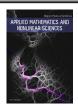


Applied Mathematics and Nonlinear Sciences 3(2) (2018) 419–426



Applied Mathematics and Nonlinear Sciences

https://www.sciendo.com

Hamilton-connectivity of Interconnection Networks Modeled by a Product of Graphs

Donglin Liu^a, Chunxiang Wang^b, Shaohui Wang^{c†}.

- a. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, PR China
- b. School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, P.R. China
- c. Department of Mathematics, Savannah State University, Savannah, GA 31404, USA

Submission Info

Communicated by Juan L.G. Guirao Received 15th march 2018 Accepted 30th July 2018 Available online 30th July 2018

Abstract

The product graph $G_m * G_p$ of two given graphs G_m and G_p , defined by J.C. Bermond et al.[J Combin Theory, Series B 36(1984) 32-48] in the context of the so-called (\triangle, D) -problem, is one interesting model in the design of large reliable networks. This work deals with sufficient conditions that guarantee these product graphs to be hamiltonian-connected. Moreover, we state product graphs for which provide panconnectivity of interconnection networks modeled by a product of graphs with faulty elements.

Keywords: panconnected; fault-hamiltonicity; fault tolerance, interconnection networks **AMS 2010 codes:** 05C40, 05c45

1 Introduction

Linear arrays and rings are two of the most important computational structures in interconnection networks. So, embedding of linear arrays and rings into a faulty interconnected network is one of the important issues in parallel processing. An interconnection network is often modeled as a graph, in which vertices and edges correspond to nodes and communication links, respectively. Thus, the embedding problem can be modeled as finding fault-free paths and cycles in the graph with some faulty vertices and/or edges. In the embedding problem, if the longest path or cycle is required the problem is closely related to well-known hamiltonian problems in graph theory. In the rest of this paper, we will use standard terminology in graphs(see ref.[2]). It is very difficult to determine that a graph is hamiltonian or not. Readers may refer to [4,5,6].

Email addresses: (D. Liu)liudong0@whut.edu.cn; (C. Wang)wcxiang@mail.ccnu.edu.cn; (S. Wang)shaohuiwang@yahoo.com

\$ sciendo

[†]Corresponding author.

2 Definitions and Notation

We follow [2] for graph-theoretical terminology and notation not defined here. A graph G=(V,E) always means a simple graph(without loops and multiple edges), where V=V(G) is the vertex set and E=E(G) is the edge set. The *degree* of a vertex v is denoted by $d(v)=d_G(v)$, whereas $\delta=\delta(G)$ and $\Delta=\Delta(G)$ stand for the minimum degree and the maximum degree of G, respectively. A *path* is a sequence of adjacent vertices, denoted by $x_1x_2\cdots x_\ell$, in which all the vertices x_1,x_2,\cdots ,x_ℓ are distinct. Let path $P=x_1,x_2,\cdots ,x_\ell$ and $P[x_i,x_j]$ denotes the sequence of adjacent vertices from x_i to x_j on path P. That is, $P[x_i,x_j]=x_ix_{i+1}\cdots x_{j-1}x_j$. For two vertices $u,v\in V(G)$, a path joining u and v is called a uv-path. A path P in graph G is call a Hamiltonian path if V(P)=V(G). A *cycle* is a path such that the first vertex is the same as the last one. A cycle is also denoted by $x_1x_2\cdots x_\ell x_1$. Length of a cycle is the number of edges in it. An ℓ -cycle is a cycle of length ℓ . Let $c(G)=max\{\ell:\ell$ -cycle of $G\}$. A cycle of G is called *Hamiltonian cycle* if its length is |V(G)|. A graph G is *Hamiltonian* if G contains a Hamiltonian cycle. A graph G is *Hamiltonian-connected* if any two vertices $u,v\in V(G)$ exists a Hamiltonian uv-path.

Two edges $xy, uv \in E(G)$ are called *independent* if $\{x,y\} \cap \{u,v\} = \emptyset$. A *matching* is a set of edges that are pairwise independent. A *perfect matching* between two disjoint graphs G_1 , G_2 with the same order n is a matching consisting of n edges such that each of them has one end vertex in G_1 and the other one in G_2 . See [7–14].

The construction of new graphs from two given ones is not unusual at all. Basically, the method consists of joining together several copies of one graph according to the structure of another one, the latter being usually called the main graph of the construction. In this regard, Chartrand and Harary introduced in [3] the concept of permutation graph as follows. For a graph G and a permutation π of V(G), the permutation graph G^{π} is defined by taking two disjoint copies of G and adding a perfect matching joining each vertex v in the first copy to $\pi(v)$ in the second. Examples of these graphs include hypercubes, prisms, and some generalized Petersen graphs. The product graph $G_m * G_p$ of two given graphs G_m and G_p , defined in [1] by Bermond et al. in the following way.

