripheral levels are
separated by || in each study and the women are represented by their subscripts. The last four rows show the hierarchy
obtained for the first and second groups G| = {W—W7, Wy} and G, = {Wo—W)5, W16, W17} using the four reduction criteria
rdeg, 1Hpage’ 1—‘betw, and rclose-

Study/Criteria First Group Second Group

DGG 41 1,2,3,4115,6,718,9 13,14, 15 11,12 |9, 10, 16, 17, 18
HOM 50 1,2,3,4,5,6,7 8 11,12, 13,14, 158,17, 18

BCH 78 511,2,3,4,6 14110, 11, 12, 13, 15

DOR 79 1,312,415,6,7,9 12,13, 14 10, 11, 15

BCHO91 SN4N0N201L,60301719118 | 17,1812 13, 14| 11| 15]10]] 16
FwW193 1,2,3,4]5,6,7,8,9] 16 13,14, 15110, 11, 12, 17, 18 || 16
FwW293 1112,3,41511617,9 1412, 13,15] 11, 17, 18| 10

BE1 97 3402017161915 12,13 || 11| 14 ] 10| 15

S&F 99 L3N20140516171918 | 12,13(11411511]10] 17,18
ROB 00 TN20403050610719118 | 121314 11| 15]10]16]117 18
NEW 01 L2(1311411615117,9 13, 14 12 11| 15101 17, 18] 8, 16
[4eq (Degree Centrality) 1,2,3,419]5,6,7 14 13] 12,1510, 1117, 18

CT page (Page Rank) 1,2,3,419115116117 4131215111101 17, 18

CT perw (Betweenness Centrality) | 1,2,3,4,6(|5(/9]7 140110, 13,15 11,12/ 17, 18

Iciose (Closeness Centrality) 1,2,3,4,6.,7,9,115 140110, 13,15 11,1217, 18

In these rows, the women are first divided into two groups then ranked according to a specific analytic
procedure. The more important or core members are shown to the left in each group. The double vertical lines
show the divisions in each method that differentiate core members from the different peripheral levels. For
instance, the first row of Table 1 is the hierarchy devised by the authors of the original study on the Southern
Women Data Set. Using our terminology and notation the women in the first group have the core members /.,y =
{W,—W4} followed by the first level of peripheral members iy = {Ws—W5} then the second level of peripheral
members i, = {Wg, Wo}.

Our goal is to similarly break the members of the network into core and peripheral groups using the method
described in Steps 1-4 and a number of reduction criteria. Once we have established these hierarchies we
then compare them to the previous results found in Table 1. The first and main reduction criterion we con-
sider is the criterion I'y,¢ that selects all vertices of a network except those with the smallest degree central-
ity, i.e. vertices with the minimal number of neighbors. This criterion results in the sequence of reductions
G =Gpgg,G1,Ga,...,Gg shown in Fig. 8. The hierarchy from this sequence is

{
{
{
{
h4(Caeg) = {Wi2, Wis}; “4)
{
{
{
{

The reason Gg is the final network in this sequence of reductions is that each member of Gg has the same
number of neighbors. In fact each is a neighbor with every other vertex in this network (see Fig. 8). The
reduction criterion I'y,, therefore selects all vertices of Gg as each has minimal degree. The result is that Gg = Gg,

§ sciendo


https://www.sciendo.com

Finding Hidden Structures, Hierarchies, and Cores in Networks via Isospectral Reduction 247

Gg

Fig. 8 The sequence of isospectral reductions G = Gpgg,G1,G2,...,Gs of the DGG network using the reduction criterion
I'4eq that selects all vertices except those with minimal degree. Edge weights and self-loops are omitted in each reduction
as the criterion I'y,g ignores this information.

and the sequence of reductions stops at Gg.

To better understand this hierarchy note that two vertices i and j of a network G are neighbors in the reduced
network R (G) under two conditions. Either (i) i and j are neighbors in G or (ii) there is a path from i and j in
G through vertices not in the set . Using the criteria I'zo, the vertices not in S are those that have the fewest
neighbors in G, which are those vertices deemed less important to the network and removed.

The result then of sequentially reducing a network is that the remaining and therefore more important vertices
are neighbors to many vertices they were originally separated from by large a number of less important vertices.
This applies to the hierarchy given by (4) in which a vertex, either a member or event of the Gpgg network,
is deemed more important than another if it has more of these “long-distance neighbors" through paths of less
important neighbors. One can view this process of creating this network hierarchy as one that combines the
very local concept of neighbor using the criterion I'y.e with the process of isospectral reduction. The result is
a hierarchy based on the initial metric of degree centrality and a much broader notion of neighbor, specifically
one that reflects the global structure of the network.

