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Abstract
This paper propose Noether symmetries and the conserved quantities of the relative motion systems on time scales. The
Lagrange equations with delta derivatives on time scales are presented for the system. Based upon the invariance of
Hamilton action on time scales, under the infinitesimal transformations with respect to the time and generalized coordinates,
the Hamilton.s principle, the Noether theorems and conservation quantities are given for the systems on time scales.
Lastly, an example is given to show the application the conclusion.
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1 Introduction

A time scale is an arbitrary nonempty closed subset of the real numbers.The calculus of time scales were
initiated by B.Aulbach and S.Hilger [1] in order to create a theory which can unify discrete and continuous
analysis. A time scale is a model of time, and the new theory has found important applications in several fields
which require simultaneous modeling of discrete and continuous data, in the calculus of variations, control
theory, and optimal control [2–5]. The calculus of variations on time scales was initiated with the presentation
of Euler-Lagrange equations on time scales was presented in 2004 [6]. But, Torres put forward the second Euler-
Lagrange equations and researched the higher-order calculus of variations on time scales [7, 8]. The calculus of
variations and control theory are disciplines in which there appears to be many opportunities for application of
time scales [9–11].

In 1918, Noether proposed famous Noether symmetry theorems which could be used to deal with the invari-
ance of the Hamilton action under the infinitesimal transformations: when a system exhibits a symmetry, then
a conservation law can be obtained. Bartosiewicz and Torres showed that there existed a conserved quantity in
Lagrangian system for each Noether symmetry [12] on time scales by the technique of time-re-parameterization.
Using this technique, Cai and Fu studied the theories of Noether symmetries of the nonconservative and non-
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holonomic systems on time scales [13,14]. Noether theory of the Hamilton systems on time scales was given by
Zhang [15, 16]. It is worth mentioning that the dynamic systems on time scales with delta derivative have just
started to originate.

With the development of modern science and technology, people pay attention to the dynamic of relative
motion. Jet aircrafts, rockets, satellite, spacecraft and so on generally involve application of the relative motion
systems. We also know that the movement of Mechanical systems is researched in either absolute coordinate
system or moving coordinate system. The dynamic systems in the moving coordinate system is called the
relative motion dynamic. In 1961, Lur’e introduced the equation of the relative motion systems for conservative
systems [17]. In 1993, The Lagrange equation of relative motion dynamics for the general holonomic system
was first studied by Liu [18]. In recent decades, a series of innovative research results about dynamics of relative
motion have been obtained [19, 20, 22].

In this letter, we study the Noether symmetry of relative motion systems on time scales. The structure of
this letter as follows: In Section 2, we review preparatory knowledge and properties of time scales. In Section 3,
we establish the equations of the relative motion systems with delta derivatives. In Section 4, Noether theorems
and conserved quantities for the relative motion systems are founded. Lastly, an example is used to illustrate the
results.

2 Previous results of time scales

To begin with, we briefly present some main definitions and properties about times scales. More detailed
theory of time scales can refer to [23–25].
Definition 1 A time scale T is an arbitrary nonempty closed subset of the set R of real number. For t ∈ T , we
define the forward jump operator σ : T → T by

σ(t) = in f{s ∈ T : s > t}, (1)

and the backward jump operator ρ : T → T by

ρ(t) = sup{s ∈ T : s < t}. (2)

The graininess function µ : T → [0,∞] is defined by µ(t) = σ(t)− t for each t ∈ T .
A point is called right-dense, right-scattered, left-dense or left-scattered if σ(t) = t, σ(t) > t, ρ(t) = t,

ρ(t)< t, respectively. We say T k = T −{M} if T has a left-scattered maximum M, otherwise T k = T .
Definition 2 Assume f : T → R is a function and t ∈ T k, we define f ∆(t) to be the real number with the property
with given any ε , there is neighborhood U = (t−δ , t +δ )