Definition 1. Let $G_m = (V(G_m), E(G_m))$ and $G_p = (V(G_p), E(G_p))$ be two graphs. Let us give an arbitrary orientation to the edges of G_m , in such a way that an arc from vertex x to vertex y is denoted by e_{xy} . For each arc e_{xy} , let $\pi_{e_{xy}}$ be a permutation of $V(G_p)$. Then the product graph $G_m * G_p$ has $V(G_m) \times V(G_p)$ as vertex set, with two vertices (x, x'), (y, y') being adjacent if either

$$x = y$$
 and $x'y' \in E(G_p)$

or

$$xy \in E(G_m)$$
 and $y' = \pi_{e_{xy}}(x')$.

The product graph $G_m * G_p$ can be viewed as formed by $|V(G_m)|$ disjoint copies of G_p , each arc e_{xy} , indicating that some perfect matching between the copies G_p^x , G_p^y (respectively generated by the vertices x and y of G_m) is added. So the graph G_m is usually called the *main graph* and G_p is called the *pattern graph* of the product graph $G_m * G_p$. Moreover, every edge of $G_m * G_p$ that belongs to any of the $|E(G_m)|$ perfect matchings between copies of G_p is an *cross* edge of $G_m * G_p$.

Observe that if we choose $\pi_{e_{xy}}(x') = x'$ for any arc e_{xy} then $G_m * G_p = G_m \square G_p$. Furthermore, if G_m is K_2 we have $K_2 * G = G^{\pi}$, a permutation graph. Hence, $G_m * G_p$ can be considered as a generalized permutation graph.

Definition 2. A graph G is called f-fault hamiltonian (resp. f-fault hamiltonian-connected) if there exist a hamiltonian cycle (resp. if each pair of vertices are joined by a hamiltonian path) in G - F for any set F of faulty elements with $|F| \le f$.

If a graph G is f-fault hamiltonian (resp. f-fault hamiltonian-connected), then it is necessary that $f \le \delta(G) - 2$ (resp. $f \le \delta(G) - 3$), where $\delta(G)$ is the minimum degree of G.

Definition 3. A graph G is call f-fault q-panconnected if each pair of fault-free vertices are joined by a path in G - F of every length from q to |V(G - F)| - 1 inclusive for any set F of fault elements with $|F| \le f$.

When we are to construct a path from s to t, s and t are called a source and a sink, respectively, and both of them are called terminals. When we find a path/cycle, sometimes we regard some fault-free vertices and edges as faulty elements. They are called *virtual* faults.

3 Main Results

For the sake of convenience, we write m(p) for the order of $G_m(G_p)$, respectively.) Suppose $V(G_m) = \{x_1, x_2, \dots, x_m\}$ and $V(G_p) = \{y_1, y_2, \dots, y_p\}$.

Theorem 1. If G_m is hamiltonian, and G_p is hamiltonian-connected, then $G_m * G_p$ is also hamiltonian-connected.

Proof. Choose two vertices in $u, v \in V(G_m * G_p)$. We have the following cases:

Case 1. u,v belong to the same subgraph, say, $G_p^{x_1}$. Since G_m is hamiltonian, suppose hamiltonian-cycle $C = x_1x_2\cdots x_m$. Since $G_p^{x_1}$ is hamiltonian-connected, u,v are connected by a hamiltonian-path P_1 in $G_p^{x_1}$, suppose $P_1 = (x_1,y_1)(x_1,y_2)\cdots(x_1,y_p)$, where $(x_1,y_1) = u,(x_1,y_p) = v$. Since $x_1x_m \in E(G_m)$, suppose $(x_1,y_2)(x_m,y_2) \in E(G_m*G_p)$. Then u,v are connected by a hamiltonian-path P' in G_m*G_p by choosing the endvertex, say, (x_2,y_1) of cross edge $(x_1,y_1)(x_2,y_1)$ and have a hamiltonian-cycle C_2 passing (x_2,y_1) in $G_p^{x_2}$. Suppose the last vertex is (x_2,y_p) in C_2 , and choosing the endvertex, say, (x_3,y_p) of cross edge $(x_3,y_p)(x_2,y_p)$ and have a hamiltonian-cycle C_3 passing (x_3,y_p) in $G_p^{x_3}$. Suppose the last vertex is (x_3,y_1) in C_3 , and so on, choosing the endvertex, say, (x_m,y_j) if $(1 \le j \le p)$ of cross edge $(x_m,y_1)(x_m,y_j)$ and choosing the endvertex (x_m,y_2) of cross edge $(x_1,y_2)(x_m,y_2)$, have a hamiltonian-path P_m passing (x_m,y_j) and (x_m,y_2) in $G_p^{x_m}$. Let $P' = u(x_2,y_1) \cup C_2[(x_2,y_1),(x_2,y_p)] \cup (x_2,y_p)(x_3,y_p) \cup C_3[(x_3,y_p),(x_3,y_l)] \cup \cdots \cup (x_{m-1},y_1)(x_m,y_j) \cup P_m[(x_m,y_j),(x_m,y_2)] \cup (x_m,y_2)(x_1,y_2) \cup P_1[(x_1,y_2),v]$. Then we obtain the desired result.

