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Abstract
In this paper, the high accuracy mass-conserved splitting domain decomposition method for solving the parabolic equations
is proposed. In our scheme, the time extrapolation and local multi-point weighted average schemes are used to approximate
the interface fluxes on interfaces of sub-domains, while the interior solutions are computed by one dimension high-order
implicit schemes in sub-domains. The important feature is that the developed scheme keeps mass conservation and are of
second-order convergent in time and fourth-order convergent in space. Numerical experiments confirm the convergence.
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1 Introduction

Time-dependent parabolic equations are widely used in science and engineering, which are described wa-
ter head in groundwater modelling, pressure in petroleum reservoir simulation, diffusion phenomena in heat
propagation, and atmospheric aerosol transport problems, etc (see [1–3, 7, 8]). Due to the computational com-
plexities and huge computational costs in applications, the non-overlapping explicit/implicit domain decomposi-
tion method have been an important tool for solving parabolic equations [4,6,7,10,11]. Domain decomposition
schemes that preserve the mass of the model are important and also required for parallel computations, specially,
in long time simulations and for large scale applications. Paper [5] presented an explicit-implicit conservative
domain decomposition procedure for parabolic equations, where the fluxes at the sub-domain interfaces were
calculated by an average operator from the solutions at the previous time level. Paper [16] studied the cell
centered finite difference domain decomposition procedure for the heat equations with constant coefficients
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in one dimension. Papers [13–15] proposed conservative parallel difference schemes for solving 2-dimension
(nonlinear) diffusion equation and the theoretical analysis was proved in paper [9]. By the operator splitting
technique and the coupling of the solution and its fluxes on staggered meshes, papers [17–19] analyzed the new
mass-preserving S-DDM scheme for solving parabolic equations and convection-diffusion equations. However,
the above conservative domain decomposition methods are only first-order in time. Recently, papers [20–22]
proposed the time second-order mass-conserved domain decomposition methods for parabolic equations with
constant coefficients and variable coefficients, respectively.

In this paper, for improving the accuracy and stability of the mass-conserved schemes in papers [20–22],
we propose the time second-order and space fourth-order conservative domain decomposition schemes for one-
dimension and 2-dimension parabolic equations with Neumann boundary conditions. In the domain decompo-
sition method, we take two steps to solve one-dimension problem. The time extrapolation and local multi-point
weighted average schemes are used to approximate the interface fluxes on interfaces of sub-domains, while
the interior solutions are computed by the time second-order and space fourth-order implicit schemes in sub-
domains. By the operator splitting technique, we take three small time steps (i.e., along x−direction, y−direction
and x−direction) to solve 2-dimension parabolic equations at each time interval, successively. The new feature
of our schemes is of fourth order accuracy in space step and the stability condition is weaker by increasing
properly the value of m. Numerical experiments are given to confirm mass conservation and convergence.

2 Time second-order and space fourth-order conserved DDM for 1-dimension parabolic equations

2.1 One-dimension parabolic model and partition

The one dimensional parabolic equations with variable coefficients are considered as follows,
∂u
∂ t
− ∂

∂x
(D(x)

∂u
∂x

) = f (x, t), x ∈ [0,L], t ∈ [0, T ],

∂u
∂x
|x=0= 0,

∂u
∂x
|x=L = 0, t ∈ [0, T ],

u(x,0) = u0(x), x ∈ [0,L].

(1)

where D(x) is diffusion coefficients and 0<D0≤D(x)≤D1. Let h> 0 be the space step length, and {xi+ 1
2
},{xi}

be the uniform staggered partition points as

x 1
2
= 0, xI+ 1

2
= L, xi+ 1

2
= ih, i = 1,2, · · · , I−1, xi = (i− 1

2)h, i = 1,2, · · · , I. (2)

Let τ > 0 be the time step length and tn be the uniform partition points of [0, T] as

t0 = 0, tM = T, tn = nτ, n = 1,2, · · · ,M−1. (3)

For functions F(x, t), define the difference operators as follows,

∂τFn
i =

Fn
i −Fn−1

i
τ

, Fn+ 1
2

i =
Fn

i +Fn+1
i

2 , δxFn
i+ 1

2
=

Fn
i+1−Fn

i
h ,

∆hFn
i =

δxFn
i+ 1

2
−δxFn

i− 1
2

h =
Fn

i+1−2Fn
i +Fn

i−1
h2 , δ 3

x Fn
i+ 1

2
= ∆h[δxFn

i+ 1
2
] =

Fn
i+2−3Fn

i+1+3Fn
i −Fn

i−1
h3 .

