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Abstract
Topological indices helps us to collect information about algebraic graphs and gives us mathematical approach to un-
derstand the properties of chemical structures. In this paper, we aim to compute multiplicative degree-based topological
indices of Silicon-Carbon Si2C3− III[p,q] and SiC3− III[p,q] .
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1 Introduction

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pair-
wise relations between objects. A graph in this context is made up of vertices, nodes, or points which are
connected by edges, arcs, or lines. A graph may be undirected, meaning that there is no distinction between the
two vertices associated with each edge, or its edges may be directed from one vertex to another; see Graph (dis-
crete mathematics) for more detailed definitions and for other variations in the types of graph that are commonly
considered. Graphs are one of the prime objects of study in discrete mathematics and found many applications
in our life [1–4].

In the fields of chemical graph theory, molecular topology, and mathematical chemistry, a topological index
also known as a connectivity index is a type of a molecular descriptor that is calculated based on the molecular
graph of a chemical compound [5–8]. Topological indices are numerical parameters of a graph which charac-
terize its topology and are usually graph invariant. Topological indices are used for example in the development
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of quantitative structure-activity relationships (QSARs) in which the biological activity or other properties of
molecules are correlated with their chemical structure [9–12].

In mathematical chemistry, precisely speaking, in chemical-graph-theory (CGT), a molecular graph and
graph network is a simple and connected graph, in which atoms represents vertices and chemical bonds rep-
resents edges. We reserve G for simple connected graph, E for edge set and V for vertex set throughout the
thesis. The degree of a vertex u of graph G is the number of vertices that are attached with u and is denoted
by dv. With the help of TIs, many properties of molecular structure can be obtained without going to lab [13].
The reality is, many research paper has been written on computation of degree-based indices and polynomials
of different molecular structure and networks but only few work has been done so far on distance based indices
and polynomials. In this paper, we aim to compute multiplicative degree-based TIs. Some indices related to
Wiener’s work are the first and second multiplicative Zagreb indices [14], respectively

II1 (G) = ∏
u∈V (G)

(du)
2 ,

II2 (G) = ∏
uv∈E(G)

du ·dv.

and the Narumi-Katayama index [52]
NK (G) = ∏

u∈V (G)

du.

Like the Wiener index, these types of indices are the focus of considerable research in computational chemistry
[16–18]. For example, in the year 2011, Gutman in [16] characterized the multiplicative Zagreb indices for
trees and determined the unique trees that obtained maximum and minimum values for M1(G) and M2(G),
respectively. Wang et al. in [19] extended the results of Gutman to the following index for k-trees,

W s
1 (G) = ∏

u∈V (G)

(du)
s .

Notice that s = 1,2 is the Narumi-Katayama and Zagreb index, respectively. Based on the successful consider-
ation of multiplicative Zagreb indices, Eliasi et al. [20] continued to define a new multiplicative version of the
first Zagreb index as

II∗1 (G) = ∏
uv∈E(G)

(du +dv) .

Furthering the concept of indexing with the edge set, the first author introduced the first and second hyper-Zagreb
indices of a graph [21]. They are defined as

HII1 (G) = ∏
uv∈E(G)

(du +dv)
2 ,

HII2 (G) = ∏
uv∈E(G)

(du ·dv)
2 .

In [22] Kulli et al. defined the first and second generalized Zagreb indices

MZa
1 (G) = ∏

uv∈E(G)

(du +dv)
α ,

MZa
2 (G) = ∏

uv∈E(G)

(du ·dv)
α .

Multiplicative sum connectivity and multiplicative product connectivity indices [23] are define as:

SCII (G) = ∏
uv∈E(G)

1√
du +dv

,
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PCII (G) = ∏
uv∈E(G)

1√
du ·dv

.

Multiplicative atomic bond connectivity index and multiplicative Geometric arithmetic index are defined as

ABCII (G) = ∏
uv∈E( G)

√
du +dv−2

du ·dv
,

GAII (G) = ∏
uv∈E(G)

2
√

du ·dv

du +dv
,

GAaII (G) = ∏
uv∈E(G)

(
2
√

du ·dv

du +dv

)α

.