Case 2. u,v belong to two subgraphs, suppose $G_P^{x_1}$, $G_P^{x_j}$ $(1 \le i \le m)$. and $u \in G_P^{x_1}$ and $v \in G_P^{x_j}$. Suppose $u = (x_1, y_1)$, $v = (x_i, y_j)$ $(1 \le j \le p)$. Since G_m is hamiltonian, suppose hamiltonian-cycle $C = x_1x_2\cdots x_mx_1$. Since $G_P^{x_1}$ is hamiltonian-connected, u belongs to a hamiltonian-cycle C_1 in $G_P^{x_1}$, suppose $C_1 = (x_1, y_1)(x_1, y_2)\cdots(x_1, y_p)(x_1, y_1)$, where $(x_1, y_1) = u$.

Then u,v are connected by a hamiltonian-path P' in G_m*G_p by choosing the endvertex, say, (x_2,y_1) and (x_2,y_2) of cross edges $(x_1,y_1)(x_2,y_1)$ and $(x_1,y_2)(x_2,y_2)$. Then there exist a hamiltonian-path P_2 connecting (x_2,y_1) and (x_2,y_2) in $G_p^{x_2}$ since $G_p^{x_2}$ is Hamilton-connected. Taking adjacent vertices (x_2,y_t) and (x_2,y_{t+1}) in path P_2 , then $P_2 = P_{21} \cup (x_2,y_t)(x_2,y_{t+1}) \cup P_{22}$, where $P_{21} = P_2[(x_2,y_1),(x_2,y_t)]$ and $P_{22} = P_2[(x_2,y_{t+1}),(x_2,y_2)]$. Choosing the endvertices , say, (x_3,y_t) and (x_3,y_{t+1}) of cross edges $(x_3,y_t)(x_2,y_t)$ and $(x_3,y_{t+1})(x_2,y_{t+1})$. Then there exist a hamiltonian-path P_3 connecting (x_3,y_t) and (x_3,y_{t+1}) in $G_p^{x_3}$ since $G_p^{x_3}$ is Hamilton-connected. Taking adjacent vertices (x_3,y_j) and (x_3,y_{j+1}) in path P_3 , then $P_3 = P_{31} \cup (x_3,y_j)(x_3,y_{j+1}) \cup P_{32}$, where $P_{31} = P_3[(x_3,y_t),(x_3,y_j)]$ and $P_{32} = P_3[(x_3,y_t),(x_3,y_t)]$ and so on. Until we take adjacent vertices (x_{t-2},y_{μ}) and $(x_{t-2},y_{\mu+1})$ in path P_{t-2} , and the endvertices, say, (x_{t-1},y_{μ}) and $(x_{t-1},y_{\mu+1})$ of cross edges $(x_{t-1},y_{\mu})(x_{t-2},y_{\mu})$ and $(x_{t-1},y_{\mu+1})(x_{t-2},y_{\mu+1})$. Then there exist a hamiltonian-path P_{t-1} connecting (x_{t-1},y_{μ}) and $(x_{t-1},y_{\mu+1})$ in $G_p^{x_{t-1}}$ since $G_p^{x_{t-1}}$ is Hamilton-connected. Let path $P_1' = u(x_2,y_1) \cup P_{21} \cup (x_2,y_t)(x_3,y_t) \cup P_{31} \cup \cdots \cup P_{(t-2)1} \cup (x_{t-2},y_{\mu})(x_{t-1},y_{\mu}) \cup P_{t-1} \cup (x_{t-1},y_{\mu+1})(x_{t-2},y_{\mu+1}) \cup P_{(t-2)2} \cup \cdots \cup P_{32} \cup (x_3,y_{t+1})(x_2,y_{t+1}) \cup P_{22} \cup (x_2,y_2)(x_1,y_2) \cup C_1[(x_1,y_2),(x_1,y_p)].$

Choosing the endvertex, say, (x_m, y_p) of cross edge $(x_1, y_p)(x_m, y_p)$. Then there exist a hamiltonian-cycle C_m passing (x_m, y_p) in $G_p^{x_m}$ since $G_p^{x_m}$ is Hamilton-connected. Suppose the last vertex is (x_m, y_1) in C_m , taking the endvertex, say, (x_{m-1}, y_p) of cross edge $(x_m, y_1)(x_{m-1}, y_p)$. Then there exist a hamiltonian-cycle C_{m-1} passing (x_{m-1}, y_p) in $G_p^{x_{m-1}}$ since $G_p^{x_{m-1}}$ is Hamilton-connected, and so on. Until we take the last vertex, say, (x_{i+1}, y_1) in C_{i+1} , taking the endvertex, say, (x_i, y_p) of cross edge $(x_{i+1}, y_1)(x_i, y_p)$.

