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Abstract
This paper deals with a class of backward stochastic differential equation driven by two mutually independent fractional
Brownian motions. We essentially establish existence and uniqueness of a solution in the case of stochastic Lipschitz
coefficients. The stochastic integral used throughout the paper is the divergence-type integral.
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1 Introduction

Backward stochastic differential equations (BSDEs in short) were first introduced by Pardoux and Peng [7].
They proved the celebrated existence and uniqueness result under Lipschitz assumption. This pioneer work was
extensively used in many fields like stochastic interpretation of solutions of PDEs and financial mathematics.

Few years later, several authors investigated BSDEs with respect to fractional Brownian motion
(
BH

t
)

t≥0
with Hurst parameter H. Since BH is not a semimartingale when H 6= 1

2 , we cannot use the beautiful classical
theory of stochastic calculus to define the fractional stochastic integral. It is a significant and challenging prob-
lem to extend the results in the classical stochastic calculus to this fractional Brownian motion. Essentially, two
different types of integrals with respect to a fractional Brownian motion have been defined and studied. The first
one is the pathwise Riemann-Stieltjes integral (see Young [10]). This integral has a proprieties of Stratonovich
integral, which leads to difficulties in applications. The second one, introduced in Decreusefond and Ustunel [3]
is the divergence operator (or Skorohod integral), defined as the adjoint of the derivative operator in the frame-
work of the Malliavin calculus. Since this stochastic integral satisfies the zero mean property and it can be
expressed as the limit of Riemann sums defined using Wick products, it was later developed by many authors.
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Recently, new classes of BSDEs driven by both standard and fractional Brownian motions were introduced
by Fei et al [4]. They established the existence and uniqueness of solutions.

In this paper, our aim is to generalize the result established in [2] to the following equation called fractional
BSDE under stochastic conditions on the generator:

Yt = ξ +

ˆ T

t
f (s,ηs,Ys,Z1,s,Z2,sds−

ˆ T

t
Z1,sdBH1

1,t −
ˆ T

t
Z2,sdBH2

2,t , t ∈ [0,T ], (1.1)

where
(

BH1
1,t

)
t≥0

and
(

BH2
2,t

)
t≥0

are two mutually independent fractional Brownian motions. The novelty in

these types of stochastic equations lies in the fact of coupling two mutually independent fractional Brownian
motions. In this work, the authors established some properties of solutions of a fractional BSDE with Lipschitz
coefficients. By the help of the fixed point principle, we establish existence and uniqueness of solutions.

The paper is organized as follows: In Section 2, we introduce some preliminaries, before studying the
solvability of our equation under Lipschitz conditions on the generator in Section 3. Using this result, we prove
existence and uniqueness of the solution with a coefficient satisfying rather weaker conditions.

2 Fractional Stochastic calculus

Let us assume given two mutually independent fractional Brownian motions BH ∈
{

BH1
1 ,BH2

2

}
with Hurst

parameter H ≥ 1
2 is given.

Let Ω be a non-empty set, F a σ−algebra of sets Ω, P a probability measure defined on F and {Ft , t ∈ [0,T ]}
a σ−algebra generated by both fractional Brownian motions.
The triplet (Ω,F ,P) defines a probability space and E the mathematical expectation with respect to the proba-
bility measure P.

The fractional Brownian motion BH is a zero mean Gaussian process with the covariance function

E[BH
t BH

s ] =
1
2
(
t2H + s2H −|t− s|2H) , t,s≥ 0.

Denote φ(t,s) = H(2H−1)|t− s|2H−2, (t,s) ∈ R2.
Let ξ and η be measurable functions on [0,T ]. Define

〈ξ ,η〉t =
ˆ t

0

ˆ t

0
φ(u,v)ξ (u)η(v)dudv and ‖ξ‖2

t = 〈ξ ,ξ 〉t .

Note that, for any t ∈ [0,T ], 〈ξ ,η〉t is a Hilbert scalar product. Let H be the completion of the set of continuous
functions under this Hilbert norm ‖·‖t and (ξn)n be a sequence in H such that

〈
ξi,ξ j

〉
T = δi j.

Let PH
T be the set of all polynomials of fractional Brownian motion

(
BH

t
)

t≥0. Namely, PH
T contains all

elements of the form

F(ω) = f
(ˆ T

0
ξ1(t)dBH

t ,

ˆ T

0
ξ2(t)dBH

t , . . . ,

ˆ T

0
ξn(t)dBH

t

)
where f is a polynomial function of n variables.