(4)

2.2 mass conserved domain decomposition method

For the stake of simplicity, the domain [0, L] is divided into two sub-domains and xk+ 1
2

is the interface point
of the sub-domains. Let {Un

i } and {Qn
i+ 1

2
} be the numerical approximations of the exact solutions {un

i } and

{Di+ 1
2

∂un

∂x |i+ 1
2
}.
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Define πn
i+ 1

2
= δxUn

i+ 1
2
,qn

i+ 1
2
= Di+ 1

2
πn

i+ 1
2

and

π̃
n
i+ 1

2
=

1
mH

[
5
4
(

i+m

∑
l=i+1

Un
l −

i

∑
l=i−m+1

Un
l )−

1
12

(
i+2m

∑
l=i+m+1

Un
l −

i−m

∑
l=i−2m+1

Un
l )]+

h2

12
δ

3
x Un

i+ 1
2
, (5)

and q̃n
i+ 1

2
= Di+ 1

2
π̃n

i+ 1
2
. Where the large space step H = mh and m is the integer.

Now, we propose the time second-order and space fourth-order conservative domain decomposition scheme
of Eqns. (1) in two steps at every time [tn−1, tn].

Step 1. The interface fluxes {Qn+1
k+ 1

2
} on the interface are firstly computed by

Qn+1
k+ 1

2
= q̌n+1

k+ 1
2
− h2

24 ∆hq̌n+1
k+ 1

2
− h2

24 Di+ 1
2
∆hπ̌

n+1
k+ 1

2
, (6)

where q̌n+1
k+ 1

2
and π̌

n+1
k+ 1

2
are computed by the time extrapolation and local multi-point weighted average scheme as

follows,
q̌n+1

k+ 1
2
= 2q̃n

k+ 1
2
− q̃n−1

k+ 1
2
, π̌

n+1
k+ 1

2
= 2π̃n

k+ 1
2
− π̃

n−1
k+ 1

2
. (7)

Step 2. The interior points {Un+1
i } on two sub-domains are computed by the following scheme,

∂τUn+1
i − 1

2(δxQn
i +δxQn+1

i ) = f n+ 1
2

i , (8)

where {Qn+1
i+ 1

2
} and {Qn

i+ 1
2
} are coupled computed as

Qn
i+ 1

2
= qn

i+ 1
2
− h2

24 ∆hqn
i+ 1

2
− h2

24 Di+ 1
2
∆hδxUn

i+ 1
2
, ∀i = 1,2, · · · , I

Qn+1
i+ 1

2
= qn+1

i+ 1
2
− h2

24 ∆hqn+1
i+ 1

2
− h2

24 Di+ 1
2
∆hδxUn+1

i+ 1
2
, i 6= k−1,k,k+1,

Qn+1
i+ 1

2
= qn+1

i+ 1
2
− h2

24 ∆hqn+1
i+ 1

2
− h2

24 Di+ 1
2
∆hδxUn+1

i+ 1
2
+ 1

24(q
n+1
k+ 1

2
− q̌n+1

k+ 1
2
)

+
D

i+ 1
2

24 (πn+1
k+ 1

2
− π̌

n+1
k+ 1

2
), i = k±1.

(9)

with the boundary conditions as Qn
1
2
= Qn

I+ 1
2
= 0. The initial values are given by

U0
i = u0(xi), i = 1,2, · · · , I, (10)

and the first time level values {U1
i } are also first computed by the implicit scheme as

∂τU1
i − 1

2(δxQ1
i +δxQ0

i ) = f
1
2

i , i = 1,2, · · · , I. (11)

Theorem 1. (Mass conservation) The scheme (6) - (11) preserves the global mass conservation over the whole
domain, i.e., if f (x, t) = 0, then we can obtain

∑
I
i=1Un

i h = ∑
I
i=1U0

i h, n = 1,2, · · · ,M. (12)