If $(x_i, y_p) = (x_i, y_j)$. Then there exist a hamiltonian-cycle C_i passing (x_i, y_p) in $G_p^{x_i}$ since $G_p^{x_i}$ is Hamilton-connected, taking the adjacent vertex of (x_i, y_j) , say, (x_i, y_{j-1}) in cycle C_i and taking the endvertex, say, (x_{i+1}, y_{j-1}) of cross edge $(x_{i+1}, y_{j-1})(x_i, y_{j-1})$ (if $(x_{i+1}, y_{j-1}) = (x_{i+1}, y_p)$, then taking the other adjacent vertex of (x_i, y_j) such that $(x_{i+1}, y_{j-1}) \neq (x_{i+1}, y_p)$. Then there exist a hamiltonian-path P_{i+1} connecting (x_{i+1}, y_p) and (x_{i+1}, y_{j-1}) in $G_p^{x_{i+1}}$ since $G_p^{x_{i+1}}$ is Hamilton-connected. Let $P_2' = (x_1, y_p)(x_m, y_p) \cup C_m[(x_m, y_p), (x_m, y_1)] \cup (x_m, y_1)(x_{m-1}, y_p) \cup C_{m-1}[(x_{m-1}, y_p), (x_{m-1}, y_1)] \cup \cdots \cup P_{i+1} \cup (x_{i+1}, y_{j-1})(x_i, y_{j-1}) \cup C_i[(x_i, y_{j-1}), v]$.

If $(x_i, y_p) \neq (x_i, y_j)$. Then there exist a hamiltonian-path P_i connecting (x_i, y_p) and (x_i, y_j) in $G_p^{x_i}$ since $G_p^{x_i}$ is Hamilton-connected. Let $P_2'' = (x_1, y_p)(x_m, y_p) \cup C_m[(x_m, y_p), (x_m, y_1)] \cup (x_m, y_1)(x_{m-1}, y_p) \cup C_{m-1}[(x_{m-1}, y_p), (x_{m-1}, y_1)] \cup \cdots \cup C_{i+1}[(x_{i+1}, y_p), (x_{i+1}, y_1)] \cup (x_{i+1}, y_1)(x_i, y_p) \cup P_i[(x_i, y_p), v].$

Let $P' = P_1' \cup P_2'$ or $P' = P_1' \cup P_2''$. Then we obtain the desired result. \square

Corollary 2. If G_m and G_p are hamiltonian-connected, then $G_m * G_p$ is also hamiltonian-connected.

Corollary 3. *If* G_m *and* G_p *are hamiltonian, then,*

```
(i)c(G_m*G_p) \geq mp-p;
```

(ii) There exists a hamiltonian path in $G_m * G_p$.

Proof. Since G_m is Hamiltonian, suppose Hamiltonian-cycle $C' = x_1 x_2 \dots x_m x_1$. Since G_p is Hamiltonian, suppose Hamiltonian-cycle $C'' = y_1 y_2 \dots y_p y_1$.

- (i) We obtain a cycle C as follows: Choosing any vertex, say, (x_1, y_1) , in $V(G_p^{x_1})$. Taking the endvertex, say, (x_2, y_1) , of cross edge $(x_1, y_1)(x_2, y_1)$ and have a hamiltonian-cycle C_2 passing (x_2, y_1) in $G_p^{x_2}$. Suppose the last vertex is (x_2, y_p) in C_2 . Taking the endvertex, say, (x_3, y_1) , of cross edge $(x_2, y_p)(x_3, y_1)$ and have a hamiltonian-cycle C_3 passing (x_3, y_1) in $G_p^{x_3}$. The last vertex is (x_3, y_p) in C_3, \dots , and so on, until taking the endvertex, say, (x_m, y_1) , of cross edge $(x_m, y_1)(x_{m-1}, y_p)$ and have a hamiltonian-cycle C_m passing (x_m, y_1) in $G_p^{x_m}$. The last vertex is (x_m, y_p) in C_m . Taking the endvertex, say, (x_1, y_j) , of cross edge $(x_m, y_p)(x_1, y_j)$ and have a hamiltonian-cycle C_1 passing (x_1, y_j) in $G_p^{x_1}$. So the length of $((x_1, y_j), (x_1, y_1))$ -path in $G_p^{x_1}$ is at least $\lfloor \frac{p}{2} \rfloor$, but if $(x_1, y_j) = (x_1, y_1)$, then (i) holds.
- (ii) We obtain a Hamiltonian path as follows: Choosing any vertex, say, (x_1, y_1) , in $V(G_p^{x_1})$, and have a hamiltonian-cycle C_1 passing (x_1, y_1) in $G_p^{x_1}$. The last vertex is (x_1, y_p) in C_1 . Taking the endvertex, say, (x_2, y_1) , of cross edge $(x_1, y_p)(x_2, y_1)$ and have a hamiltonian-cycle C_2 passing (x_2, y_1) in $G_p^{x_2}$. The last vertex is (x_2, y_p) in C_2 . Taking the endvertex, say, (x_3, y_1) , of cross edge $(x_2, y_p)(x_3, y_1)$ and have a hamiltonian-cycle C_3 passing (x_3, y_1) in $G_p^{x_3}$. The last vertex is (x_3, y_p) in C_3 , \cdots , and so on, until taking the endvertex, say, (x_m, y_1) , of cross edge $(x_m, y_1)(x_{m-1}, y_p)$ and have a hamiltonian-cycle C_m passing (x_m, y_1) in $G_p^{x_m}$. The last vertex is (x_m, y_p) in C_m . Then we obtain hamiltonian-path $((x_1, y_1), (x_m, y_p))$ -path. \square