The Malliavin derivative DH
t of F is given by

DH
s F =

n

∑
j=1

∂ f
∂x j

(ˆ T

0
ξ1(t)dBH

t ,

ˆ T

0
ξ2(t)dBH

t , . . . ,

ˆ T

0
ξn(t)dBH

t

)
ξ j(s), 0≤ s≤ T.
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Now we introduce the Malliavin φ -derivative DH
t of F by

DH
t F =

ˆ T

0
φ(t,s)DH

s Fds.

We have the following (see[ [5], Proposition 6.25]):

Theorem 2.1. Let F : (Ω,F ,P)−→H be a stochastic processes such that

E
(
‖F‖2

T +

ˆ T

0

ˆ T

0
|DH

s Ft |2dsdt
)
<+∞.

Then, the Itô-Skorohod-type stochastic integral denoted by
´ T

0 FsdBH
s exists in L2 (Ω,F ,P) and satisfies

E
(ˆ T

0
FsdBH

s

)
= 0 and E

(ˆ T

0
FsdBH

s

)2

= E
(
‖F‖2

T +

ˆ T

0

ˆ T

0
DH

s FtDH
t Fsdsdt

)
.

Let us recall the fractional Itô formula (see[ [4], Theorem 3.1]).

Theorem 2.2. Let σ1,σ2 ∈H be deterministic continuous functions. Denote

Xt = X0 +

ˆ t

0
α(s)ds+

ˆ t

0
σ1(s)dBH1

1,s +

ˆ t

0
σ2(s)dBH2

2,s,

where X0 is a constant and α(t) is a deterministic function with
´ t

0 |α(s)|ds <+∞.
Let F(t,x) be continuously differentiable with respect to t and twice continuously differentiable with respect to
x. Then

F(t,Xt) = F(0,X0)+

ˆ t

0

∂F
∂ s

(s,Xs)ds+
ˆ t

0

∂F
∂x

(s,Xs)dXs

+
1
2

ˆ t

0

∂ 2F
∂x2 (s,Xs)

[
d
ds
‖σ1‖2

s +
d
ds
‖σ2‖2

s

]
ds, 0≤ t ≤ T.

Let us finish this section by giving a fractional Itô chain rule (see[ [4], Theorem 3.2]).

Theorem 2.3. Assume that for j = 1,2, the processes µ j, α j and ϑ j, satisfy

E
[ˆ T

0
µ

2
j (s)ds+

ˆ T

0
α

2
j (s)ds+

ˆ T

0
ϑ

2
j (s)ds

]
<+∞.

Suppose that DH1
t α j(s) and DH2

t ϑ j(s) are continuously differentiable with respect to (s, t)∈ [0,T ]2 for almost all
ω ∈Ω. Let Xt and Yt be two processes satisfying

Xt = X0 +

ˆ t

0
µ1(s)ds+

ˆ t

0
α1(s)dBH1

1,s +

ˆ t

0
ϑ1(s)dBH2

2,s, 0≤ t ≤ T,

Yt = Y0 +

ˆ t

0
µ2(s)ds+

ˆ t

0
α2(s)dBH1

1,s +

ˆ t

0
ϑ2(s)dBH2

2,s, 0≤ t ≤ T.

If the following conditions hold:

E
[ˆ T

0
|DH1

t αi(s)|2dsdt
]
<+∞ and E

[ˆ T

0
|DH2

t ϑi(s)|2dsdt
]
<+∞
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then

XtYt = X0Y0 +

ˆ t

0
XsdYs +

ˆ t

0
YsdXs

+

ˆ t

0

[
α1(s)DH1

s Ys +α2(s)DH1
s Xs +ϑ1(s)DH2

s Ys +ϑ2(s)DH2
s Xs

]
ds,

which may be written formally as

d (XtYt) = XtdYt +YtdXt +
[
α1(t)DH1

t Yt +α2(t)DH1
t Xt +ϑ1(t)DH2

t Yt +ϑ2(t)DH2
t Xt

]
dt.

3 Fractional BSDEs

3.1 Definitions and notations

Let T > 0 be fixed throughout this paper. Let
{

BH1
1,t

}
t∈[0,T ]

and
{

BH2
2,t

}
t∈[0,T ]

be two mutually independent

fractional Brownian motions processes, with respectively H1 ≥ 1
2 and H2 ≥ 1

2 , defined on a probability space
(Ω,F ,P). Let N denote the class of P-null sets of F .
we define

Fs = F
BH1

1
0,s ∨F

BH2
2

s,T , s ∈ [0,T ],

where for any process {ψt}t≥0, F ψ

s,t = σ{ψr−ψs, s≤ r ≤ t}∨N .

For every F -adapted random process α = (α(t))t≥0 with positive values, we define an increasing process
(A(t))t≥0 by setting A(t) =

´ t
0 α2(s)ds.

