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Abstract
The product graph Gm ∗Gp of two given graphs Gm and Gp, defined by J.C. Bermond et al.[J Combin Theory, Series B
36(1984) 32-48] in the context of the so-called (4,D)-problem, is one interesting model in the design of large reliable
networks. This work deals with sufficient conditions that guarantee these product graphs to be hamiltonian-connected.
Moreover, we state product graphs for which provide panconnectivity of interconnection networks modeled by a product
of graphs with faulty elements.
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1 Introduction

Linear arrays and rings are two of the most important computational structures in interconnection networks.
So, embedding of linear arrays and rings into a faulty interconnected network is one of the important issues in
parallel processing. An interconnection network is often modeled as a graph, in which vertices and edges corre-
spond to nodes and communication links, respectively. Thus, the embedding problem can be modeled as finding
fault-free paths and cycles in the graph with some faulty vertices and/or edges. In the embedding problem, if
the longest path or cycle is required the problem is closely related to well-known hamiltonian problems in graph
theory. In the rest of this paper, we will use standard terminology in graphs(see ref.[2]). It is very difficult to
determine that a graph is hamiltonian or not. Readers may refer to [4,5,6].
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2 Definitions and Notation

We follow [2] for graph-theoretical terminology and notation not defined here. A graph G = (V,E) always
means a simple graph(without loops and multiple edges), where V = V (G) is the vertex set and E = E(G) is
the edge set. The degree of a vertex v is denoted by d(v) = dG(v), whereas δ = δ (G) and 4 =4(G) stand
for the minimum degree and the maximum degree of G, respectively. A path is a sequence of adjacent vertices,
denoted by x1x2 · · ·x`, in which all the vertices x1,x2, · · · ,x` are distinct. Let path P = x1,x2, · · · ,x` and P[xi,x j]
denotes the sequence of adjacent vertices from xi to x j on path P. That is, P[xi,x j] = xixi+1 · · ·x j−1x j. For two
vertices u,v ∈ V (G), a path joining u and v is called a uv-path. A path P in graph G is call a Hamiltonian
path if V (P) = V (G). A cycle is a path such that the first vertex is the same as the last one. A cycle is also
denoted by x1x2 · · ·x`x1. Length of a cycle is the number of edges in it. An `-cycle is a cycle of length `. Let
c(G) = max{` : `-cycle of G}. A cycle of G is called Hamiltonian cycle if its length is |V (G)|. A graph G
is Hamiltonian if G contains a Hamiltonian cycle. A graph G is Hamiltonian-connected if any two vertices
u,v ∈V (G) exists a Hamiltonian uv-path.

Two edges xy,uv ∈ E(G) are called independent if {x,y}∩ {u,v} = /0. A matching is a set of edges that
are pairwise independent. A perfect matching between two disjoint graphs G1, G2 with the same order n is
a matching consisting of n edges such that each of them has one end vertex in G1 and the other one in G2.
See [7–14].

The construction of new graphs from two given ones is not unusual at all. Basically, the method consists of
joining together several copies of one graph according to the structure of another one, the latter being usually
called the main graph of the construction. In this regard, Chartrand and Harary introduced in [3] the concept of
permutation graph as follows. For a graph G and a permutation π of V (G), the permutation graph Gπ is defined
by taking two disjoint copies of G and adding a perfect matching joining each vertex v in the first copy to π(v) in
the second. Examples of these graphs include hypercubes, prisms, and some generalized Petersen graphs. The
product graph Gm ∗Gp of two given graphs Gm and Gp, defined in [1] by Bermond et al. in the following way.

Definition 1. Let Gm = (V (Gm),E(Gm)) and Gp = (V (Gp),E(Gp)) be two graphs. Let us give an arbitrary
orientation to the edges of Gm, in such a way that an arc from vertex x to vertex y is denoted by exy. For each arc
exy, let πexy be a permutation of V (Gp). Then the product graph Gm ∗Gp has V (Gm)×V (Gp) as vertex set, with
two vertices (x,x′),(y,y′) being adjacent if either

x = y and x′y′ ∈ E(Gp)

or
xy ∈ E(Gm) and y′ = πexy(x

′).

