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Abstract

In software definition networks, we allow transmission paths to be selected based on real-time data traffic monitoring
to avoid congested channels. Correspondingly, this motivates us to study the existence of fractional factors in different
settings. In this paper, we present several extend sufficient conditions for a graph admits ID-Hamiltonian fractional (g, f)-
factor. These results improve the conclusions originally published in the study by Gong et al. [2].
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1 Introduction

Owing to the similarities and for convenience, the fractional factor problem and the cardinality matching
problem could be treated in the same way. Besides, the fractional factor has been widely used in various fields in
scheduling, network design and the combinatorial polyhedron. To be clear, an example of network application
is given. As we all know, some of the large data packets are sent to different terminals through channels. If
the large packets can be divided into smaller parcels, the work efficiency can be largely improved. Hence,
the feasible assignment of data packets is just a fractional flow problem, that is to say, it is transformed into a
fractional factor problem if the information terminals and sources are not matched.

The whole network can be represented by a graph where each site and each channel are corresponding to
a vertex and an edge, respectively. Normally, the data transmission depends on how the shortest path between
vertices is selected. Nevertheless, it is the computation of network flow that influences the data transmission
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in software definition network, and the path where the transmission congestion is the lightest is chosen. In this
way, the model of data transmission problem in SDN is transformed into the existence of fractional factor in its
corresponding graph.

All graphs that appeared in this paper are finite, loopless, and have no multiple edges. Let G be a graph
with the vertex set V(G) and the edge set E(G). Let n = |V(G)|. For a vertex x € V(G), the degree and
the neighborhood of x in G are dictated by dg(x) and Ng(x), respectively. Let A(G) and 6(G) represent the
maximum degree and the minimum degree of G, respectively. For S C V(G), we dictate by G[S] the subgraph
of G obtained by S, and let G — S = G[V(G)\S]. For two disjointed subsets S and T of V(G), eg(S,T) is used to
denote the number of edges with one end in S and the other in 7.

Let g and f be two positive integer-valued functions on V(G) such that 0 < g(x) < f(x) forany x € V(G). A
fractional (g, f)-factor is a function 4 which assigns a number in [0,1] to each edge so that g(x) < d%(x) < f(x)
for each x € V(G), where di(x) = ¥ h(e) is called the fractional degree of x in G. A fractional (a,b)-factor

ecE(x
(here a and b are both positive intege(r; and a < D) is a function A that assigns to each edge of a graph G a
number in [0,1] so that for each vertex x we have a < dl(x) < b. Clearly, fractional (a,b)-factor is a special case
of fractional (g, f)-factor when g(x) = a and f(x) = b for any x € V(G). If a = b =k (k > 1 is an integer) for
all x € V(G), then a fractional (a,b)-factor is just a fractional k-factor.

If for each edge subset H C E(G) with |H| = m, a graph G is called a fractional (a,b,m)-deleted graph. There
exists a fractional (a,b)-factor & such that 4(e) = 0 for all e € H. When any m edges are removed, the resulting
graph still has a fractional (a,b)-factor. If G — I is a fractional (a,b,m)-deleted graph for every independent set
I of G, a graph is a fractional independent-set-deletable (a,b,m)-deleted graph (shortly, fractional ID-(a,b, m)-
deleted graph). If a = b = k, then a fractional ID-(a, b, m)-deleted graph is a fractional ID-(k,m)-deleted graph.
If m = 0, then a fractional ID-(a,b,m)-deleted graph is just a fractional ID-(a, b)-factor-critical graph.

If G has a fractional (g, f)-factor containing a Hamiltonian cycle, it is said that G includes a Hamiltonian
fractional (g, f)-factor. A graph G is called an ID-Hamiltonian graph if after deleting any independent set of G
the remaining graph of G admits a Hamiltonian cycle. Then, G has an ID-Hamiltonian fractional (g, f)-factor if
after deleting any independent set of G the remaining graph of G includes a Hamiltonian fractional (g, f)-factor.

Here, back to SDN, the independent set I represents the website with high transmission congestion and m
edges stand for several channels with high transmission congestion. Therefore, the data transmission problem
is studied by taking the ID-(a, b, m)-deleted graph and ID-Hamiltonian fractional (g, f)-factor in the networks
model into account.

Some recent results on the exist fractional factor, computer network designing and related fields can be
referred in the studies by Liu et al. [4], Virk and Quraish [5], and Knor et al. [3].