For a fixed β > 0, we will use the following sets:

• C 1,2
pol([0,T ]×R) is the space of all C 1,2-functions over [0,T ]×R, which together with their derivative is of

polynomial growth.

• L 2(β ,Ft ,R) =
{

ξ : Ω→ R | ξ is Ft −measurable, E[eβA(T ) |ξ |2]<+∞

}
,

• V[0,T ] =
{

Y = ψ(·,η) : ψ ∈ C 1,2([0,T ]×R), ∂ψ

∂ t is bounded, t ∈ [0,T ]
}
,

• Ṽ β

[0,T ] and Ṽ a,β
[0,T ] are the completion of V[0,T ] under the following norm

‖Y‖α,β =

(
E
ˆ T

0
α

2(t)eβA(t)|Yt |2dt
)1/2

, ‖Z‖β =

(
E
ˆ T

0
eβA(t)|Zt |2dt

)1/2

• B2([0,T ],R) = Ṽ α,β
[0,T ]× Ṽ β

[0,T ]× Ṽ β

[0,T ] is a Banach space with the norm

‖(Y,Z1,Z2)‖2
B = ‖Y‖2

α,β +‖Z1‖2
β
+‖Z2‖2

β
.

Let us consider

ηt = η0 +

ˆ t

0
b(s)ds+

ˆ t

0
σ1(s)dBH1

1,s +

ˆ t

0
σ2(s)dBH2

2,s, 0≤ t ≤ T

where the coefficients η0, b, σ1 and σ2 satisfy:
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• η0 is a given constant and b : [0,T ]→ R is a deterministic continuous function,

• σ1,σ2 : [0,T ]→ R are deterministic differentiable continuous functions, and σ1(t) 6= 0, and σ2(t) 6= 0 such
that

|σ |2t = ‖σ1‖2
t +‖σ2‖2

t , 0≤ t ≤ T, (3.1)

where ‖σi‖2
t = Hi(2Hi−1)

ˆ t

0

ˆ t

0
|u− v|2Hi−2

σi(u)σi(v)dudv, i = 1,2.

The next Remark will be useful in the sequel.

Remark 3.1. There exists a constant C0 ∈ (0,1) such that inf0≤t≤T
σ̂i(t)
σi(t)
≥C0

where σ̂i(t) =
´ t

0 φ(t,v)σi(v)dv i = 1,2.

We are interested in the following one-dimensional fractional BSDE:

Yt = ξ +

ˆ T

t
f (s,ηs,Ys,Z1,s,Z2,s)ds−

ˆ T

t
Z1,sdBH1

1,s−
ˆ T

t
Z2,sdBH2

2,s, t ∈ [0,T ]. (3.2)

Definition 3.2. A triplet of processes (Y,Z1,Z2) is called a solution to fractional BSDE (3.2), if (Y,Z1,Z2) ∈
B2([0,T ],R) and satisfies eq.(3.2).

The next proposition will be useful in the sequel.

Proposition 3.3. Let (Y,Z1,Z2) be a solution of the fractional BSDE (3.2). Then for almost t ∈ [0,T ], we have

DH1
t Yt =

σ̂1(t)
σ1(t)

Z1,t and DH2
t Yt =

σ̂2(t)
σ2(t)

Z2,t .

3.2 The case of stochastic Lipschitz coefficient

3.2.1 Aassumptions

In the following, we assume that f satisfies assumptions (H1):

(H1.1): There exist three non-negative processes {µ(t)}0≤t≤T , {ν(t)}0≤t≤T and {ϑ(t)}0≤t≤T such that:

i) for any t ∈ [0,T ], µ(t), ν(t), ϑ(t) are Ft-measurable,

ii) for any t ∈ [0,T ], x,y,y′,z1,z′1,z2,z′2 ∈ R, we have∣∣ f (t,x,y,z1,z2)− f
(
t,x,y′,z′1,z

′
2
)∣∣≤ µ(t)|y−y′|+ν(t)|z1− z′1|+ϑ(t)|z2− z′2|.

(H1.2): for any t ∈ [0,T ], α2(t) = µ(t)+ν2(t)+ϑ 2(t)> 0.

3.2.2 Existence and uniqueness of the solution

The main result of this section is the following theorem:

Theorem 3.4. Let the assumptions (H1) be satisfied. Then the fractional BSDE (3.2) has a unique solution
(Y,Z1,Z2) in the space B2([0,T ],R).

Proof. Let us consider the mapping Γ : B2([0,T ],R)→B2([0,T ],R) driven by (U,V1,V2) 7−→ Γ(U,V1,V2) =
(Y,Z1,Z2).