To see the difference between this hierarchy generated by the standard notion of degree centrality and a
hierarchy generated by the criterion I'y., we have

DC(W)=1{3, 141, 2,4, 13| 129, 15115, 6, 7, 10, 11| 8| 16, 17,18}
LaegW) =1{1, 2,3, 4[| 14 || 13112, 15[191I 5, 6, 7, 10, 11 || 8 16, 17, 18},

where DC(W) is the hierarchy of the members W based on degree centrality alone without the use of isospectral
reductions. The second I'g.o(W) is the hierarchy (4) restricted to W. Although similar these are not identical.
For instance, from these two hierarchies we can deduce that although W;, W,, and W, do not have the largest
number of neighbors in the network they have many neighbors of neighbors that have high degree. Hence these
are ranked highest by our method using the criterion I'y,g.

To get a sense for how the hierarchy generated by I'y,, compares to previous results, we let §1 = {W-W7, Wo}
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and G, = {W0—W5, W7, Wig}, which to some extent are representative of the first and second groups found in
the original eleven studies shown in Table 1. In Table 1 we show the hierarchy given by (4) restricted to the first
and second groups G; and G,. Three other reduction criteria and their associated ranking of these groups are also
shown in this table. These are I'yqge, I'peny, and I'ejpge, which are defined similar to I'ze, but for the centralities
Page Rank, Betweenness Centrality, and Closeness Centrality, respectively. For instance, the reduction criterion
I'page selects all vertices of a network except those with the smallest Page Rank (see [8] for details on these
centralities).

Just by visually inspecting the hierarchies given by 'geg, I'pages I'perw» and I'ejpge in Table 1 we can see many
similarities and some interesting differences when compared to previous results. A less visual but more analytic
way to compare our hierarchy with previous results is to use Kendall’s rank correlation coefficient 7, which
measure the agreement or disagreement between two rankings of the same set. Here —1 <7 <1 where 7 =1
means perfect agreement, T = —1 perfect disagreement, and 7 = 0 independence or lack of association of two
rankings.

Comparing the rankings of the first group in Table 1 to the ranking of the same members given by (4) gives
an average correlation of 7,,, = .74 if we ignore the single outlier BCH 78 which has 7 = —.63. Doing the same
for the second group in Table 1 gives an average correlation of 7,,, = .69 if we ignore the outlier BCH 91 which
gives us T = —.23. Overall, there is a relatively high agreement with previous results using our simple criterion
[4eg. Moreover, when the four criteria 'geg, I'pages I'penw, and I'ejpge are compared against each other over all the
women in the DGG network there is a similarly high average correlation of 7,,, = .67. This high correlation is
likely due to the fact that for each criterion we repeatedly use the network’s structure to create these rankings.

In the following section we describe how any reduction criteria I" can be used to create a dynamical system
on the set of graphs considered in this paper and how any such system has a number of attractors. One of the
main results we describe is how these attractors are related to the cores introduced in this section.

5 Dynamics of Isospectral Reductions, Attractors, and Spectral Equivalence

Because an isospectral reduction transforms a graph (network) into another albeit smaller graph (network)
this procedure can be thought of as dynamical process. In this section we formalize this notion of an isospectral
reduction acting as a dynamical system. The key idea is that any reduction criterion I" generates a dynamical
process that can be used to sequentially reduce a graph.

Although the specific reductions depend, in general, on the particular rule being used we show that the
dynamics are always the same. In any sequence of reductions the graph’s reductions tend towards an attractor,
where the attractor is the collection of graphs that are unaffected by the reduction criterion.

5.1 The Dynamics of Isospectral Reductions

The class of graphs we have formally considered up to this point are those graphs G with either real weights,
or if the graph is reduced, weights that are rational functions. In fact, the theory of isospectral reductions can be
used to further reduce graphs (networks) that have already been reduced. If G = (V, E, w) with M = M(G) € W™
and S c V then Rs(G) is again defined as the graph with adjacency matrix given by equation (1).

Since any real number can be considered to be a rational function, i.e. R C W, then the process of isospectral
graph reduction is a process that takes a graph with weights in W and transforms it into a smaller graph with
weights in W. Letting G be the set of graphs with weights in W and I" a reduction criterion this means that

I':G—> G where I'(G) = Rr(G).