2 Silicon Carbide

In 1891, an American scientist discover Silicon Carbide. But now a days, we can produce silicon carbide
artificially by silica and carbon. Till 1929, silicon carbide was known as the hardest material on earth.Its Mohs
hardness rating is 9, which makes this similar to diamond. Here, we will find out reverse zagreb, hyper reverse
zagreb and its polynomials for silicon carbide Si2C3− III[p,q] and SiC3− III[p,q]. We consider 2D SiC com-
pounds with two different types of SiC structure based on low-energy metastable structures for each SiC. The
types are Si2C3− III[p,q] and SiC3− III[p,q] that denotes the lowest-energy and the second lowest energy struc-
ture respectively. The unit cell of Si2C3− III[p,q] is given in Figure 1. The 2D lattice graphs of Si2C3− III[5,1],
Si2C3− III[5,2] and Si2C3− III[5,4] are shown in Figures 2,3 and 4 respectively.

Fig. 1 Unit Cell

Fig. 2 Si2C3− III[5,1]

Fig. 3 Si2C3− III[5,2]
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Fig. 4 Si2C3− III[5,4]

Fig. 5 Unit Cell

Fig. 6 SiC3− III[5,1]

Fig. 7 SiC3− III[5,2]

Fig. 8 SiC3− III[5,4]

3 Methodology

To compute our main results we count the number of edges of Si2C3− III[p,q] and SiC3− III[p,q] by using
Figures 1-4 and Figures 5-8 respectively. After that, we divide these edge sets into classes based on the degree
of vertices. The Edge partition of Si2C3− III[p,q] is given in Table 1 and the edge partition of SiC3− III(G) is
given in Table 2. By using these edge partitions, we compute our main results.
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(du,dv) Frequency
(1,3) 2
(2,2) 2p+2
(2,3) 8p+8q-12
(3,3) 15pq-10p-13q+8

Table 1 Edge partition of Si2C3− III[p,q]

(du,dv) Frequency
(1,2) 2
(1,3) 1
(2,2) 3p+2q-3
(2,3) 6p+4q-8
(3,3) 12pq-12p-8q+8

Table 2 Edge partition of SiC3− III[p,q]

4 Main Results

In this article, we will compute some degree-based multiplicative topological indices for Si2C3− III[p,q]
and SiC3− III[p,q].

4.1 Multiplicative Topological Indices for Silicon Carbides Si2C3− III[p,q]

Theorem 4.2. Let Si2C3− III[p,q] be the Silicon Carbide. Then

1. MZα
1 (Si2C3− III[p,q]) = (2)α(15pq−10p−5q+16)× (3)α(15pq−10p−13q+8)× (5)α(8p+8q−12).

2. MZα
2 (Si2C3− III[p,q]) = (2)4α(2p+3q−2)× (3)6α(5pq−2p−3q+1).

3. GAα II(Si2C3− III[p,q]) = (2)2α(6p+6q−5)× (3)α(4p+4q−5)× (5)α(12−8q−8p).

Proof. Using edge partition given in Table 1, we have

MZα
1 (Si2C3− III[p,q]) = ∏

uvεE(Si2C3−III[p,q])
(du +dv)

α

= (1+3)2α × (2+2)α(2q+2)× (2+3)α(8p+8q−12)

×(3+3)α(15pq−10p−13q+8)

= (2)α(15pq−10p−5q+16)× (3)α(15pq−10p−13q+8)× (5)α(8p+8q−12).