Proof. When f (x, t) = 0, multiplying (8) by h and summing up from i = 1 to I, we can obtain that

∑
I
i=1 ∂τUn

i h− 1
2 ∑

I
i=1(δxQn

i +δxQn−1
i )h = 0, n = 1,2, · · · ,M. (13)

Using the boundary condition Q 1
2
= QI+ 1

2
= 0., we can obtain that

∑
I
i=1 δxQn

i h = 0, ∑
I
i=1 δxQn−1

i h = 0, n = 1,2, · · · ,M. (14)

Substituting (14) into (13), we have that ∑
I
i=1 ∂tUn

i h = 0. Further, it holds that

∑
I
i=1Un

i h = ∑
I
i=1Un−1

i h = · · ·= ∑
I
i=1U0

i h. (15)

This ends the proof of the theorem.
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Theorem 2. If the exact solution u satisfies the regularity condition u ∈C0([0,T ];C5(Ω))∩C2([0,T ];C0(Ω)),
we have that

1
mH [5

4(∑
i+m
l=i+1 un

l −∑
i
l=i−m+1 un

l )−
1

12(∑
i+2m
l=i+m+1 un

l −∑
i−m
l=i−2m+1 un

l )]+
h2

12 δ 3
x un

i+ 1
2

= δxun
i+ 1

2
+O(h4 +H4).

(16)

and
un+1

l − (2un
l −un−1

l ) = O(τ2). (17)

Proof. For un
l (l = i−2m+1, i−2m+2, · · · , i+2m), by Taylor expansion, it holds that

un
l = un

i+ 1
2
+ ∂u

∂x |i+ 1
2
(l− i− 1

2)h+
1
2

∂ 2u
∂x2 |i+ 1

2
(l− i− 1

2)
2h2 + 1

6
∂ 3u
∂x3 |i+ 1

2
(l− i− 1

2)
3h3

+ 1
24

∂ 4u
∂x4 |i+ 1

2
(l− i− 1

2)
4h4 + 1

120
∂ 5u
∂x5 |i+ 1

2
(l− i− 1

2)
5h5.

(18)

Summing with l from i+1 to i+m, we can obtain that

∑
i+m
l=i+1 un

l = mun
i+ 1

2
+ ∂u

∂x |i+ 1
2

m2

2 h+ 1
2

∂ 2u
∂x2 |i+ 1

2

m(4m2−1)
12 h2 + 1

6
∂ 3u
∂x3 |i+ 1

2

m2(2m2−1)
8 h3

+ 1
24

∂ 4u
∂x4 |i+ 1

2
∑

m
κ=1(κ− 1

2)
4h4 + 1

120
∂ 5u
∂x5 |i+ 1

2
∑

m
κ=1(κ− 1

2)
5h5.

(19)

where κ = l− i, and summing with with l from i−m−1 to i, we have that

∑
i
l=i−m−1 un

l = mun
i+ 1

2
− ∂u

∂x |i+ 1
2

m2

2 h+ 1
2

∂ 2u
∂x2 |i+ 1

2

m(4m2−1)
12 h2− 1

6
∂ 3u
∂x3 |i+ 1

2

m2(2m2−1)
8 h3

+ 1
24

∂ 4u
∂x4 |i+ 1

2
∑

m
κ=1(κ− 1

2)
4h4− 1

120
∂ 5u
∂x5 |i+ 1

2
∑

m
κ=1(κ− 1

2)
5h5.

(20)

Subtracted (20) from (19), we can obtain that

∑
i+m
l=i+1 un

l −∑
i
l=i−m+1 un

l =
∂u
∂x |i+ 1

2
mH + 1

24
∂ 3u
∂x3 |i+ 1

2
mH(2m2−1)h2 +O(H4). (21)

Similarly, it holds that

∑
i+2m
l=i+m+1 un

l −∑
i−m
l=i−2m+1 un

l = 3 ∂u
∂x |i+ 1

2
mH + 1

8
∂ 3u
∂x3 |i+ 1

2
mH(10m2−1)h2 +O(H4). (22)

Further, we have that
1

mH [5
4(∑

i+m
l=i+1 un

l −∑
i
l=i−m+1 un

l )−
1
12(∑

i+2m
l=i+m+1 un

l −∑
i−m
l=i−2m+1 un

l )]

= ∂un

∂x |i+ 1
2
− 1

24
∂ 3un

∂x3 |i+ 1
2

h2 +O(H4).
(23)

Applying the Taylor format, it holds that

∂u
∂x |i+ 1

2
= δxun

i+ 1
2
− h2

24
∂ 3u
∂x3 |i+ 1

2
+O(h4), ∂ 3u

∂x3 |i+ 1
2
= δ 3

x un
i+ 1

2
+O(h2). (24)

Substituting (23) into (24), we can obtain (16). Similarly, it leads (17).