Hence, any reduction criterion I" can be used to create a dynamical system (I', G) where the system’s dynamics
is the isospectral reduction of a graph G using the criterion I to the reduced graph Rp(G). In this dynamical
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system the orbit of an initial condition G € G, is the set
(G.Rr(G), RHG), R (G), ..}

where R{(G) is the mth iterate of G. A natural question is what kind of dynamics does the system (I, G) exhibit.

An important idea in the theory of dynamical systems is the notion of an attractor. An attractor of a dynam-
ical system is a set towards which the system tends to evolve for a variety of initial conditions. As an example of
an attractor consider the rule I'y.¢ used in the previous section to find the hierarchical structure of the Gpgg net-
work. The rule I'y.¢, which chooses all vertices of a graph except those that have minimal degree or all vertices
if this set is empty, generates the dynamical system (I'zog,G). In this system, if we start with the initial graph
Go = Gpge the first eight iterates of G are the graphs G, Ga,...,Gg shown in Figure 8. The ninth iterate Gy is,
in fact, the graph Gg since all vertices of Gg have the same degree. Hence, Gg is a fixed point of the dynamical
system. Moreover, each of the graphs G1,G»,...,G7 eventually converge to the graph Gg under iteration by I'ye,.
In this sense Gg is an attractor of the system (I'g.g, G).

In general the following holds.

Theorem 5.1. (Attractors of Isospectral Reductions [16]) For any reduction criterion I the orbits of a graph
G € G in the dynamical dynamical system (I, G) converge to an attractor. This attractor is the set of fixed points
of the system, which are those graphs for which I selects all vertices.

Beyond the fixed point Gg shown in Figure 8 there are many other fixed points of the rule I'yee. In the
following subsection we consider when two different graphs (networks) converge to the same graph under the
same reduction criterion.

5.2 Spectral Equivalence

An important property of any reduction criterion I" is that it gives us a way of comparing the topologies
of two distinct networks. In particular, any such rule allows us to determine which networks are similar and
dissimilar with respect to this rule.

To make this precise we say two graphs G = (V,E|,w1) and H = (V, E>,w») are isomorphic if there is a
relabeling of the vertices of Vj such that G = H as weighted digraphs. If this is the case, we write G =~ H. The
idea is that two graph are similar with respect to a rule I if they both reduce to the same, i.e. isomorphic graph,
under this rule. This allows us to partition all graphs, and therefore networks, into classes of similar graphs with
respect to a structural rule I'. This can be stated as the following result.

Theorem 5.2. (Generalized Spectral Equivalence) Suppose T is a reduction criterion. Then I induces an
equivalence relation ~ on the set of all weighted directed graphs where G ~ H if ZRIIE(G) o~ le‘i(H) for some
k,€ > 0. If this holds, we call G and H spectrally equivalent with respect to I

Theorem 5.2 states that any structural rule I' can be used to partition the set of graphs we consider, and by
association all networks, into subsets. These subsets, or more formally equivalence classes, are those graphs
that share a common topology with respect to I'. By common topology we mean that graphs in the same class
have the same structure of paths and cycles between vertices in I'(G) and therefore evolve into the same graph
under I'.

One reason for studying these equivalence classes is that it may not be obvious, and most often is not, that
two different graphs belong to the same class. That is, two graphs may be structurally similar but until both
graphs are specialized this similarity may be difficult to see. By choosing an appropriate rule I' one can discover
this similarity as is demonstrated in the following example.

Example 5.3. (Spectral Equivalent Graphs) Consider the graphs G and H shown in Figure 9. Here, we let L
be the rule that selects all vertices of a graph that have loops, or all vertices if the graph has no loops. The
vertices of G and H selected by the rule L are the vertices highlighted (red) in Figure 9 in G and H, respectively.
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Fig. 9 The graph G and the graph H are spectrally equivalent with respect to the rule L that selects those vertices of a
graph that have loops. In particular, the graphs R (G) ~ R (H) are isomorphic as is shown.

Although G and H appear to be quite different, the reduced graphs Ri(G) and Rp(H) are isomorphic as is
shown in Figure 9 (center). Hence, G and H belong to the same equivalence class of graphs with respect to the
structural rule L.

This is, in fact, an example of weak spectral equivalence in which k = € = 1 in Theorem 5.2 (see [16]).
However, it is worth noting here that as the reduced graphs R (G) and Ry (H) have loops at each vertex then
.’R'i(G) o~ iRi(H) forall k,€> 1. Hence, both graphs are also what is referred to as strongly spectrally equivalent,
ie. RIZ(G) ~ Ri(H)for k and € both not equal to 1 (see [16]).