MZα
2 (Si2C3− III[p,q]) = ∏

uvεE(Si2C3−III[p,q])
(du×dv)

α

= (1×3)2α × (2×2)α(2q+2)× (2×3)α(8p+8q−12)

×(3×3)α(15pq−10p−13q+8)

= (2)4α(2p+3q−2)× (3)6α(5pq−2p−3q+1).

https://www.sciendo.com


186 Abaid ur Rehman Virk et al. Applied Mathematics and Nonlinear Sciences 4(2019) 181–190

GAα II(Si2C3− III[p,q]) = ∏
uvεE(Si2C3−III[p,q])

(
2
√

du×dv

du +dv
)α

= (
2
√

1×3
1+3

)2α × (
2
√

2×2
2+2

)α(2q+2)

(
2
√

2×3
2+3

)α(8p+8q−12)× (
2
√

3×3
3+2

)α(15pq−10p−13q+8)

= (2)2α(6p+6q−5)× (3)α(4p+4q−5)× (5)α(12−8q−8p).

Theorem 4.3. Let Si2C3− III[p,q] be the Silicon Carbide. Then

1. MZ1(Si2C3− III[p,q]) = II∗1 = (2)(15pq−10p−5q+16)× (3)(15pq−10p−13q+8)× (5)(8p+8q−12).

2. MZ2(Si2C3− III[p,q]) = (2)4(2p+3q−2)× (3)6(5pq−2p−3q+1).

3. GAII(Si2C3− III[p,q]) = (2)2(6p+6q−5)× (3)(4p+4q−5)× (5)(12−8q−8p).

Proof. Taking α = 1, in Theorem 4.2, we get our desire results.

Theorem 4.4. Let S2iC3− III[p,q]II[p,q] be the Silicon Carbide. Then

1. HII1(Si2C3− III[p,q]) = (2)2(15pq−10p−5q+16)× (3)2(15pq−10p−13q+8)× (5)2(8p+8q−12)

2. HII2(Si2C3− III[p,q]) = (2)8(2p+3q−2)× (3)12(5pq−2p−3q+1)

Proof. Taking α = 2 in Theorem 4.2, we get our desire results.

Theorem 4.5. Let Si2C3− III[p,q] be the Silicon Carbide. Then

1. SCII(Si2C3− III[p,q]) = ( 1√
2
)(15pq−10p−5q+16)× ( 1√

3
)(15pq−10p−13q+8)× ( 1√

5
)(8p+8q−12).

2. PCII(Si2C3− III[p,q]) = ( 1√
2
)4(2p+3q−2)× ( 1√

3
)6(5pq−2p−3q+1).

Proof. Taking α =−1
2 in Theorem4.2, we get our desire results.

Theorem 4.6. Let Si2C3− III[p,q] be the Silicon Carbide. Then

ABCII(Si2C3− III[p,q]) = [(
1
2
)

1
2 ]4p+5q−5× [(

2
3
)]15pq−10p−13q+9.

Proof.

GAα II(Si2C3− III[p,q]) = ∏
uvεE(Si2C3−III[p,q])

√
du +dv−2

du×dv

=

(√
1+3−2

1×3

)2

×

(√
2+2−2

2×2

)2q+2

×

(√
2+3−2

2×3

)(8p+8q−12)

×

(√
3+3−2

3×3

)(15pq−10p−13q+8)

= [(
1
2
)

1
2 ]4p+5q−5× [(

2
3
)]15pq−10p−13q+9.
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4.7 Multiplicative Topological Indices for Silicon Carbides SiC3− III[p,q]

Theorem 4.8. Let SiC3− III[p,q] be the Silicon Carbide. Then

1. MZα
1 (SiC3− III[p,q]) = (2)α(12pq+6p+4q+4)× (3)α(12pq−12p−8q+10)× (5)α(6p+4q−8).

2. MZα
2 (SiC3− III[p,q]) = (2)4α(3p+2q−3)× (3)3α(8pq−6p−4q+3).

3. GAα II(SiC3− III[p,q]) = (2)α(9p+6q−10)× (3)α(3p+2q− 11
2 )× (5)α(8−6p−4q).

Proof. Using the edge partition given in Table 2, we have

MZα
1 (SiC3− III[p,q]) = ∏

uvεE(SiC3−III[p,q])
(du +dv)

α

= (1+2)2α × (1+3)α × (2+2)α(3p+2q−3)× (2+3)α(6p+4q−8)

×(3+3)α(12pq−12p−8q+8)

= (2)α(12pq+6p+4q+4)× (3)α(12pq−12p−8q+10)× (5)α(6p+4q−8).