⋂
T of such that

|[ f (σ(t))− f (s)]− f ∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|, (3)

is true for all s ∈U , we call f ∆(t) the delta derivative of f at t.
Definition 3 A function f : T → R is continuous at t ∈ T k and t is right-scattered, then f is differentiable at t
with

f ∆(t) =
f (σ(t))− f (t)

µ(t)
. (4)

Furthermore, if f is differentiable at t ∈ T k, then

f (σ(t)) = f (t)+µ(t) f ∆(t). (5)

Definition 4 Assume f : T → R is a regulated function, existing a function F with F∆(t) = f (t) is called a
pre-antiderivative of f and in this case an integral of f from a to b(a,b ∈ T ) is defined by

ˆ b

a
f (t)∆t = F(b)−F(a), (6)
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We define the indefinite integral of f by
ˆ

f (t)∆t = F(t)+C. (7)

Where C is an arbitrary constant.
We shall often note f ∆(t) by ∆

∆t f (t) if f is a composition of other functions. Furthermore, if f and g are both
differentiable, the next formulate hold

( f +g)∆(t) = f ∆(t)+g∆(t),

(k f )∆(t) = k f ∆(t),

( f g)∆(t) = f ∆(t)g(t)+ f σ (t)g∆(t)+ f ∆(t)gσ (t), (8)

where we abbreviate f ◦σ = f (σ(t)) by f σ .
Remark 1 we consider the two cases T = R and T = Z.

(i) If T = R, f : R→ R is delta differentiable at t ∈ R, then f ∆(t) = f ′(t).
(ii)If T = Z, f : Z→ R is delta derivative at every t ∈ Z with f ∆(t) = f (t +1)− f (t).

Lemma 1 (Dubois-Reymond) [6] Let g ∈Crd ,g : [a,b]→ Rn, if

ˆ b

a
gT

η
∆(t)∆t = 0, (9)

for all η ∈C1
rd with η(a) = η(b) = 0, then,

g(t)≡ c,∀t ∈ [a,b]k f orsomec ∈ Rn,

where C1
rd means the set of differentiable functions with rd-continuous derivative.

We can also obtain the following conclusions about the time scales [25].
Assume that α : T → R is strictly increasing and T ∗ := α(T ) is a time scale, Let β : T ∗ → R, then there

exists t in the real interval [t,σ(t)] with

(α ◦β )∆(t) = β
∆∗(α(t))α∆(t),

1
α∆

= (α−1)∆∗ ◦α. (10)

If f : T → R is an rd-continuous function and α is differentiable with rd-continuous derivative, then for
a,b ∈ T , ˆ b

a
f (t)α∆(t)∆t =

ˆ
α(b)

α(a)

(
f ◦α

−1)(t)∆∗t = ˆ α(b)

α(a)
f (t∗)∆∗t. (11)

Let γ = α−1, then q∗(t∗) := Qε (γ(t∗),q(γ(t∗))).

3 Lagrange equations for the relative motion systems on time scales

3.1 Equation of Chetaev constraint the relative motion systems

We know that the motion of a complex system may include the motion of a carrier, as well as the motion of
a carried system relative to the carrier.

Suppose that the velocity of the base point in a carrier v0 and its angular velocity is ω . We assume that the
motion of N particles wouldn’t change the motion rule of the carrier which is predetermined. N generalized
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coordinates qs (s = 1, · · · ,n) determine the configuration of systems. If the movement of the systems are con-
strained by the double-sided ideal Chetaev nonholonomic constraints,

fβ (qs, q̇s, t) = 0(β = 1, · · · ,g;s = 1, · · · ,n).