3 Time second-order and space fourth-order splitting conserved DDM for 2-dimension parabolic equa-
tions

3.1 2-dimension parabolic problem

The two-dimensional parabolic equations are considered as
∂u
∂ t −

∂

∂x(a
1(x,y) ∂u

∂x )−
∂

∂y(a
2(x,y) ∂u

∂y ) = f (x,y, t), (x,y, t) ∈Ω× (0, T ],
∇u ·~n = 0, (x,y, t) ∈ ∂Ω× (0, T ],
u(x,y,0) = u0(x,y), (x,y) ∈Ω,

(25)

https://www.sciendo.com


The high accuracy conserved splitting domain decomposition scheme for solving the parabolic equations 587

where Ω= [0,1]×[0,1], a1(x,y) and a2(x,y) are the diffusion coefficients. Assume that 0< a0≤{a1(x,y),a2(x,y)}≤
a1 are the known smooth functions. Define hx =

1
I and hy =

1
J be spatial step size along x-directional and y-

directional, respectively. I and J are the positive integers. Introducing the following staggered meshes as

xi+ 1
2
= ihx, i = 0,1, · · · , I, xi = (i+ 1

2)hx, i = 0,1, · · · , I−1,
y j+ 1

2
= jhy, j = 0,1, · · · ,J, y j = ( j+ 1

2)hy, j = 0,1, · · · ,J−1.
(26)

For simplicity, we assume that a1(x,y) and a2(x,y) are constants and f ≡ 0 as below, when a1(x,y) and a2(x,y)
are variable coefficients, the schemes are modified as similar as 1-dimension problem.

3.2 Conserved splitting domain decomposition scheme

For simplicity of description, we assume that the domain Ω be divided into 2× 2 block sub-domains (see
Fig. 1). Let {(xi+ 1

2
,y j)} and {(xi,y j+ 1

2
)} be the nodes for the fluxes while {(xi,y j)} are the nodes used for the

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

xi1+ 1
2

Γx
1

y j1+ 1
2 Γ

y
1

y 1
2

yJ+ 1
2

x 1
2

xI+ 1
2

x1 xI

y1

yJ

Ω1,1 Ω2,1

Ω1,2 Ω2,2

γx
1,1

γx
1,2

γ
y
1,1 γ

y
2,1

Fig. 1 The staggered meshes in 2×2 sub-domains: ◦,?,� - the points of (i, j),(i+ 1
2 , j),(i, j+ 1

2 ).

solution. The line Γx
1 : x = xi1+ 1

2
is the interface of Ω1,q and Ω2,q, q = 1,2, where i1 denotes the mesh point index

of interface location of Γx
1 along x−direction. The line Γ

y
1 : y = y j1+ 1

2
is the interface of sub-domains Ωp,1 and

Ωp,2, p = 1,2, and j1 denotes the mesh point index of interface location of Γ
y
1 along y−direction.

Let qx
i+ 1

2 , j
= a1δxUi+ 1

2 , j
, qy

i, j+ 1
2
= a2δyUi, j+ 1

2
, and

q̃x
i+ 1

2 , j
=

a1

m1H1
[
5
4
(

i+m

∑
l=i+1

Ul, j−
i

∑
l=i−m+1

Ul, j)−
1
12

(
i+2m

∑
l=i+m+1

Ul, j−
i−m

∑
l=i−2m+1

Ul, j)]+
hx

2

12
a1

δ
3
x Ui+ 1

2 , j
,

q̃y
i, j+ 1

2
=

a2

m2H2
[
5
4
(

i+m

∑
l=i+1

Ui,l−
i

∑
l=i−m+1

Ui,l)−
1

12
(

i+2m

∑
l=i+m+1

Ui,l−
i−m

∑
l=i−2m+1

Ui,l)]+
hy

2

12
a2

δ
3
y Ui, j+ 1

2
,

(27)