Corollary 4. If there exists hamiltonian path in G_m , G_p is hamiltonian, then there exists a hamiltonian path in $G_m * G_p$

 F_i denote the sets of faulty elements in $G_p^{x_i}$, $1 \le i \le m$. F_0 denotes the set of faulty edges in cross edge-set. $|F_i| = f_i$, $0 \le i \le m$. We denote by $f_v^{x_1}, f_v^{x_2}, \cdots, f_v^{x_m}$ the number of faulty vertices in $G_p^{x_1}, G_p^{x_2}, \cdots, G_p^{x_m}$, respectively, and by f_v the number of faulty vertices in $G_m * G_p$, so that $f_v = f_v^{x_1} + f_v^{x_2} + \cdots + f_v^{x_m}$. Note that the length of a hamiltonian path in $G_m * G_p - F$ is $mp - f_v - 1$.

Theorem 5. Let G_m have a hamiltonian-path, G_p is f-fault hamiltonian-connected and f+1-fault hamiltonian, $p \ge 3f + 6$, then,

(a) for any $f \ge 1$, $G_m * G_p$ is f + 2-fault hamiltonian, and

(b) for f = 0, $G_m * G_p$ with 2 faulty elements has a hamiltonian cycle unless one faulty element is contained in $G_p^{x_i}$ and the other faulty element is contained in $G_p^{x_j}$, $i \neq j$, $1 \leq i, j \leq m$.

Proof. (a) Suppose $C = x_1 x_2 \cdots x_m$ is hamiltonian-path in G_m . Assuming the number of faulty elements $|F| \le f + 2$, we will construct a cycle of length ℓ , $\ell = mp - f_v$, in $G_m * G_p - F$.

Case 1. $f_i \leq f$, $0 \leq i \leq m$. Taking two adjacent vertices $u, v \in V(G_p^{x_1} - F_1)$. Since G_p is f-fault hamiltonian-connected, there exists hamiltonian uv-path, say, P_1 , in $G_p^{x_1} - F_1$. We first claim that there exist an edge (x,y) on P_1 such that all of $\bar{x}, (x, \bar{x}), \bar{y}$, and (y, \bar{y}) do not belong to F, where $\bar{x}, \bar{y} \in G_p^{x_2}$, (x, \bar{x}) , (y, \bar{y}) are two cross edges. Since there are $p - f_v^{x_1} - 1$ candidate edges on P_1 and at most f + 2 faulty elements can "block" the candidates, at most two candidates per one faulty element. By assumption $p \geq 3f + 6$, and the claim is proved. The path P_{12} can be obtained by merging P_1 and a hamiltonian-path P_2 in $G_p^{x_2} - F_2$ between \bar{x}, \bar{y} with the edges $(x, \bar{x}), (y, \bar{y})$, of course the edge (x, y) is discarded. Similarly, there exist an edge (x', y') on P_2 such that all of $\bar{x'}, (x', \bar{x'}), \bar{y'}$, and $(y', \bar{y'})$ do not belong to F, where $\bar{x'}, \bar{y'} \in G_p^{x_3}, (x', \bar{x'}), (y', \bar{y'})$ are two cross edges. The path P_{123} can be obtained by merging P_{12} and a hamiltonian-path P_3 in $G_p^{x_3} - F_3$ between $\bar{x'}, \bar{y'}$ with the edges $(x', \bar{x'}), (y', \bar{y'})$, of course the edge (x', y') is discarded, and so on, at least we obtain the hamiltonian-path $P_{12\cdots m}$ in $G_m * G_P - F$. Therefore $P_{12\cdots m} \cup uv$ is hamiltonian-cycle in $G_m * G_P - F$.

Case 2. There exists some i, j such that $f_i = f + 1$, $f_j = 1$. Then $f_t = 0$, $0 \le t \le m, t \ne i, j$. Since $f \ge 1$.

Subcase 2.1. i = 0. Taking two adjacent vertices $u, v \in V(G_p^{x_1} - F_1)$. Since G_p is f-fault hamiltonian-connected, there exists hamiltonian uv-path, say, P_1 , in $G_p^{x_1} - F_1$. Similar to Case 1, it follows that $G_m * G_p$ is f + 2-fault hamiltonian.

Subcase 2.2. i = 1. Since G_p is f + 1—fault hamiltonian, Taking hamiltonian cycle in $G_p^{x_1} - F_1$. Similar to Case 1, it follows that $G_m * G_p$ is f + 2—fault hamiltonian.