The equations of the relative motion systems are[18]


d
dt

∂T
∂ q̇s
− ∂T

∂qs
= Qs− ∂

∂qs
(V 0 +V ω)+Qω

s +Γs +Λs,

Λs = λβ

∂ fβ

∂ q̇s
(s = 1, · · · ,n),

where T is the kinetic energy of the relative motion function, λβ is Lagrange multiplier, Qs, V 0, V ω , Qω
s , Γs are

respectively the generalized forces, the potential energy of uniform force field, the potential energy of inertial
centrifugal force field, generalized rotary inertia force, generalized gyroscopic force.
The Qs can be divided into parts of potential and nonpotential

Qs = Q′s +Q′′s ,Q
′
s =

∂V
∂qs

.

We construct Lagrangian of the relative motion system

L = T −V −V 0−V ω .

Equations can be written as follows

d
dt

∂L
∂ q̇s
− ∂L

∂qs
= Q′′s +Qω

s +Γs +Λs.

3.2 Lagrange equation for the relative motion systems with delta derivatives

Firstly, we introduce the following relationships [13]

∆

∆t
(δqs) = δ

(
∆

∆t
qs

)
= δq∆

s , (12)

(δqs)
σ = δqσ

s . (13)

The Hamilton principle for the relative motion system on time scales is written by

ˆ tb

ta
[δL+(Q′′s +Qω

s +Γs)δqσ
s ]∆t = 0, (14)

where (Q′′s +Qω
s +Γs)δqσ

s is the virtual work of generalized force.
We take total variation for Lagrange function L, then

δL =
∂L

∂qσ
s

δqσ
s +

∂L
∂q∆

s
δq∆

s . (15)
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By using of Eq. (15) and Eq. (14), we can obtainˆ tb

ta

[
∂L

∂qσ
s

δqσ
s +

∂L
∂q∆

s
δq∆

s +(Q′′s +Qω
s +Γs)δqσ

s

]
∆t

=

ˆ tb

ta

[(
∂L

∂qσ
s
+Q′′s +Qω

s +Γs

)
δqσ

s +
∂L
∂q∆

s
δq∆

s

]
∆t

=

ˆ tb

ta

[(
∂L

∂qσ
s
+Q′′s +Qω

s +Γs

)
(δqs)

σ +
∂L
∂q∆

s
(δqs)

∆

]
∆t

=

ˆ tb

ta

[ˆ t

ta

(
Q′′s +Qω

s +Γs +∂L(τ,qσ
s (τ),q

∆
s (τ))

∂qσ
s (τ)

)
∆τ ·δqs

]∆

∆t

−
ˆ tb

ta

[ˆ t

ta

(
Q′′s +Qω

s +Γs +∂L(τ,qσ
s (τ),q

∆
s (τ))

∂qσ
s (τ)

)
∆τ

]
(δqs)

∆
∆t +
ˆ tb

ta

∂L
∂q∆

s
(δqs)

∆
∆t

=

ˆ tb

ta

[
∂L
∂q∆

s
−
ˆ t

ta

(
Q′′s +Qω

s +Γs +
∂L(τ,qσ

s (τ),q
∆
s (τ))

∂qσ
s (τ)

)
∆τ

]
(δqs)

∆
∆t

= 0

Therefore, by Lemma 1

∂L
∂q∆

s
−
ˆ t

ta

(
Q′′s +Qω

s +Γs +
∂L(τ,qσ

s (τ),q
∆
s (τ))

∂qσ
s (τ)

)
∆τ ≡ const, t ∈ [ta, tb].

Hence
∆

∆t
∂L
∂q∆

s
− ∂L

∂qσ
s
− (Q′′s +Qω

s +Γs) = 0 (16)

Assuming the movement of the system is constrained by the double-sided ideal nonholonomic of Chetaev
type with delta derivatives

fβ (t,q
σ
s ,q

∆
s ) = 0,(β = 1,2, · · · ,g). (17)

Suppose the restrictions that constraints impose on the virtual displacements are

∂ fβ

∂q∆
s

δqσ
s = 0,(s = 1,2, · · · ,n;β = 1,2, · · · ,g). (18)