2.MZα
2 (SiC3− III[p,q]) = ∏

uvεE(SiC3−III[p,q])
(du×dv)

α

= (1×2)2α × (1×3)α × (2×2)α(3p+2q−3)× (2×3)α(6p+4q−8)

×(3×3)α(12pq−12p−8q+8)

= (2)4α(3p+2q−3)× (3)3α(8pq−6p−4q+3).

3.GAα II(SiC3− III[p,q]) = ∏
uvεE(Si2C3−III[p,q])

(
2
√

du×dv

du +dv
)α

=

(
2
√

1×2
1+2

)2α

×
(

2
√

1×3
1+3

)α

×
(

2
√

2×2
2+2

)α(3p+2q−3)

(
2
√

2×3
2+3

)α(6p+4q−8)

×
(

2
√

3×3
3+2

)α(12pq−12p−8q−8)

= (2)α(9p+6q−10)× (3)α(3p+2q− 11
2 )× (5)α(8−6p−4q).

Theorem 4.9. Let SiC3− III[p,q] be the Silicon Carbide. Then

1. MZ1(SiC3− III[p,q]) = II∗1 = (2)(12pq+6p+4q+4)× (3)(12pq−12p−8q+10)× (5)(6p+4q−8).

2. MZ2(SiC3− III[p,q]) = (2)4(3p+2q−3)× (3)3(8pq−6p−4q+3).

3. GAII(SiC3− III[p,q]) = (2)(9p+6q−10)× (3)(3p+2q− 11
2 )× (5)(8−6p−4q).

Proof. Taking α = 1, in Theorem 4.8, we get our desire results.

Theorem 4.10. Let SiC3− III[p,q] be the Silicon Carbide. Then

1. HII1(SiC3− III[p,q]) = (2)2(12pq+6p+4q+4)× (3)2(12pq−12p−8q+10)× (5)2(6p+4q−8).

2. HII2(SiC3− III[p,q]) = (2)8(3p+2q−3)× (3)6(8pq−6p−4q+3).
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Proof. Taking α = 2, in Theoem 4.8, we get our desire results.

Theorem 4.11. Let SiC3− III[p,q] be the Silicon Carbide. Then

1. SCII(SiC3− III[p,q]) = ( 1√
2
)(12pq+6p+4q+4)× ( 1√

3
)α(12pq−12p−8q+10)× ( 1√

5
)α(6p+4q−8).

2. PCII(SiC3− III[p,q]) = ( 1√
2
)4(3p+2q−3)× ( 1√

3
)3(8pq−6p−4q+3).

Proof. Taking α =−1
2 , in Theorem 4.8, we get our desire results.

Theorem 4.12. Let SiC3− III[p,q] be the Silicon Carbide. Then

ABCII(SiC3− III[p,q]) = [
1√
6
][(

1
2
)(

1
2 )]9p+6q−11× [(

2
3
)](12pq−12p−8q+8).

Proof.

GAα II(SiC3− III[p,q]) = ∏
uvεE(Si2C3−III[p,q])

√
du +dv−2

du×dv

=

(√
1+2−2

1×2

)2

×

(√
1+3−2

1×3

)
×

(√
2+2−2

2×2

)3p+2q−3

×

(√
2+3−2

2×3

)(6p+4q−8)

×

(√
3+3−2

3×3

)(12pq−12p−8q+8)

=

[
1√
6

]
×
[
(
1
2
)(

1
2 )

]9p+6q−11

×
[
(
2
3
)

](12pq−12p−8q+8)

.

Conclusion

Topological indices has many applications in chemistry, physics and other applied sciences. In this paper we
have computed multiplicative Zagreb indices, multiplicative geometric arithmetic index, multiplicative atomic
bond connectivity index, etc of two Silicon Carbide structures.
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