where H1 = m1hx, H2 = m2hy.
Now we describe the algorithm of our time second-order and space fourth-order conserved splitting domain

decomposition scheme on Ω1,1 at each time [tn−1, tn] in details as
Step 1: Along x-direction.
(a) The intermediate interface fluxes {Qx,n∗

i1+ 1
2 , j
} on the interface are firstly computed by

Qx,n∗

i1+ 1
2 , j

= q̌x,n∗

i1+ 1
2 , j
− hx

2

12 ∆hx q̌
x,n∗

i1+ 1
2 , j
, (28)
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where q̌x,n∗

i1+ 1
2 , j

are computed by the time extrapolation and local multi-point weighted average scheme as follows,

q̌x,n∗

i1+ 1
2 , j

=


1
4(5q̃x,1

i1+ 1
2 , j
− q̃x,0

i1+ 1
2 , j
), n = 1,

2q̃x,n
i1+ 1

2 , j
− q̃x,n−1∗∗

i1+ 1
2 , j

, n≥ 2.
(29)

(b) The intermediate variables {Un∗
i, j} are computed by the x-directional splitting implicit scheme.

Un∗
i, j −Un

i, j
τ

= 1
4(δxQx,n∗

i, j +δxQx,n
i, j ), (xi,y j) ∈Ω1,1,

Qx,n
i+ 1

2 , j
= qx,n

i+ 1
2 , j
− hx

2

12 ∆hxq
x,n
i+ 1

2 , j
, (xi,y j) ∈Ω1,1,

Qx,n∗

i+ 1
2 , j

= qx,n∗

i+ 1
2 , j
− hx

2

12 ∆hxq
x,n∗

i+ 1
2 , j
, i = 1,2, · · · i1−2,

Qx,n∗

i+ 1
2 , j

= qx,n∗

i+ 1
2 , j
− hx

2

12 ∆hxq
x,n∗

i+ 1
2 , j

+ 1
12(q

x,n∗

i1+ 1
2 , j
− q̌x,n∗

i1+ 1
2 , j
), i = i1−1.

(30)

Step 2: Along y-direction.
(a) The interface fluxes {Qy,n∗∗

i, j1+ 1
2
} on interface are computed explicitly by

Qy,n∗∗

i, j1+ 1
2
= q̌y,n∗∗

i, j1+ 1
2
− hy

2

12 ∆hy q̌
y,n∗∗

i, j1+ 1
2
, (31)

and define q̌y,n∗∗

i, j1+ 1
2
= 3q̃y,n∗

i, j1+ 1
2
−2q̃y,n

i, j1+ 1
2 , j

.

(b) The numerical solutions {U∗∗i, j } are solved by the y-directional splitting implicit scheme.

Un∗∗
i, j −Un∗

i, j
τ

= 1
2(δyQy,n∗∗

i, j +δyQy,n∗
i, j ) (xi,y j) ∈Ω1,1,

Qy,n∗

i, j+ 1
2
= qy,n∗

i, j+ 1
2
− hy

2

12 ∆hyq
y,n∗

i, j+ 1
2
, (xi,y j) ∈Ω1,1,

Qy,n∗∗

i, j+ 1
2
= qy,n∗∗

i, j+ 1
2
− hy

2

12 ∆hyq
y,n∗∗

i, j+ 1
2
, j = 1,2, · · · , j1−2

Qy,n∗∗

i, j+ 1
2
= qy,n∗∗

i, j+ 1
2
− hy

2

12 ∆hyq
y,n∗∗

i, j+ 1
2
+ 1

12(q
y,n∗∗

i, j1+ 1
2
− q̌y,n∗∗

i, j1+ 1
2
), j = j1−1.

(32)

Step 3: Along x-direction.
(a) The intermediate interface fluxes {Qx,n+1

i1+ 1
2 , j
} on the interface are re-computed explicitly as

Qx,n+1
i1+ 1

2 , j
= q̌x,n+1

i1+ 1
2 , j
− hx

2

12 ∆hx q̌
x,n+1
i1+ 1

2 , j
, (33)

where q̌x,n+1
i1+ 1

2 , j
= 1

2(3q̃x,n∗∗

i1+ 1
2 , j
− q̃x,n∗

i1+ 1
2 , j
).