Multiplying δqσ
s on both sides of Eq. (16)(

(Q′′s +Qω
s +Γs)−

∆

∆t
∂L
∂q∆

s
+

∂L
∂qσ

s

)
·δqσ

s = 0. (19)

Introducing the Lagrange multiplier λ and multiplying λ on both sides of Eq.(18),

λ
∂ fβ

∂q∆
s

δqσ
s = 0. (20)

Form Eq. (20) and Eq. (19), we get(
(Q′′s +Qω

s +Γs)−
∆

∆t
∂L
∂q∆

s
+

∂L
∂qσ

s
+λ

∂ fβ

∂q∆
s

)
·δqσ

s = 0. (21)

Differential Eq. (21), we obtain the equation of the relative motion systems with Chetaev type constraints on
time scales

∆

∆t
∂L
∂q∆

s
− ∂L

∂qσ
s
= Q′′s +Qω

s +Γs +Λs. (22)

(Λs = λ
∂ fβ

∂q∆
s
)
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4 Noether theorem of the relative motion systems

4.1 Noether’s theorem without transforming time

The Hamilton action with the delta derivative on time scales can be expressed as

S(γ) =
ˆ tb

ta
L(t,qσ

s ,q
∆
s )∆t,

where γ is a curve.
Introducing the following single parameter infinitesimal transformations without transforming time:

t∗ = t,

q∗s = qs + εξs(t,q)+o(ε), (23)

if and only if ˆ tb

ta
L(t,qσ

s ,q
∆
s )∆t =

ˆ tb

ta
L(t,q∗σs ,q∗∆s )∆t. (24)

Where ε is the infinitesimal parameter, ξs : [a,b]×Rn→ R is delta differentiable functions.
The relationship between the isochronous δ and the total variation ∆ on time scale is as follows

∆qσ
s = δqσ

s +q∆
s ∆t.

According to Eq. (23), we have
δqσ

s = ∆qσ
s −q∆

s ∆t = εξ
σ
s . (25)

Substituting Eq. (25) into Eq. (18) has

∂ fβ

∂q∆
s

ξ
σ
s = 0,(s = 1,2, · · · ,n;β = 1,2, · · · ,g). (26)

Definition 5 The action S is said to be quasi invariant on U under the transformation groups (23), if and only if
for any subinterval [ta, tb] ∈ [a,b], any ε,q ∈Uˆ tb

ta
L(t,qσ

s ,q
∆
s )∆t =

ˆ tb

ta
L(t,q∗σs ,q∗∆s )∆t +

ˆ tb

ta

(
∆

∆t
(∆G)+(Q′′s +Qω

s +Γs +Λs)δqσ
s

)
∆t,

where the transformations satisfy the condition Eq.(26). we say that the invariance is called Noether generalized
quasi-symmetry of the relative motion systems on time scales.
Theorem 1 If the action S is quasi-invariant on the infinitesimal transformations Eq.(23) then

∂L
∂qσ

s
ξ

σ
s +

∂L
∂q∆

s
ξ

∆
s +(Q′′s +Qω

s +Γs +Λs)ξ
σ
s =− ∆

∆t
G, (27)

where ξ σ
s (t,q) = ξs(σ(t),q(σ(t))), ξ ∆

s (t,q) =
∆

∆t ξs(t,q).

Proof. Consider the infinitesimal transformations (t,q∗s ) given by group(23) and Definition 5, we can obtainˆ tb

ta
L(t,qσ

s ,q
∆
s )∆t =

ˆ tb

ta
L(t,q∗σs ,q∗∆s )∆t

+

ˆ tb

ta

(
∆

∆t
(∆G)+(Q′′s +Qω

s +Γs +Λs)δqσ
s

)
∆t

=

ˆ tb

ta
L(t,qσ

s + εξ
σ
s +o(ε),q∆

s + εξ
∆
s +o(ε))∆t

+

ˆ tb

ta

(
∆

∆t
(∆G)+(Q′′s +Qω

s +Γs +Λs)δqσ
s

)
∆t
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Taking into account any subinterval [ta, tb] ∈ [a,b], we can get the following equivalent equation:

L(t,qσ
s ,q

∆
s ) = L(t,qσ

s + εξ
σ
s +o(ε),q∆

s + εξ
∆
s +o(ε))+(Q′′s +Qω

s +Γs +Λs)∆qσ
s +

∆

∆t
(∆G). (28)

Differentiation both sides of Eq.(28)with respect to ε ,

∂L
∂ t

∂ t
∂ε

+
∂L

∂qσ
s

∂q∗σs

∂ε
+

∂L
∂q∆

s

∂q∗∆s

∂ε
+(Q′′s +Qω

s +Γs +Λs)
∂δqσ

s

∂ε
+

∆

∆t
G = 0

Since

∂q∗σs

∂ε
|ε=0 = ξ

σ
s ,

∂q∗∆s

∂ε
|ε=0 = ξ

∆
s .

Eq. (25) shows that

∂δqσ
s

∂ε
= ξ

σ
s .

Then, setting ε = 0, we can obtain the Eq. (27).
Theorem 2 For Chetaev constraint the relative motion systems on time scales, if the infinitesimal transformations
Eq. (23) satisfy the conditions Eq. (26), then the system Eq. (22) has conserved quantities of the form

I =
∂L
∂q∆

s
ξs +G. (29)

Proof. It proves that Eq. (29) is equivalent to the proof of I = const, takeing the derivative of I with respect to
t, then

∆

∆t
I =

∆

∆t

[
∂L
∂q∆

s
ξs +G

]
=

∆

∆t
∂L
∂q∆

s
ξ

σ
s +

∂L
∂q∆

s
ξ

∆
s +

∆

∆t
G.

Multiplying ξ σ
s on both sides of Eq.(22)

∆

∆t
∂L
∂q∆

s
ξ

σ
s =

∂L
∂qσ

s
ξ

σ
s +(Q′′s +Qω

s +Γs +Λs)ξ
σ
s .

Observe that Eq. (27)

∆

∆t
I =

∂L
∂q∆

s
ξ

∆
s +

(
Q′′s +Qω

s +Γs +Λs +
∂L

∂qσ
s

)
ξ

σ
s +

∆

∆t
G = 0.

Namely

I = const.

4.2 Noether theorem with transforming time

Considering the following infinitesimal transformations with the time and the state variables:

t∗ = t + εξ0(t,q)+o(ε),

q∗s = qs + εξs(t,q)+o(ε). (30)

Where ξ0,ξs : [a,b]×Rn→ R are delta differentiable functions.
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In this case, we assume the map t ∈ [a,b] 7→ α(t) = t∗ ∈ R is a strictly increasing C1
rd function and its image

is a new time scale t∗ = α(t), whose forward jump operator and delta derivative are denote by σ∗ and ∆∗.
Following the arguments provided above,

σ
∗ ◦α = α ◦σ .

According to groups (30), we have

δqσ
s = ∆qσ

s −q∆
s ∆t = ε(ξ σ

s −qσ∆
s ξ

σ
0 ). (31)

Substituting Eq. (31) into Eq. (18)

fβ s(ξ
σ
s −qσ∆

s ξ
σ
0 ) = 0 (32)

Definition 6 The action S is called a generalized quasi invariant in the transformation groups (30) and if and
only if for any subinterval [ta, tb] ∈ [a,b]

ˆ tb

ta
L(t,qσ

s ,q
∆
s )∆t =

ˆ
α(tb)

α(ta)
L
(

t∗,q∗σ
∗

s (t∗),q∗∆
∗

s (t∗)
)

∆
∗t∗

+

ˆ tb

ta

(
∆

∆t
(∆G)+(Q′′s +Qω

s +Γs +Λs)δqσ
s

)
∆t.