We will show that the mapping Γ is a contraction, where (Y,Z1,Z2) is a solution of the following fractional
BSDE:

Yt =

ˆ T

t
f (s,ηs,Us,V1,s,V2,s)ds−

ˆ T

t
Z1,sdBH1

1,s−
ˆ T

t
Z2,sdBH2

2,s, t ∈ [0,T ]. (3.3)
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Let us define for a process δ ∈ {Y,Z1,Z2,U,V1,V2}, δ = δ −δ ′ where δ ′ ∈ Ṽ β

[0,T ] and the function

∆ f (t)= f (t,ηt ,Ut ,V1,t ,V2,t)− f (t,ηt ,U ′t ,V
′
1,t ,V

′
2,t).

Then, the triplet (Y ,Z1,Z2) solves the fractional BSDE

Y t =

ˆ T

t
∆ f (s)ds−

ˆ T

t
Z1,sdBH1

1,s−
ˆ T

t
Z2,sdBH2

2,s, t ∈ [0,T ]. (3.4)

By the fractional Itô chain rule, we have

|Y t |2 = 2
ˆ T

t
Y s∆ f (s)ds−2

ˆ T

t
Z1,sDH1

s Y sds−2
ˆ T

t
Z2,sDH2

s Y sds

−2
ˆ T

t
Y sZ1,sdBH1

1,s−2
ˆ T

t
Y sZ2,sdBH2

2,s.

Applying the Itô formula to eβA(t)|Y t |2, we obtain that

eβA(t)|Y t |2 = 2
ˆ T

t
eβA(s)Y s∆ f (s)ds−2

ˆ T

t
eβA(s)Z1,sDH1

s Y sds−2
ˆ T

t
eβA(s)Z2,sDH2

s Y sds

−2
ˆ T

t
eβA(s)Y sZ1,sdBH1

1,s−2
ˆ T

t
eβA(s)Y sZ2,sdBH2

2,s−β

ˆ T

t
eβA(s)

α
2(s)|Y s|2ds.

It is known that, by Proposition 3.3, DH1
s Y s =

σ̂1(s)
σ1(s)

Z1,s and DH2
s Y s =

σ̂2(s)
σ2(s)

Z2,s.
Then, we have

E
[
eβA(t)|Y t |2

]
+βE

ˆ T

t
eβA(s)

α
2(s)|Y s|2ds+2E

ˆ T

t
eβA(s)

[
σ̂1(s)
σ1(s)

|Z1,s|2 +
σ̂2(s)
σ2(s)

|Z2,s|2
]

ds

= 2E
ˆ T

t
eβA(s)Y s∆ f (s)ds. (3.5)

Using standard estimates and assumption (H1.1), we obtain that

2E
ˆ T

t
eβA(s)Y s∆ f (s)ds≤ 2E

ˆ T

t
eβA(s)|Y s|

[
µ(s)|U s|+ν(s)|V 1,s|+ϑ(s)|V 2,s|

]
ds

≤ 1
C0

E
ˆ T

t
eβA(s)

[
µ(s)+ν

2(s)+ϑ
2(s)
]
|Y s|2ds

+C0E
ˆ T

t
eβA(s)

µ(s)|U s|2ds+C0E
ˆ T

t
eβA(s)

[
|V 1,s|2 + |V 2,s|2

]
ds,

and using in addition asumption (H1.2),

2E
ˆ T

t
eβA(s)Y s∆ f (s)ds≤C0E

ˆ T

t
eβA(s)

[
α

2(s)|U s|2 + |V 1,s|2 + |V 2,s|2
]

ds

+
1

C0
E
ˆ T

t
eβA(s)

α
2(s)|Y s|2ds (3.6)

Using the abovementioned inequality, from (3.5) we deduce that

E
[
eβA(t)|Y t |2

]
+βE

ˆ T

t
eβA(s)

α
2(s)|Y s|2ds+2E

ˆ T

t
eβA(s)

[
σ̂1(s)
σ1(s)

|Z1,s|2 +
σ̂2(s)
σ2(s)

|Z2,s|2
]

ds

≤C0E
ˆ T

t
eβA(s)

[
α

2(s)|U s|2 + |V 1,s|2 + |V 2,s|2
]

ds

+
1

C0
E
ˆ T

t
eβA(s)

α
2(s)|Y s|2ds (3.7)
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By Remark 3.1, we obtain

E
[
eβA(t)|Y t |2

]
+βE

ˆ T

t
eβA(s)

α
2(s)|Y s|2ds+2C0E

ˆ T

t
eβA(s)

[
|Z1,s|2 + |Z2,s|2

]
ds

≤C0E
ˆ T

t
eβA(s)