(b) The intermediate variables {Un+1
i, j } are computed by the x-directional splitting implicit scheme.

Un+1
i, j −Un∗∗

i, j
τ

= 1
4(δxQx,n+1

i, j +δxQx,n∗∗
i, j ), (xi,y j) ∈Ω1,1,

Qx,n∗∗

i+ 1
2 , j

= qx,n∗∗

i+ 1
2 , j
− hx

2

12 ∆hxq
x,n∗∗

i+ 1
2 , j
, (xi,y j) ∈Ω1,1,

Qx,n+1
i+ 1

2 , j
= qx,n+1

i+ 1
2 , j
− hx

2

12 ∆hxq
x,n+1
i+ 1

2 , j
, i = 1,2, · · · , i1−2,

Qx,n+1
i+ 1

2 , j
= qx,n+1

i+ 1
2 , j
− hx

2

12 ∆hxq
x,n+1
i+ 1

2 , j
+ 1

12(q
x,n+1
i1+ 1

2 , j
− q̌x,n+1

i1+ 1
2 , j
), i = i1−1.

(34)

The boundary conditions are approximated by

Qx
1
2 , j

= 0, Qy
i, 1

2
= 0, {(x 1

2
,y j),(xi,y 1

2
)} ∈ ∂Ωh, (35)

The initial values are computed by U0
i, j = u0(xi,y j), and the first time level values {U1

i, j} are need to compute by
splitting scheme.
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Remark 1. The conserved splitting domain decomposition scheme (28)-(35) is proposed over block-divided
domain decompositions for solving 2-dimension parabolic equations. The three steps are used to compute the
solutions {Un+1

i, j } at each time. At Step 1 (along x−direction), it leads to symmetric and penta-diagonal matrix

systems of {U∗i, j} over Ω1,1 by substituting the intermediate fluxes {Qx,n
i+ 1

2 , j
}, {Qx,n∗

i1+ 1
2 , j
} and {Qx,n∗

i+ 1
2 , j
} into the first

equation of (30), which is solved by Thomas method [12]. Similarly, we can obtain {U∗∗i, j } along y−direction
and {Un+1

i, j } along x−direction again.

Theorem 3. (Mass conservation) The scheme (28) - (35) preserves the global mass conservation over the whole
domain, i.e.,

∑
I
i=1 ∑

J
j=1Un+1

i, j hxhy = ∑
I
i=1 ∑

J
j=1Un

i, jhxhy, ∀n = 0,2, · · · ,M−1. (36)

Proof. Similar proof as (12), we can obtain the mass along x-direction in Step 1,

∑
I
i=1 ∑

J
j=1Un∗

i, j hxhy = ∑
I
i=1 ∑

J
j=1Un

i, jhxhy, (37)

along y-direction in Step 2,
∑

I
i=1 ∑

J
j=1Un∗∗

i, j hxhy = ∑
I
i=1 ∑

J
j=1Un∗

i, j hxhy, (38)

and along x-direction in Step 3,

∑
I
i=1 ∑

J
j=1Un+1

i, j hxhy = ∑
I
i=1 ∑

J
j=1Un∗∗

i, j hxhy. (39)

Adding (37), (38) and (39). We complete the proof.

4 Numerical experiments

In the section, we present numerical experiments to illustrate the performance of the scheme such as mass
conservation, orders of convergence and stability. The domains Ω = [0,1]× [0,1] and are divided into 2× 2
sub-domains. Take uniform mesh steps hx = hy = h and m = m1 = m2. Let u(x,y, tn) be the exact solution and
{Un

i, j} be the approximate solution of the problem. Define solution errors in discrete L2 norm as

en
h = h

√
∑i, j(u(xi,y j, tn)−Un

i, j)
2.

and mass errors MassErr = |Massn−Mass0|, where Mass0 = ∑i, j U0
i, jh

2 and

Massn = ∑i, j Un
i, jh

2 + τ ∑
n
l=1 ∑i, j f l

i, jh
2,

Assume that D = a1 = a2, and the the exact solution of Eqns. (25) is u = e−2Dπ2t cosπxcosπy. Table 1 presents
the errors and the order of convergence in space step at t = 0.1. The space step size h is selected from 1/10 to
1/80, while the time step size is taken as τ = 1/10000 and m = 2.