In this paper, we investigate ID-Hamiltonian fractional (g, f)-factors in graphs and obtain the following two
results that are the generalization of the result published in the study by Gong et al. [2].

Theorem 1. Let G be a graph of order n, and a,b, A be three integers with2 <a <b—Aand A> 0. Let g, f
be two integer-valued functions defined on V(G) such that a < g(x) < f(x) —A < b — A for each x € V(G). If

n> ww*“g’fif? ADHL if g 4 A #2)and §(G) > %, then G has a ID-Hamiltonian fractional (g, f)-
factor.

Theorem 2. Let a,b,A be two integers with 2 < a <b—A, A >0, and G be an ID-Hamiltonian graph of

order n > (a+b_5)gTAzf; AL f o g, f be two integer-valued functions defined on V(G) such that a < g(x) <

f(x)—=A<b—Aforeachx € V(G). If

(a+b—3)n+ 283 (X| — (a+A) +1
b+2a+A-5
for every non-empty independent subset X of V(G), and
(a+b—-3)n+a+b—4
b+2a+A-5 ’

ING(X)| >

4(G) >
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then G has a ID-Hamiltonian fractional (g, f)-factor.

Setting A = 0, then Theorems 1 and Theorem 2 are similar to the results in Gong et al. [2], and we don’t list
the corollaries here.
The proof of our main results is based on the following lemmas.

Lemma 3. (Anstee [1]) Suppose that f and g are two integer-valued functions defined on the vertex set of a
graph G such that 0 < g(x) < f(x) for each x € V(G). Then G has a fractional (g, f)-factor if and only if for
every subset S of V(G), g(T) —dg—s(T) < f(S),where T = {x € V(G)\S | dg—s(x) < g(x) —1}.

Clearly, Lemma 3 is equal to the following version.

Lemma 4. Suppose that f and g are two integer-valued functions defined on the vertex set of a graph G such
that 0 < g(x) < f(x) for each x € V(G). Then G has a fractional (g, f)-factor if and only if

f(S)+de-s(T)—g(T) >0

for all disjoint subsets S,T of V(G).

2 Proof of Theorem 1

By the hypothesis of Theorem 1, G — X has a Hamiltonian cycle C for any independent set X C V(G).
Obviously, C is an ID-Hamiltonian fractional (2, f)-factor of G, and so Theorem 1 holds for a =2 and g(x) = a
for each x € V(G). In the following, we may assume that b —A > a > 3.

For any independent set X C V(G), we write R = G — X. In terms of the condition of Theorem 1 and the
definition of ID-Hamiltonian graph, R admits a Hamiltonian cycle C. Let H = R— E(C). Clearly, G includes
the desired fractional factor if H contains a fractional (g — 2, f — 2)-factor. By way of contradiction, we assume
that H has no fractional (g — 2, f — 2)-factor. Then by Lemma 3, there exists some subset S of V (H) satisfying

(a+A=2)[S|+dy-s(T)—(b—A=2)[T| (1)
< (f=2)8) +du-s(T)— (g—-2)(T) < -1,

where T = {x:x€V(H)—S,dy_s(x) <b—A—-3}.
Note that H = R — E(C). Thus, we have

dy_s(x) > dg_s(x)—2 (2)
for each x € T'. In light of (1) and (2), we obtain
(a+A—2)1S|+dg_s(T) — (b—A)|T| < 1, 3)
and it follows from (1) and the definition of T that
T={x:xeV(R)—S,dg—s(x) <b—A—1}. (€]

If T = 0, then by (3) we obtain —1 > (a+ A —2)|S| > 0, which is contradiction. Hence, T # 0. Also, we
define i = min{dg_gs(x) : x € T}. According to (4), wehave 0 < h < b—A— 1.

By considering a vertex x; of T with dg_g(x;) = h, we note that it can have neighbors in S, X, and A
additional neighbors. This gives the following bound on §(G), i.e., §(G) < |S| + |X| + h. As a consequence,

1= 8(G) - |X] —h. (5)
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According to (3), (5), |X| <n—68(G) (as X is an independent set), and n > |X |+ |S| +|T|, we obtain

(a+A—2)\S| +dg_s(T) — (b—A)[T|
(a+A—2)[S|— (b—A—h)|T|
(a+A—2)[S|— (b—A—h)(n— x| - |S])

= (a+b—2—h)|S|+(b—A—h)X| — (b—A—h)n
(a+b—2—h)(8(G)—|X|—h)+(b—A—h)|X| — (b—A—h)n
= ( )