Subcase 2.3. $i \neq 1,0$. Since G_p is f+1-fault hamiltonian, Taking hamiltonian cycle C_i in $G_p^{x_i} - F_i$. Since $f_i = f+1$, $f_j = 1$. Then $f_t = 0$, $0 \leq t \leq m, t \neq i, j$, then there exist two adjacent edges (x,y), (y,z) on C_i such that all of $\bar{x}, (x, \bar{x}), \bar{y}$, and $(y, \bar{y}), z'$, and (y, y') do not belong to F, where $\bar{x}, \bar{y} \in G_p^{x_{i+1}}$, and $y', z' \in G_p^{x_{i-1}}$, $(x, \bar{x}), (y, \bar{y}), (y, y'), (z, z')$ are cross edges. Similar to Case 1, $G_p^{x_{i-1}}$ has hamiltonian path F_{i-1} connecting the vertex f_i and hamiltonian path f_i and hamiltonian path f_i with the edges f_i and hamiltonian path f_i and f_i with the edges f_i and f_i and f_i are discarded. Taking an edge f_i in f_i and f_i , respectively. Similar to Case 1, at least we obtain cycle f_i and f_i , then f_i and f_i is f_i and thamiltonian.

Case 3. There exists some f_i such that $f_i = f + 2$. Then $f_j = 0$, $0 \le j \le m, j \ne i$.

Subcase 3.1. i=0. Taking two adjacent vertices $u,v\in V(G_p^{x_1}-F_1)$. Since G_p is f-fault hamiltonian-connected, there exists hamiltonian uv-path, say, P_1 , in $G_p^{x_1}-F_1$. Since $p\geq 3f+6$, then there exist an edge (x,y) on P_1 such that all of $\bar{x},(x,\bar{x}),\bar{y}$, and (y,\bar{y}) do not belong to F, where $\bar{x},\bar{y}\in G_p^{x_2}$, (x,\bar{x}) , (y,\bar{y}) are two cross edges. Similar to Case 1, it follows that G_m*G_p is f+2-fault hamiltonian.

Subcase 3.2. i=1. Since G_p is f+1-fault hamiltonian, we select an arbitrary faulty element α in $G_p^{x_1}$. Regarding α as a virtual fault-free element. Taking hamiltonian cycle C_1 in $G_P^{x_1} - F_1$. If α is a faulty vertex on C_1 , let x and y be two vertices on C_1 next to α ; else if C_1 passes through the faulty edge α , let x and y be the endvertices of α . The cycle C_{12} is obtained by merging $C_1 - \alpha$ and a hamiltonian-path in $G_p^{x_2}$ joining \bar{x} and \bar{y} with cross edges $(x,\bar{x}),(y,\bar{y})$, where $\bar{x},\bar{y} \in V(G_p^{x_2})$. Similar to Case 1, it follows that $G_m * G_p$ is f+2-fault hamiltonian.

Subcase 3.3. $i \neq 1,0$. Since G_p is f+1-fault hamiltonian, we select an arbitrary faulty element α in $G_p^{x_i}$. Regarding α as a virtual fault-free element. Taking hamiltonian cycle C_i in $G_p^{x_1} - F_i$. If α is a faulty vertex on C_i , let x and y be two vertices on C_i next to α ; else if C_i passes through the faulty edge α , let x and y be the endvertices of α . Let z be the vertices on C_i next to y. The cycle $C_{(i-1)i(i+1)}$ is obtained by merging $C_i - \alpha$ and a hamiltonian-path in $G_p^{x_{i+1}}$ joining \bar{x} and \bar{y} and a hamiltonian-path in $G_p^{x_{i-1}}$ joining z' and z' with cross edges $(z,z'),(y,y'),(x,\bar{x}),(y,\bar{y})$, where $z',y' \in V(G_p^{x_{i-1}})$ and $\bar{x},\bar{y} \in V(G_p^{x_{i+1}})$. Similar to Subcase 2.3, it follows that $G_m * G_p$ is f+2-fault hamiltonian.

(b) If f = 0. Since G_p is 0-fault hamiltonian-connected and 1-fault hamiltonian, we have similar proof subcase 3.2 by regarding a faulty element as virtual faulty-free element if the two faulty elements is contained in subgraph $G_p^{x_i}$. This completes the proof. \square

Corollary 6. Let $G_m = K_2$, G_p is f-fault hamiltonian-connected and f + 1-fault hamiltonian, $p \ge 3f + 6$, then,

- (a) for any $f \ge 1$, $K_2 * G_p$ is f + 2-fault hamiltonian.
- (b) for f = 0, $K_2 * G_p$ with 2 faulty elements has a hamiltonian cycle unless one faulty element is contained in $G_p^{x_1}$ and the other faulty element is contained in $G_p^{x_2}$.

Theorem 7. Let G_m have a hamiltonian-path, G_p is f-fault q-panconnected and f+1-fault hamiltonian, $p \ge 2q + f + 2$, $q \ge 2f + 5$, then,

- (a) for any $f \ge 2$, $G_m * G_p$ is f + 1-fault q + m-panconnected,
- (b) for f = 1, $G_m * G_p$ with 2 faulty elements has a path of every length q + m or more joining s and t unless s and t are contain in the same subgraph $G_p^{x_i}$ and their neighbors are the faulty element in $G_p^{x_j}$, $i \neq j$,
- (c) for f = 0, $G_m * G_p$ with 1 faulty element has a path of every length q + m or more joining s and t unless s and t are contained in the same subgraph $G_p^{x_i}$ and one of their neighbors is the faulty element in $G_p^{x_j}$, $i \neq j$.