[
α

2(s)|U s|2 + |V 1,s|2 + |V 2,s|2
]

ds

+
1

C0
E
ˆ T

t
eβA(s)

α
2(s)|Y s|2ds (3.8)

Taking β such that β = 2C0 +
1

C0
, we get

E
ˆ T

0
eβA(s)

[
α

2(s)|Y s|2 + |Z1,s|2 + |Z2,s|2
]

ds≤ 1
2

E
ˆ T

0
eβA(s)

[
α

2(s)|U s|2 + |V 1,s|2 + |V 2,s|2
]

ds. (3.9)

Thus, the mapping (U,V1,V2) 7−→ Γ(U,V1,V2) = (Y,Z1,Z2) determined by the fractional BSDE (3.2) is a strict
contraction on B2([0,T ],R). Using the fixed point principle, we deduce the solution to the fractional BSDE
(3.2) that exists uniquely. This completes the proof.

3.3 The case of weak stochastic Lipschitz coefficient

3.3.1 Aassumptions

In the following, we assume that f satisfies assumptions (H2):

(H2.1): There exist three non-negative processes {µ(t)}0≤t≤T , {ν(t)}0≤t≤T and {ϑ(t)}0≤t≤T such that:

i) for any t ∈ [0,T ], µ(t), ν(t), ϑ(t) are Ft-measurable,

ii) for any t ∈ [0,T ], x,y,y′,z1,z′1,z2,z′2 ∈ R, we have∣∣∣∣ f (t,x,y,z1,z2)− f
(
t,x,y′,z′1,z

′
2
)∣∣∣∣≤ µ

1
2 (t)ρ

1
2
(
t, |y−y′|2

)
+ν(t)|z1− z′1|+ϑ(t)|z2− z′2|,

where ρ(t,ν) : [0,T ]×R+→ R+ satisfies:

• For fixed t ∈ [0,T ], ρ(t, ·) is a continuous, concave and nondecreasing such that

ρ(t,0) = 0, and ∀α > 0 αρ(t,ν) = ρ(t,αν).

• The ordinary differential equation (ODE)

ν
′(t) =−ρ(t,ν(t)), v(T ) = 0, (3.10)

has a unique solution ν(t) = 0, 0≤ t ≤ T .
• There exist two continuous and non-negative functions a and b such that

ρ(t,ν)≤ a(t)+b(t)ν and
ˆ T

0
[a(t)+b(t)]dt < ∞.

(H2.2): for any t ∈ [0,T ], α2(t) = µ(t)+ν2(t)+ϑ 2(t)> 0.

(H2.3): The integrability condition holds:

E
ˆ T

0
eβA(t) | f (t,ηt ,0,0)|2

α2(t)
dt <+∞, t ∈ [0,T ].
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3.3.2 Existence and uniqueness of the solution

For n≥ 1, we can construct the Picard approximate sequence of eq.(3.2) as follows
Y 0

t = 0, Z0
t,1 = 0, Z0

t,2 = 0 t ∈ [0,T ]

Y n
t = ξ +

ˆ T

t
f (s,ηs,Y n−1

s ,Zn
1,s,Z

n
2,s)ds−

ˆ T

t
Zn

1,sdBH1
1,s−
ˆ T

t
Zn

2,sdBH2
2,s, t ∈ [0,T ].

(3.11)

Thanks to Theorem 3.4, this sequence is well defined.

Lemma 3.5. Assume that assumptions (H2) are true. Then for all n,m≥ 1 and t ∈ [0,T ], we have

E
[
eβA(t)|Y n+m

t −Y n
t |2
]
≤
ˆ T

t
ρ

(
s,E
[
eβA(s)|Y n+m−1

s −Y n−1
s |2

])
ds.

Proof. Let us define for a process δ ∈ {Y,Z1,Z2}, n,m ≥ 1, δ
n,m

= δ n+m− δ n and the function ∆ f (n,m)(s) =
f (s,ηs,Y n+m−1

s ,Zn+m
1,s ,Zn+m

2,s )− f (s,ηs,Y n−1
s ,Zn

1,s,Z
n
2,s).

Then, it is obvious that (Y n,m
,Zn,m

1 ,Zn,m
2 ) solves the fractional BSDE

Y n,m
t =

ˆ T

t
∆ f (n,m)(s)ds−

ˆ T

t
Zn,m

1,s dBH1
1,s−
ˆ T

t
Zn,m

2,s dBH2
2,s, t ∈ [0,T ]. (3.12)

By the fractional Itô chain rule, we have

|Y n,m
t |2 = 2

ˆ T

t
Y n,m

s ∆ f (n,m)(s)ds−2
ˆ T

t
Zn,m

1,s DH1
s Y n,m

s ds−2
ˆ T

t
Zn,m

2,s DH2
s Y n,m

s ds

−2
ˆ T

t
Y n,m

s Zn,m
1,s dBH1

1,s−2
ˆ T

t
Y n,m

s Zn,m
2,s dBH2

2,s.