Theorem 3 Noether theory points out that ξ0, ξs satisfy the Noether identity if it exists the gauge G=G(t,qσ
s ,q

∆
s ).

If the action S is generalized quasi-invariant in the infinitesimal transformations Eq. (30), then

∂L
∂ t

ξ0 +
∂L

∂qσ
s

ξ
σ
s +

∂L
∂q∆

s
ξ

∆
s +Lξ

∆
0 −

∂L
∂q∆

s
ξ

∆
0 q∆

s +(Q′′s +Qω
s

+Γs +Λs)× [ξ σ
s −ξ

σ
0 (q∆

s +µ(t)q∆∆
s )] =− ∆

∆t
G. (33)

Proof. Consider the Definition 6, we have
ˆ tb

ta
L(t,qσ

s ,q
∆
s )∆t

=

ˆ
α(tb)

α(ta)
L
(

t∗,q∗σ
∗

s ,q∗∆
∗

s

)
∆
∗t∗

+

ˆ tb

ta

(
∆

∆t
(∆G)+(Q′′s +Qω

s +Γs +Λs)δqσ
s

)
∆t

=

ˆ tb

ta
L
(

α(t),(q∗s ◦σ
∗ ◦α)(t),q∗∆

∗
s (α(t))

)
α

∆(t)∆t

+

ˆ tb

ta

(
∆

∆t
(∆G)+(Q′′s +Qω

s +Γs +Λs)δqσ
s

)
∆t. (34)

Since σ∗ is the new forward jump operator and ∆∗ is the new delta derivative, we can have by Eq. (10)

(q∗s ◦α)∆(t) = q∗∆
∗

s (α(t))α∆(t).

Then

q∗∆
∗

s (α(t)) =
(q∗s ◦α)∆(t)

α∆(t)
. (35)
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Gathering Eq. (34) and Eq. (35), we can deriveˆ tb

ta
L(t,qσ

s ,q
∆
s )∆t

=

ˆ tb

ta
L
(

α(t),(q∗s ◦σ ◦α)(t),
(q∗s ◦α)∆(t)

α∆(t)

)
α

∆(t)∆t

+

ˆ tb

ta

(
∆

∆t
(∆G)+(Q′′s +Qω

s +Γs +Λs)δqσ
s

)
∆t.

Since [ta, tb] is arbitrary subinterval

L(t,qσ
s ,q

∆
s ) = L

(
α(t),(q∗s ◦σ ◦α)(t),

(q∗s ◦α)∆(t)
α∆(t)

)
α

∆(t)

+(Q′′s +Qω
s +Γs +Λs)δqσ

s +
∆

∆t
(∆G). (36)

According to group (30), differentiating both sides of Eq. (36) with respect to ε , setting ε = 0, we get

0 =

[
∂L
∂ t

∂α(t)
∂ε

+
∂L

∂qσ
s

∂ (q∗s ◦α ◦σ)

∂ε
+

∂L
∂q∆

s

∂

∂ε

(
(q∗s ◦α)∆

α∆

)]
α

∆ +L
∂α∆

∂ε

+(Q′′s +Qω
s +Γs +Λs)

∂δqσ
s

∂ε
+

∆

∆t
G. (37)

For the map t ∈ [a,b] 7→ α(t)≡ t∗ ∈ R, and q∗s ◦α ◦σ(t) = q∗s (α(σ(t)))

∂ t∗

∂ε
|ε=0 = ξ0,

∂ [(q∗s ◦α ◦σ)]

∂ε
|ε=0 = ξ

σ
s .