The product graph Gm∗Gp can be viewed as formed by |V (Gm)| disjoint copies of Gp, each arc exy, indicating
that some perfect matching between the copies Gx

p,G
y
p( respectively generated by the vertices x and y of Gm) is

added. So the graph Gm is usually called the main graph and Gp is called the pattern graph of the product graph
Gm ∗Gp . Moreover, every edge of Gm ∗Gp that belongs to any of the |E(Gm)| perfect matchings between copies
of Gp is an cross edge of Gm ∗Gp.

Observe that if we choose πexy(x
′) = x′ for any arc exy then Gm ∗Gp = Gm2Gp. Furthermore, if Gm is K2 we

have K2 ∗G = Gπ , a permutation graph. Hence, Gm ∗Gp can be considered as a generalized permutation graph.

Definition 2. A graph G is called f−fault hamiltonian (resp. f -fault hamiltonian-connected) if there exist a
hamiltonian cycle (resp. if each pair of vertices are joined by a hamiltonian path) in G−F for any set F of faulty
elements with |F | ≤ f .

If a graph G is f−fault hamiltonian (resp. f−fault hamiltonian-connected), then it is necessary that f ≤
δ (G)−2 (resp. f ≤ δ (G)−3), where δ (G) is the minimum degree of G.
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Definition 3. A graph G is call f−fault q-panconnected if each pair of fault-free vertices are joined by a path in
G−F of every length from q to |V (G−F)|−1 inclusive for any set F of fault elements with |F | ≤ f .

When we are to construct a path from s to t, s and t are called a source and a sink, respectively, and both of
them are called terminals. When we find a path/cycle, sometimes we regard some fault-free vertices and edges
as faulty elements. They are called virtual faults.

3 Main Results

For the sake of convenience, we write m(p) for the order of Gm( Gp, respectively.) Suppose V (Gm) =
{x1,x2, · · · ,xm} and V (Gp) = {y1,y2, · · · ,yp}.

Theorem 1. If Gm is hamiltonian, and Gp is hamiltonian-connected, then Gm ∗ Gp is also hamiltonian-
connected.

Proof. Choose two vertices in u,v ∈V (Gm ∗Gp). We have the following cases:
Case 1. u,v belong to the same subgraph, say, Gx1

P . Since Gm is hamiltonian, suppose hamiltonian-
cycle C = x1x2 · · ·xm. Since Gx1

P is hamiltonian-connected, u,v are connected by a hamiltonian-path P1 in
Gx1

P , suppose P1 = (x1,y1)(x1,y2) · · ·(x1,yp), where (x1,y1) = u,(x1,yp) = v. Since x1xm ∈ E(Gm), suppose
(x1,y2)(xm,y2) ∈ E(Gm ∗Gp). Then u,v are connected by a hamiltonian-path P′ in Gm ∗Gp by choosing the
endvertex, say, (x2,y1) of cross edge (x1,y1)(x2,y1) and have a hamiltonian-cycle C2 passing (x2,y1) in Gx2

p .
Suppose the last vertex is (x2,yp) in C2, and choosing the endvertex, say, (x3,yp) of cross edge (x3,yp)(x2,yp)
and have a hamiltonian-cycle C3 passing (x3,yp) in Gx3

p . Suppose the last vertex is (x3,yl) in C3, and so
on, choosing the endvertex, say, (xm,y j) (1 ≤ j ≤ p ) of cross edge (xm−1,y1)(xm,y j) and choosing the
endvertex (xm,y2) of cross edge (x1,y2)(xm,y2), have a hamiltonian-path Pm passing (xm,y j) and (xm,y2) in
Gxm

p . Let P′ = u(x2,y1)∪C2[(x2,y1),(x2,yp)]∪ (x2,yp)(x3,yp)∪C3[(x3,yp),(x3,yl)]∪ ·· · ∪ (xm−1,y1)(xm,y j)∪
Pm[(xm,y j),(xm,y2)]∪ (xm,y2)(x1,y2)∪P1[(x1,y2),v]. Then we obtain the desired result.