Applying Itô formula to eβA(t)|Y n,m
t |2, we obtain that

eβA(t)|Y n,m
t |2 = 2

ˆ T

t
eβA(s)Y n,m

s ∆ f (n,m)(s)ds−2
ˆ T

t
eβA(s)Zn,m

1,s DH1
s Y n,m

s ds

−2
ˆ T

t
eβA(s)Zn,m

2,s DH2
s Y n,m

s ds−2
ˆ T

t
eβA(s)Y n,m

s Zn,m
1,s dBH1

1,s

−2
ˆ T

t
eβA(s)Y n,m

s Zn,m
2,s dBH2

2,s−β

ˆ T

t
eβA(s)

α
2(s)|Y n,m

s |2ds.

By Proposition 3.3, we have

E
[
eβA(t)|Y n,m

t |2
]
+E
ˆ T

t
eβA(s)

[
βα

2(s)|Y n,m
s |2 +2

σ̂1(s)
σ1(s)

|Zn,m
1,s |2 +2

σ̂2(s)
σ2(s)

|Zn,m
2,s |2

]
ds

= 2E
ˆ T

t
eβA(s)Y n,m

s ∆ f (n,m)(s)ds. (3.13)

Applying standard estimates and asumption (H2.1), we obtain that

2E
ˆ T

t
eβA(s)Y n,m

s ∆ f (n,m)(s)ds≤ 2E
ˆ T

t
eβA(s)|Y n,m

s |µ
1
2 (s)ρ

1
2 (s, |Y n+m−1

s −Y n−1
s |2)ds

+2E
ˆ T

t
eβA(s)|Y n,m

s |
[

ν(s)|Zn,m
1,s |+ϑ(s)|Zn,m

2,s |
]

ds

≤ 1
C0

E
ˆ T

t
eβA(s) [

µ(s)+ν
2(s)+ϑ

2(s)
]
|Y n,m

s |ds

+C0E
ˆ T

t
eβA(s)

[
ρ(s, |Y n+m−1

s −Y n−1
s |2)+ |Zn,m

1,s |2 + |Z
n,m
2,s |2

]
ds
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Therefore, we can write

2E
ˆ T

t
eβA(s)Y n,m

s ∆ f (n,m)(s)ds≤ 1
C0

E
ˆ T

t
eβA(s)

α
2(s)|Y n,m

s |ds+C0E
ˆ T

t
eβA(s)|Zn,m

1,s |2ds

+C0E
ˆ T

t
eβA(s)|Zn,m

2,s |2ds+C0E
ˆ T

t
eβA(s)

ρ(s, |Y n+m−1
s −Y n−1

s |2)ds.

Using the abovementioned inequality and Remark 3.1, from (3.13), we deduce that

E
[
eβA(t)|Y n,m

t |2
]
+βE

ˆ T

t
eβA(s)

α
2(s)|Y n,m

s |2ds+2C0E
ˆ T

t
eβA(s)

[
|Zn,m

1,s |2 + |Z
n,m
2,s |2

]
ds

≤ 1
C0

E
ˆ T

t
eβA(s)

α
2(s)|Y n,m

s |ds+C0E
ˆ T

t
eβA(s)

[
|Zn,m

1,s |2 + |Z
n,m
2,s |2

]
ds

+C0E
ˆ T

t
eβA(s)

ρ(s, |Y n+m−1
s −Y n−1

s |2)ds.

Choosing β such that β > 1
C0

, we have

E
[
eβA(t)|Y n+m

t −Y n
t |2
]
≤C0

ˆ T

t
ρ

(
s,E
[
eβA(s)|Y n+m−1

s −Y n−1
s |2

])
ds.

Finally, by Remark 3.1 we obtain

E
[
eβA(t)|Y n+m

t −Y n
t |2
]
≤
ˆ T

t
ρ

(
s,E
[
eβA(s)|Y n+m−1

s −Y n−1
s |2

])
ds.

Lemma 3.6. Let the assumption (H2) be satisfied. Then there exists a constant M ≥ 0 and T1 ∈ [0,T ] such that

∀n≥ 1, E
[
eβA(t)|Y n

t |2
]
≤M, t ∈ [T1,T ].