For f (t) = t, then t∆ = 1 by Remark 1, we can derive

∂

∂ε

(
(q∗s ◦α)∆

α∆

)
|ε=0 =

∂

∂ε

(
q∆

s + εξ ∆
s +o(ε)

t∆ + εξ ∆
0 +o(ε)

)
=

ξ ∆
s (t

∆ + εξ ∆
0 )−ξ ∆

0 (q
∆
s + εξ ∆

s )

(t∆ + εξ ∆
0 )

2
|ε=0

= ξ
∆
s −q∆

s ξ
∆
0 .

and

∂ t∗
∆

∂ε
|ε=0 = ξ

∆
0 ,

∂δqσ
s

∂ε
|ε=0 = ∆qσ

s −qσ∆
s (∆t)σ |ε=0 = ξ

σ
s −ξ

σ
0 qσ∆

s .

Considering Definition 3, we have

qσ∆
s = (q∆

s )
σ = q∆

s +µ(t)q∆∆
s .

Then,

ξ
σ
s −ξ

σ
0 q∆σ

s = ξ
σ
s −ξ

σ
0 (q∆

s +µ(t)q∆∆
s ). (38)

All of the above equation, we obtain the Noether identity Eq. (33) of the relative motion systems with
Chetaev type constraints on time scales.
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Theorem 4 For Chetaev constraint the relative motion systems on time scales, if the infinitesimal transformations
Eq. (30) satisfy the conditions Eq. (32), then the system Eq. (22) has conserved quantities of the form

I =
∂L
∂q∆

s
+

(
L− ∂L

∂q∆
s

q∆
s −

∂L
∂ t

µ(t)
)

ξ
σ
0 +G. (39)

Proof. It proves that Eq. (39) is equivalent to the proof of I = const, takeing the derivative of I with respect to
t, then

∆

∆t
I =

∆

∆t

[
∂L
∂q∆

s
+

(
L− ∂L

∂q∆
s

q∆
s −

∂L
∂ t

µ(t)
)

ξ
σ
0 +G

]
=

∆

∆t
∂L
∂q∆

s
ξ

σ
s +

∂L
∂q∆

s
ξ

∆
s +

∆

∆t

[
L− ∂L

∂q∆
s

q∆
s −

∂L
∂ t

µ(t)
]

ξ
σ
0

+

(
L− ∂L

∂q∆
s

q∆
s −

∂L
∂ t

µ(t)
)

ξ
σ
0 +

∆

∆t
G (40)

From Eq. (22) and (33), we can obtain

∆

∆t
I =

(
∂L

∂qσ
s
+(Q′′s +Qω

s +Γs +Λs)

)
ξ

σ
s +

∂L
∂q∆

s
ξ

∆
s

+

(
∂L
∂ t
− (Q′′s +Qω

s +Γs +Λs)qσ∆
s

)
ξ

σ
0 +Lξ

∆
0

− ∂L
∂q∆

s
ξ

∆
s q∆

s −
∂L
∂ t

µ(t)ξ ∆
0 +

∆

∆t
G

=

(
∂L

∂qσ
s
+(Q′′s +Qω

s +Γs +Λs)

)
ξ

σ
s

+
∂L
∂q∆

s
ξ

∆
s +

(
∂L
∂ t
− (Q′′s +Qω

s +Γs +Λs)qσ∆
s

)
(ξ σ

0 +µ(t)ξ ∆
0 )

+Lξ
∆
0 −

∂L
∂q∆

s
ξ

∆
s q∆

s −
∂L
∂ t

µ(t)ξ ∆
0 +

∆

∆t
G

=
∂L
∂ t

ξ0 +
∂L

∂qσ
s

ξ
σ
s +

∂L
∂qσ

s
ξ

σ
s +Lξ

∆
0 −

∂L
∂q∆

s
ξ

∆
s q∆

s +(Q′′s

+Qω
s +Γs +Λs)(ξ

σ
s −ξ

σ
0 qσ∆

s )+
∆

∆t
G

= 0 (41)

According to the above proof, we can learn that Eq. (39) is called the Noether.s conserved quantities for the
relative motion systems with Chetaev type constraints on time scales.