It is worth mentioning that if W is the structural rule that selects vertices without loops then fR’;V(G) #* iRa,(H )
for any k,£ > 1. That is, two graphs can be spectrally equivalent under one rule but not another.

The notion of weak spectral equivalence also known as generalized spectral equivalence, of graphs (net-
works) is naturally weaker than the strong version considered in [5], where it was required that k = € = 1. There-
fore the equivalence classes based on the generalized notion of spectral equivalent are larger than the classes
generated via weak spectral equivalence.

From a practical point of view, a reduction criterion I" allows those studying a particular class of networks a
way of comparing the reduced topology of these networks and drawing conclusions about both the specialized
and original networks. Of course, the rule I" should be designed by the particular biologist, chemist, physicist,
etc. to have some significance with respect to the networks under consideration. Moreover, if two networks are
spectrally equivalent then they are attracted to the same graph.

Theorem 5.4. (Attractors and Spectral Equivalence [16]) If the graphs G ~ H with respect to the reduction
criterion I then the orbits of G and H converge to the same fixed point in the dynamical system (I',G).

The attractor, also referred to as cores in the previous section, could potentially shed light on similarities and
difference between networks and how this further depends on the particular reduction criterion I" used to find the
network cores.

6 Conclusion

In this paper we describe a number of recent advances in the theory and specifically the applications of
isospectral network reductions. We first described latent symmetries, which is a novel generalization of the
notion of a symmetry for a network (graph), first introduced in [11]. These symmetries are defined to be struc-
tural symmetries in an isospectrally reduced version of the original network. A number of examples of such
symmetries both in real and theoretical networks are given. In addition, a measure of latency of a symmetry
which gives a sense of scale of the symmetry or how deep the symmetry is hidden in the network is given. In
the real-world networks and in the theoretical networks we consider we find latent symmetries that coexisted at
various scales within the same network. This seems to suggest that real-world networks are not only rich with
symmetries [19], but have what might be called a hierarchical structure of symmetries in which symmetries can
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be found at multiple scales within the network. We also demonstrated how networks can be decomposed with
respect to latent symmetries, thereby extending the theory of equitable decompositions to this new larger class
of networks.

One of the strongest cases for the utility of latent symmetries comes from the numerical study we perform
in Section 3.3, which shows that structural symmetries and latent symmetries are correlated in graphs generated
using preferential attachment. This suggests that one should expect latent symmetries to naturally occur in real
networks which form via some form of preferential attachment.

Having demonstrated the potential of latent symmetries as a concept for analyzing the structure of networks,
many questions still remain. For instance, do networks utilize latent symmetries the same way they utilize
standard structural symmetries? More specifically, do latently symmetric nodes often have similar functions?
Or could they have complimentary functions? If a set of vertices are latently symmetric and some subset of them
fail, what happens to the network, i.e. does the network also fail in some way?

The second application of isospectral reductions considered in this paper is a flexible method for determining
the hierarchical structure, i.e. core and peripheral structure, of a network first described in [14]. In order to
uncover a hierarchy what is required is some reduction criterion that specifies which network vertices are more
or less important than others. This rule is then used to sequentially reduce the network where we consider those
vertices that remain in the network through more reductions as being more important than those that are removed
earlier.

The main criterion used to illustrate this procedure is the relatively simple rule I'y,, that chose all vertices
of a network except those with minimal degree. To demonstrate its effectiveness we applied this rule and a
number of others to the Southern Women Data Set. Our findings were similar to previous studies but in no case
identical to them. Depending on the specific criterion we find that different network members become more or
less important in the network depending, notably, not only on the criterion but the vertex’s position within the
overall network.

It is worth reiterating that this method and the hierarchies it generates depends on finding a useful reduction
criterion. The person most likely to be able to judge what “useful” means is the sociologist or expert working
with a given network or class of networks. In fact, the role of the expert with regard to the method presented
here is to design the criterion that have an important meaning to the network under consideration. This would
allow the expert to determine which elements should be thought of as more important to the network than others
and especially why.

The third part of this paper considers how isospectral reductions can be used to generate different dynamical
systems based on distinct reduction criterion. For a specific reduction criterion I the result is a dynamical system
that reduces each network to its core, which are those network elements deemed to be the most important by the
specific criterion I'. Currently, very little is known about what kinds of criteria should be used to reduce real-
world networks in order to analyze and compare their cores. Again the expert is in the best possible position to
determine such rules and discover what these rules say about a network’s structure, growth, dynamics, etc.
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