(

= (

> (

AV I\/

v

atb—2—h8(G)— (a+A—2)|X|—h(a+b—2—h)—(b—A—h)n
atb—2—hS(G

)
> )—(a+A—2)(n—8(G))—h(a+b—2—h)—(b—A—h)n
b+2a+A—4—h)8(G)—(a+b—2—h)(n+h)
b+ 2a+A—4— h)m (a+b—2—h)(n+h)
:(h+m—(cz+b—2))h,
—12(h+m—(a+b—2))h. 6)

If 4 =0, then by (6) we have —1 > 0, a contradiction. If 4 = 1, then (6) implies
< (a+b—4)(b+2a+A—-4)

"= a+A-2 ’
which contradicts that n > (a+b_4)((lizzf;A_4)+l .
In the following, we consider 2 < < b—A— 1. Combining this with (6) and n > (2= (e
obtain
(a+A—=2)n
—1>h+——- - b—2))h
2t ara—a @th2)
(a+b—4)(b+2a+A—-4)+1
> (2 - b—2))h
> 2+ b+2a+A—4 (a+6-2))
> — >0,
“b+2a+A-4
which is a contradiction. This completes the proof of Theorem 1. O

3 Proof of Theorem 2

It is easy to see that Theorem 2 holds for a = 2 and g(x) = a for each vertex x. Hence, we may assume that
a> 3.

For any independent set X C V(G), we write R = G — X. It is obvious that R includes a Hamiltonian cycle C.
Set H =R — E(C). In order to prove Theorem 2, we need only to prove that H admits a fractional (g —2, f —2)-
factor. By way of contradiction, we assume that H has no fractional (g —2, f — 2)-factor. Then from Lemma 3,
there exists some subset S C V(H) such that

(a+A—2)[S|+dy_s(T)—(b—A—2)|T| (7)
< (f=2)(S)+du-s(T)—(g—2)(T) < —1,

where T = {x:x € V(H)—S,dy_s(x) <b—A—-3}.
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In terms of H = R — E(C), we obtain dy_g(x) > dgr_s(x) — 2 for any x € T. Combining this with (7), we
have
(a+A=2)[S|+dr-s(T) — (b—A)|T| < —1, ®)

and
T={x:xeV(R)—S,dp_s(x) <b—A—1}. 9)
It follows from (8) that T # 0. In the following, we define 7 = min{dg_s(x) : x € T}. In terms of (9), we
obtain 0 <h<b—A—1.For1 <h<b—A—1, we apply the same argument as in Theorem 1. In the following,

we need only to consider 4 = 0.
LetY = {x:x € T,dg_s(x) = 0}. It is obvious that Y 0 and Y is an independent set of G. Thus, we have

ING(Y)| < |S]+ [X] (10)
and ) b+2a+A 5‘ ‘
(a+b—3)n+ ==Y | — (a+A) +1
ING(Y)| = b2 : (1)
b+2a+A—-5
Using (8), (10), |X| <n—6(G) (as X is an independent set), n > |X|+|S|+|T|, and 6 (G) > %,
we have
—1>(a+A-2)|S|+dr-_s(T)— (b—A)|T|
2 (a+A=2)[S|+[T|=[Y|-(—-A)T|
— (a+A=2)IS|— (b—A—1)|T|~|Y|
> (a+A=2)[S| - (b—A—1)(n—[X|—|S]) - Y]
=(a+b=3)IS|+(b—A-1)|X|-|Y|—(b—A—1)n
> (a+b=3)(INc(Y)|—|X[)+ (b—A-D)|X[-[Y[-(b—A—1)n
=(a+b—-3)IN¢g(Y)|—(a+A=2)|X|—-|Y|-(b—A—1)n
> (a+b—-3)|Ng(Y)|—(a+A-2)(n—6(G))—|Y|—(b—A—1)n
=(a+b-3)INg(Y)|+(a+A—-2)(G)—|Y|—(a+b—3)n
(a+b—3)n+a+b—4
b—3)|Ng(Y)| — b— A=2 —Y
> (a+b=No(V)] — (at+b—3n+(a+a-2) T ITATIE_y)
(a+b—3)*n—(a+A—1)(a+b-3)
= b—3)|Ng(Y)|—|Y|— —1
(a+b=3)No(¥) - I¥ R ,
thatis b+2a+A—5
(a+b-3)n+ 72522V [ — (a+A) + 1
INg(Y)| < — :
b+2a+A-5
which contradicts (11). Theorem 2 is proved. O
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