5 Examples

We first consider an example of the relative motion systems, the time scale is:

T = 2n : n ∈ N∪0

Suppose lagrangian equation of the system is :

L =
1
2

m
(
(q∆

1 )
2 +(q∆

2 )
2 +(q∆

3 )
2)+ 1

2
mω

2 ((qσ
1 )

2 +(qσ
2 )

2)
−1

2
k
(
(qσ

1 )
2 +(qσ

2 )
2 +(qσ

3 )
2) . (42)
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The generalized rotary inertia force and nonconservative force are respectively

Q′′s = 0,Qω
s = 0(s = 1,2,3).

The generalized gyroscopic force are

Γ1 = 2mωq∆
2 ,Γ2 =−2mωq∆

1 ,Γ3 = 0.

The Chetaev constraint is

f = q∆
2 − tq∆

1 = 0 (43)

From Eq. (22), we can obtain

mq∆∆
1 =−kqσ

1 +mω2qσ
1 +2mωq∆

2 −λ t,

mq∆∆
2 =−kqσ

2 +mω2qσ
2 +2mωq∆

1 +λ ,

mq∆∆
3 =−kqσ

3 . (44)

Using Eq. (42) and Eq. (43), we have

λ = 2mωq∆
1 +

mq∆
1 +(k−mω2)(qσ

2 −qσ
1 t)

1+ t2 . (45)

The differential equation of the relative motion systems

mq∆∆
1 =−(k−mω2)

qσ
1 +tqσ

2
1+t2 −

mq∆
1 t

1+t2 ,

mq∆∆
2 =−(k−mω2)

qσ
1 t+t2qσ

2
1+t2 +

mq∆
1

1+t2 ,

mq∆∆
3 =−kqσ

3 . (46)

From the Theorem 3, we obtain

ξ
σ
1 (mω

2qσ
1 − kqσ

1 )+ξ
σ
2 (mω

2qσ
2 − kqσ

2 )−ξ
σ
3 kqσ

3 +mq∆
1 (ξ

∆
1 −ξ

∆
0 q∆

1 )

+mq∆
2 (ξ

∆
2 −ξ

∆
0 q∆

2 )+mq∆
3 (ξ

∆
1 −ξ

∆
0 q∆

3 )+

[
1
2

m
(
(q∆

1 )
2 +(q∆

2 )
2 +(q∆

3 )
2)

+
1
2

mω
2 ((qσ

1 )
2 +(qσ

2 )
2)− 1

2
k
(
(qσ

1 )
2 +(qσ

2 )
2 +(qσ

3 )
2)]

ξ
∆
0

+

[
2mωq∆

2 −2mωq∆
1 t−

mq∆
1 +(k−mω2)(qσ

2 −qσ
1 t)

1+ t2 t
]
× (ξ σ

1 −ξ
σ
0 qσ∆

1 )

+

[
2mωq∆

1 −2mωq∆
1 +

mq∆
1 +(k−mω2)(qσ

2 −qσ
1 t)

1+ t2

]
× (ξ σ

2 −ξ
σ
0 qσ∆

2 )

=− ∆

∆t
G. (47)

Choosing the infinitesimal generators as:

ξ0 = ξ1 = ξ2 = 0,ξ3 = q∆
3 . (48)

Using Eqs. (47-48), we have

G =
k
2

qσ
3 −

1
2

m(q∆
3 )

2.

According to Theorem 4, the system has the Noether conserved quantity on time scale as

I =
1
2

m(q∆
3 )

2 +
1
2

k(qσ
3 )

2 = const. (49)
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6 Conclusion

In this paper, based on the theory of calculus on time scale and variational principle, we studied Noether
symmetries and the conservation laws of relative motion systems on time scales. The results have shown signifi-
cant approaches to seek conservation laws for these systems and provide a good method for solving the practical
problems such asbiology, thermodynamics, engineering and so on.
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