Proof. Using the same method as in the proof of Lemma 3.5, we obtain that

E
[
eβA(t)|Y n

t |2
]
+βE

ˆ T

t
eβA(s)|Y n

s |2ds+2C0E
ˆ T

t
eβA(s)

[
|Zn

1,s|2 + |Zn
2,s|2

]
ds

≤ E
[
eβA(T )|ξ |2

]
+2E

ˆ T

t
eβA(s)Y n

s f (s,ηs,Y n−1
s ,Zn

1,s,Z
n
2,s)ds. (3.14)

Applying standard estimates and asumption (H2.1), we obtain that

2E
ˆ T

t
eβA(s)Y n

s f (s,ηs,Y n−1
s ,Zn

1,s,Z
n
2,s)ds≤C0E

ˆ T

t
eβA(s)

[
ρ(s, |Y n−1

s |2)+ |Zn,m
1,s |2 + |Zn

2,s|2
]

ds

+E
ˆ T

t
eβA(s) | f (s,ηs,0,0,0)|2

α2(s)
ds+

(
1+

1
C0

)
E
ˆ T

t
eβA(s)

α
2(s)|Y n

s |ds

Using the abovementioned inequality, from (3.14) we deduce that

E
[
eβA(t)|Y n

t |2
]
+[β − (1+

1
C0

)]E
ˆ T

t
eβA(s)|Y n

s |2ds+C0E
ˆ T

t
eβA(s)

[
|Zn

1,s|2 + |Zn
2,s|2

]
ds

≤ Λt +C0

ˆ T

t
ρ(s,E

[
eβA(s)|Y n−1

s |2
]
)ds, (3.15)
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where Λt = E
(

eβA(T )|ξ |2 +
ˆ T

t
eβA(s) | f (s,ηs,0,0,0)|2

α2(s)
ds
)

.

Choosing β such that β − 1
C0

> 1 we have

E
[
eβA(t)|Y n

t |2
]
≤ Λt +

ˆ T

t
ρ(s,E

[
eβA(s)|Y n−1

s |2
]
)ds, t ∈ [0,T ]. (3.16)

Finally let M = 2Λ0 +2
ˆ T

0
a(s)ds≥ 0. (3.17)

Arguing as in [ [9], Lemma 2], we choose T1 such that

Λ0 +

ˆ T

t
ρ(s,M)ds≤M, t ∈ [T1,T ]. (3.18)

By inequality (3.16) and (3.18), for t ∈ [T1,T ], we have

E
[
eβA(t)

∣∣Y 1
t

∣∣2]≤ Λt +

ˆ T

t
ρ (s,0)ds≤ Λ0 ≤M,

E
[
eβA(t)

∣∣Y 2
t

∣∣2]≤ Λt +

ˆ T

t
ρ

(
s,E[eβA(s)|Y 1

s |2]
)

ds≤ Λ0 +

ˆ T

t
ρ (s,M)ds≤M,

E
[
eβA(t)

∣∣Y 3
t

∣∣2]≤ Λt +

ˆ T

t
ρ

(
s,E[eβA(s)|Y 2

s |2]
)

ds≤ Λ0 +

ˆ T

t
ρ (s,M)ds≤M.

Hence, by induction, one can prove that for all n≥ 1,

E
[
eβA(t)|Y n

t |2
]
≤M, T1 ≤ t ≤ T.

The main result of this section is the following theorem:

Theorem 3.7. Let the assumptions (H2) be satisfied. Then, the fractional BSDE (3.2) has a unique solution
(Y,Z1,Z2) in the space B2([0,T ],R).

Proof. We split the proof into two parts.
(i) Existence: Using the constant M given by (3.17), we consider the sequence (ϕn)n≥1 given by

ϕ0(t) =
ˆ T

t
ρ (s,M)ds, ϕn+1(t) =

ˆ T

t
ρ (s,ϕn(s))ds, n≥ 0, t ∈ [T1,T ].

Then for all t ∈ [T1,T ], from the proof of Lemma 3.6, one can deduce that

ϕ0(t) =
ˆ T

t
ρ (s,M)ds≤M,

ϕ1(t) =
ˆ T

t
ρ (s,ϕ0(s))ds≤

ˆ T

t
ρ (s,M)ds = ϕ0(t)≤M,

ϕ2(t) =
ˆ T

t
ρ (s,ϕ1(s))ds≤

ˆ T

t
ρ (s,ϕ0(s))ds = ϕ1(t)≤M.