The time order of convergence of the scheme at time t = 0.1 is presented in Table 2. Taking τ = 0.1h2 and
D = 1E−2,1E−1,D = 1.

From Table 1 and 2, we can see clearly that our scheme are of fourth-order convergence in spatial step and
second-order convergence in time step for the cases of different diffusions.

Take the space step h = 1/40 and the time step τ from 1/800 to 1/2000 and m = 3 in Table 3. It is clear
that our scheme is conserved for the cases of different diffusions and different time step, since the errors of mass
have reached the machine accuracy 10−17.

The effect of m on the stability of our scheme for the solutions is presented in Table 4 at t = 0.01. Take D= 1,
r = τ

h2 = 2 and h = 1/200. From Table 4, we can find that when r = 2, our scheme is still stable, conservative
and has very good accurate results by increasing properly the value of m≥ 5.

In Figure 2, we take h = 1/100 , τ = 1/10000, D = 1, and m = 5. From the contour and surface plots of
concentration, it is clear that the shape of solution moves smoothly without any numerical oscillation.
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Table 1 Errors and ratios of convergence in space for different diffusion D.
D\h 1/10 1/20 1/40 1/80

1E-2
eh 1.0572E-5 6.8466E-7 2.9351E-8 9.9707E-10

ratio - 3.9487 4.5439 4.8796

1E-1
eh 4.6522E-5 1.7552E-6 6.7088E-8 2.9600E-9

ratio - 4.7282 4.7094 4.5024

1
eh 4.2444E-5 1.7928E-6 8.0280E-8 1.5923E-9

ratio - 4.5653 4.4810 5.6559

Table 2 Errors and ratios of convergence in time for different diffusion D.
D\ τ 1/1000 1/4000 1/9000 1/16000

1E-2
eh 3.3475E-5 1.6835E-5 1.1157E-5 8.3407E-6

ratio - 1.9695 2.2111 2.3563

1E-1
eh 4.6382E-5 1.7548E-6 2.5642E-7 6.7091E-8

ratio - 2.3621 2.3717 2.3303

1
eh 4.2394E-5 1.7795E-6 2.9232E-7 8.3107E-8

ratio - 2.2872 2.2273 2.1860

Table 3 Errors and mass errors for different diffusion D and different τ .
τ \D 0.01 0.1 0.5 1

1/1000
eh 1.7193E-7 3.1160E-7 2.7226E-7 2.7227E-7

MassErr 2.9837E-18 1.1241E-17 4.0246E-18 4.2986E-17

1/2000
eh 1.7211E-7 3.0987E-7 3.1648E-7 1.4113E-7

MassErr 3.7401E-17 2.6368E-17 2.3835E-17 4.1113E-18

1/3000
eh 1.7218E-7 3.0962E-7 3.2929E-17 1.8791E-7

MassErr 3.1850E-17 4.4409E-17 4.4548E-17 6.9042E-18

1/4000
eh 1.7221-7 3.0956E-7 3.3409E-7 2.0642E-7

MassErr 4.8503-17 1.1796E-18 2.4876E-17 1.7781E-17

Table 4 The effect of m on the stability.
r \m 2 3 5 10 20

2
eh 4.2699E+19 3.2818E+02 1.5482E-6 1.6600E-8 2.5564E-7

MassErr 1.4909E+02 6.2177E-16 8.2406E-18 9.7145E-19 2.0761E-17
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(a) The contour plots of concentration at t = 0.002,0.005,0.01.
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(b) The surface plots of concentration at t = 0.002,0.005,0.01.

Fig. 2 The numerical simulation for heat propagation.

5 Conclusion

In this paper, the time second-order and space fourth-order conserved splitting domain decomposition
scheme is developed for solving 2-dimension parabolic equations. In our splitting domain decomposition
method, the time extrapolation and local multi-point weighted average schemes are used to approximate the
interface fluxes on interfaces of sub-domains, while the interior solutions are computed by the splitting high-
order implicit schemes in sub-domains. The analysis of stability and convergence will be studied in further
work.
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