Proof.

(a) Suppose $P = x_1 x_2 \cdots x_m$ is a hamiltonian-path of G_m . Assuming the number of faulty elements $|F| \le f + 1$, we will construct a path of every length ℓ , $q + m \le \ell \le mp - f_v - 1$, in $G_m * G_p - F$ joining any pair of vertices s and t.

Case 1. $f_i \leq f$, $0 \leq i \leq m$.

Subcase 1.1. When both s,t is contained in $G_p^{x_1}$. There exists a path P_1 of length ℓ_1 in $G_p^{x_1}$ joining s and t for every $q \leq \ell_1 \leq p - f_v^{x_1} - 1$. We are to construct a longer path P_{12} that passes through vertices in $G_p^{x_1}$ and $G_p^{x_2}$. We first claim that there exist one edge (x,y), on P_1 such that all of $\bar{x}, (x,\bar{x}), \bar{y}$, and (y,\bar{y}) , do not belong to F, where $\bar{x}, \bar{y} \in G_p^{x_2}$, (x,\bar{x}) , (y,\bar{y}) are two cross edges. Since there are ℓ_1 candidate edges on P_1 and at most f+1 faulty elements can "block" the candidates, at most two candidates per one faulty element. By assumption $q \geq 2f+5$, and the claim is proved. The path P_{12} can be obtained by merging P_1 and a path P_2 in $G_p^{x_2} - F_2$ between \bar{x}, \bar{y} with the edges (x,\bar{x}) , (y,\bar{y}) , of course the edge (x,y) is discarded. Let ℓ_2 be the length of P_2 , the length ℓ_{12} of P_{12} can be anything in the range $2q+1 \leq \ell_{12} \leq \ell_1 + \ell_2 + 1 \leq 2p - f_v^{x_1} - f_v^{x_2} - 1$. Since $p \geq 2q + f + 2$, $f_v^{x_1} \leq f$, we have $2q+1 \leq p - f_v^{x_1} - 1$. So there exist path connecting the vertex s and t such that the length of path can be anything in the range $[q, 2p - f_v^{x_1} - f_v^{x_2} - 1]$. Similarly, we claim that there exist one edge (u,v), on P_2 such that all of $\bar{u}, (u, \bar{u}), \bar{v}$, and (v, \bar{v}) , do not belong to F, where $\bar{u}, \bar{v} \in G_p^{x_3}$, $(u, \bar{u}), (v, \bar{v})$ are two cross edges. The path P_{123} can be obtained by merging P_{12} and a path P_3 in $G_p^{x_3} - F_3$ between \bar{u}, \bar{v} with the edges $(u, \bar{u}), (v, \bar{v})$, of course the edge (u, v) is discarded. Let ℓ_3 be the length of p_3 , the length ℓ_{123} or ℓ_{123} can be anything in the range $2\ell_{123} \leq \ell_{124} + \ell_{13} + 1 \leq 2\ell_{12} + \ell_{13} + \ell_{13} \leq \ell_{12} + \ell_{13} \leq \ell_{12} \leq \ell_{13} \leq \ell_{12} + \ell_{13} + \ell_{23} \leq \ell_{12} + \ell_{13} \leq \ell_{12} \leq \ell_{13} \leq \ell_{12} \leq$

Subcase 1.2. When both s,t is contained in $G_p^{x_i}$, $i \neq 1$. We first claim that there exist two edges (x,y), (u,v) on P_i such that all of $\bar{x}, (x,\bar{x}), \bar{y}$, and $(y,\bar{y}), \bar{u}, (u,\bar{u}), \bar{v}$, and (v,\bar{v}) do not belong to F, where $\bar{x}, \bar{y} \in G_p^{x_{i+1}}, \bar{u}, \bar{v} \in G_p^{x_{i-1}}$, and $(x,\bar{x}), (y,\bar{y}), (u,\bar{u}), (v,\bar{v})$ are four cross edges. Since there are ℓ_1 candidate edges on P_1 and at most f+1 faulty elements can "block" the candidates, at most two candidates per one faulty element. By assumption $q \geq 2f+5$, and the claim is proved. The path $P_{(i-1)i(i+1)}$ can be obtained by merging P_i and two paths P_{i-1}, P_{i+1} in $G_p^{x_{i-1}} - F_{i-1}, G_p^{x_{i+1}} - F_{i+1}$, respectively, between \bar{u}, \bar{v} with the edges $(u,\bar{u}), (v,\bar{v})$, and \bar{x}, \bar{y} with the edges $(x,\bar{x}), (y,\bar{y})$, of course the edge (u,v), (x,y) is discarded. Similar to Subcase 1.1, it follows that the path $P_{12\cdots m}$, and $q \leq \ell_{12\cdots m} \leq mp - f_v - 1$.