By induction, one can prove that for all n≥ 1, ϕn(t) satisfies

0≤ ϕn+1(t)≤ ϕn(t)≤ · · · ≤ ϕ1(t)≤ ϕ0(t)≤M.
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Then {ϕn(t), t ∈ [T1,T ]}n≥1 is uniformly bounded. On the other hand, for all n≥ 1 and t1, t2 ∈ [T1,T ], we obtain

|ϕn(t1)−ϕn(t2)|=
∣∣∣∣ˆ t2

t1
ρ (s,ϕn−1(s))ds

∣∣∣∣≤ ∣∣∣∣ˆ t2

t1
ρ (s,M)ds

∣∣∣∣ .
Since, for fixed v,

´ T
0 ρ (s,v)ds <+∞. So

sup
n
|ϕn(t1)−ϕn(t2)| → 0 as |t1− t2| → 0,

which means that {ϕn(t), t ∈ [T1,T ]}n≥1 is an equicontinuous family of function. Therefore, by the Arzelá-
Ascoli theorem, we can define by ϕ(t) the limit function of (ϕn(t))n≥1.
By (3.10), one knows that ϕ(t) = 0, t ∈ [T1,T ].
Now for all t ∈ [T1,T ], n,m≥ 1, in view of Lemmas 3.5 and 3.6, we have

E
[
eβA(t) |Y n

t |
2
]
≤M,

E
[
eβA(t)

∣∣Y 1+m
t −Y 1

t

∣∣2]≤ ˆ T

t
ρ

(
s,E[eβA(s) |Y m

s |
2]
)

ds≤
ˆ T

t
ρ (s,M)ds = ϕ0(t)≤M,

E
[
eβA(t)

∣∣Y 2+m
t −Y 2

t

∣∣2]≤ ˆ T

t
ρ

(
s,E
[
eβA(s)

∣∣Y 1+m
s −Y 1

s

∣∣2])ds≤ ϕ1(t)≤M,

E
[
eβA(t)

∣∣Y 3+m
t −Y 3

t

∣∣2]≤ ˆ T

t
ρ

(
s,E
[
eβA(s)

∣∣Y 2+m
s −Y 2

s

∣∣2])ds≤ ϕ2(t)≤M.

By induction, we can derive that

m≥ 1, E
[
eβA(t)

∣∣Y n+m
t −Y n

t

∣∣2]≤ ϕn−1(t), t ∈ [T1,T ].

Therefore we have

sup
t∈[T1,T ]

E
[
eβA(t)

∣∣Y n+m
t −Y n

t

∣∣2]≤ sup
t∈[T1,T ]

ϕn−1(t) = ϕn−1(T1)→ 0 n→ ∞.

Exploiting the argument developed in [ [1], Theorem 3.9] we prove that the sequence (Y n,Zn
1 ,Z

n
2) is a Cauchy

sequence in B2([T1,T ],R). Letting n→+∞ in eq.(3.11), we obtain

Yt = ξ +

ˆ T

t
f (s,ηs,Ys,Z1,s,Z2,s)ds−

ˆ T

t
Z1,sdBH1

1,s−
ˆ T

t
Z2,sdBH2

2,s, T1 ≤ t ≤ T.

In other words, we have shown the existence of the solution (Y,Z1,Z2) to fractional BSDE (3.2) on [T1,T ].
Finally, by iteration, one can deduce the existence on [T −λ (T −T1),T ], for each λ , and therefore the existence
on the whole [0,T ].

(ii) Uniqueness:
Let
(

Y i
t ,Z

i
1,t ,Z

i
2,t

)
0≤t≤T

, i = 1,2, be two solutions of fractional BSDE (3.2).

Using the same method as in the proof of Lemma (3.5), we have

E
[
eβA(t)|Y 1

t −Y 2
t |2
]
+C0E

ˆ T

t
eβA(s)|Z1

1,s−Z2
1,s|2ds+C0E

ˆ T

t
eβA(s)|Z1

2,s−Z2
2,s|2ds

≤
ˆ T

t
ρ(s,E

[
eβA(s)|Y 1

s −Y 2
s |2
]
)ds, t ∈ [0,T ]. (3.19)
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Therefore

E
[
eβA(t)|Y 1

t −Y 2
t |2
]
≤
ˆ T

t
ρ

(
s,E
[
eβA(s)|Y 1

s −Y 2
s |2
])

ds, t ∈ [0,T ] (3.20)

From the comparison theorem of ODE, we know that E
[
eβ t |Y 1

t −Y 2
t |2
]
≤ r(t), where r(t) is the maximum

of solution of (3.10) on [0,T ]. As a consequence, we have Y 1
t = Y 2

t for t ∈ [0,T ]. From (3.19), we deduce(
Z1

1,t ,Z
1
2,t

)
=
(

Z2
1,t ,Z

2
2,t

)
for t ∈ [0,T ]. This completes the proof.
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