Subcase 1.3. When s is in $G_p^{x_i}$, t is in $G_p^{x_j}$, $i \neq j$. Since G is f-fault hamiltonian-connected, then $f \leq \delta(G) - 3$, where $\delta(G)$ is the minimum degree of G, then there exist one adjacent vertex $s' \in G_p^{x_i}$ of s such that the cross edges sequence $T \notin F$, where $T = s'(x_{i+1}, y^{i+1})$, $(x_{i+1}, y^{i+1})(x_{i+2}, y^{i+2}), \cdots, (x_{j-1}, y^{j-1})(x_j, y^j)$, where $(x_{i+1}, y^{i+1}) \in G_p^{x_{i+1}}$, $(x_{i+2}, y^{i+2}) \in G_p^{x_{i+2}}$, $(x_{j-1}, y^{j-1}) \in G_p^{x_{j-1}}$, $(x_j, y^j) \in G_p^{x_j}$. There exists a path P_1 of length ℓ_1 in $G_p^{x_j}$ joining t and (x_j, y^j) for every $q \leq \ell_1 \leq p - f_v^{x_j} - 1$. Hence a path P_1 joining s and t can be obtained by merging P_1 and the cross edges sequence T with the length ℓ_1' of path P_1 for every integer in the range $q + j - i + 1 \leq \ell_1' \leq p - f_v^{x_j} + j - i - 1$. Similarly to Subcase 1.2, it follows that the result completes.

Case 2. There exists some f_i such that $f_i = f + 1$. Then $f_j = 0$, $1 \le j \le m, j \ne i$. Since $f \ge 2$. Similar to case 1, it follows that the result completes.

It immediately follows from Case 1, where the assumption $f \ge 2$ is never used, that $f = 0, 1, G_m * G_p$ with f + 1 faulty elements has a path of every length q + m or more joining s and t unless s and t are contained in the same subgraph $G_p^{x_i}$ and one of their neighbors is the faulty element in $G_p^{x_j}$, $i \ne j$. Thus, the proof of (c) is done, we testify the case (b), note that G_p is 1-fault q-panconnected. This completes the proof.

References

- [1] Bermond J. C., Delorme C., and Farhi G., Large graphs with given degree and diameter II, J Combin. Theory, Series B 36 (1984) 32-48. 10.1109/TC.1984.1676504.
- [2] BondyJ. A. and Murty U. S. R., Graph Theory with Applications , 5th printing, American Elsevier Publishing Co., Inc., 1976.
- [3] Chartrand G. and Harary F., Planar permutation graphs, Ann Inst H Poincaré Sec B 3 (1967) 433-438. http://eudml.org/doc/76875
- [4] D. Bauer and E. Schmeichel: On a theorem of Häggkvist and Nicoghossian, In Y. Alavi, F.R.K. Chung, R.L. Graham and D. S. Hsu, eds., Graph Theory, Combinatorics, Algorithms, and Applications-Proceedings 2nd China-USA Graph Theory Conference, SIAM(1991)20-25.
- [5] B. Wei, A Generalization of a result of Bauer and Schmeichel, Graphs and Combin. 9 (1993) 383-389. 10.1007/BF02988325
- [6] D. Bauer, H.J. Broersma, and H.J. Veldman, On generalizing a theorem of Jung, Ars Combinatoria 40 (1995) 207-218.
- [7] S. Wang, C. Wang, J. Liu, On extremal multiplicative Zagreb indices of trees with given domination number, Applied Mathematics and Computation, 332 (2018) 338-350. 10.1016/j.amc.2018.03.058.
- [8] Z. Shao, J. Xu, S. Sheikholeslami, S. Wang, The domination complexity and related extremal values of large 3-D torus, Complexity, Volume 2018, Article ID 3041426, 8 pages. 10.1155/2018/3041426.
- [9] S. Wang, B. Wei, A note on the independent domination number versus the domination number in bipartite graphs, Czechoslovak Mathematical Journal, 67 (142) (2017), 533-536. 10.21136/CMJ.2017.0068-16.
- [10] S. Ji, S. Wang, On the sharp lower bounds of Zagreb indices of graphs with given number of cut vertices, Journal of Mathematical Analysis and Applications, 458 (1) 2018, 21-29. 10.1016/j.jmaa.2017.09.005.
- [11] Y. Ahmad, U. Ali, M. bilal, S. Zafar, Z. Zahid, Some new standard graphs labeled by 3-total edge product cordial labeling 2 (2017)(1) 61-72. 10.21042/AMNS.2017.1.00005.
- [12] S. Sudhakar, S. Francis, V. Balaji, Odd mean labeling for two star graph, (2) 2017 (1) 195-200, 10.21042/AMNS.2017.1.00016.
- [13] B. Basavanagoud, V.R. Desai, S. Patil, (β, α) -Connectivity Index of Graphs (2) 2017 (1) 21-30, 10.21042/AMNS.2017.1.00003.
- [14] S. Zhou, L. Xu, Y. Xu, A sufficient condition for the existence of a k-factor excluding a given r-factor (2) 2017 (1) 13-20, 10.21042/AMNS.2017.1.00002.

This page is intentionally left blank