Case 2. u,v belong to two subgraphs, suppose Gx1
P , Gxi

P (1 ≤ i ≤ m). and u ∈ Gx1
P and v ∈ Gxi

P . Sup-
pose u = (x1,y1), v = (xi,y j) (1 ≤ j ≤ p) . Since Gm is hamiltonian, suppose hamiltonian-cycle C =
x1x2 · · ·xmx1. Since Gx1

P is hamiltonian-connected, u belongs to a hamiltonian-cycle C1 in Gx1
P , suppose

C1 = (x1,y1)(x1,y2) · · ·(x1,yp)(x1,y1), where (x1,y1) = u.
Then u,v are connected by a hamiltonian-path P′ in Gm ∗Gp by choosing the endvertex, say, (x2,y1) and

(x2,y2) of cross edges (x1,y1)(x2,y1) and (x1,y2)(x2,y2). Then there exist a hamiltonian-path P2 connecting
(x2,y1) and (x2,y2) in Gx2

p since Gx2
p is Hamilton-connected. Taking adjacent vertices (x2,yt) and (x2,yt+1) in

path P2, then P2 = P21∪ (x2,yt)(x2,yt+1)∪P22, where P21 = P2[(x2,y1),(x2,yt)] and P22 = P2[(x2,yt+1),(x2,y2)].
Choosing the endvertices , say, (x3,yt) and (x3,yt+1) of cross edges (x3,yt)(x2,yt) and (x3,yt+1)(x2,yt+1).
Then there exist a hamiltonian-path P3 connecting (x3,yt) and (x3,yt+1) in Gx3

p since Gx3
p is Hamilton-

connected. Taking adjacent vertices (x3,y j) and (x3,y j+1) in path P3, then P3 = P31 ∪ (x3,y j)(x3,y j+1)∪P32,
where P31 = P3[(x3,yt),(x3,y j)] and P32 = P3[(x3,y j+1),(x3,yt+1)], and so on. Until we take adjacent vertices
(xi−2,yµ) and (xi−2,yµ+1) in path Pi−2, and the endvertices, say, (xi−1,yµ) and (xi−1,yµ+1) of cross edges
(xi−1,yµ)(xi−2,yµ) and (xi−1,yµ+1)(xi−2,yµ+1). Then there exist a hamiltonian-path Pi−1 connecting (xi−1,yµ)
and (xi−1,yµ+1) in Gxi−1

p since Gxi−1
p is Hamilton-connected. Let path P′1 = u(x2,y1)∪P21∪ (x2,yt)(x3,yt)∪P31∪

·· ·∪P(i−2)1∪(xi−2,yµ)(xi−1,yµ)∪Pi−1∪(xi−1,yµ+1)(xi−2,yµ+1)∪P(i−2)2∪·· ·∪P32∪(x3,yt+1)(x2,yt+1)∪P22∪
(x2,y2)(x1,y2)∪C1[(x1,y2),(x1,yp)].

Choosing the endvertex, say, (xm,yp) of cross edge (x1,yp)(xm,yp). Then there exist a hamiltonian-cycle Cm

passing (xm,yp) in Gxm
p since Gxm

p is Hamilton-connected. Suppose the last vertex is (xm,y1) in Cm, taking the
endvertex, say, (xm−1,yp) of cross edge (xm,y1)(xm−1,yp). Then there exist a hamiltonian-cycle Cm−1 passing
(xm−1,yp) in Gxm−1

p since Gxm−1
p is Hamilton-connected, and so on. Until we take the last vertex, say, (xi+1,y1) in

Ci+1, taking the endvertex, say, (xi,yp) of cross edge (xi+1,y1)(xi,yp).
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If (xi,yp) = (xi,y j). Then there exist a hamiltonian-cycle Ci passing (xi,yp) in Gxi
p since Gxi

p is Hamilton-
connected, taking the adjacent vertex of (xi,y j), say, (xi,y j−1) in cycle Ci and taking the endvertex, say,
(xi+1,y j−1) of cross edge (xi+1,y j−1)(xi,y j−1) (if (xi+1,y j−1) = (xi+1,yp), then taking the other adjacent ver-
tex of (xi,y j) such that (xi+1,y j−1) 6= (xi+1,yp)). Then there exist a hamiltonian-path Pi+1 connecting (xi+1,yp)
and (xi+1,y j−1) in Gxi+1

p since Gxi+1
p is Hamilton-connected. Let P′2 = (x1,yp)(xm,yp)∪Cm[(xm,yp),(xm,y1)]∪

(xm,y1)(xm−1,yp)∪Cm−1[(xm−1,yp),(xm−1,y1)]∪·· ·∪Pi+1∪ (xi+1,y j−1)(xi,y j−1)∪Ci[(xi,y j−1),v].
If (xi,yp) 6= (xi,y j). Then there exist a hamiltonian-path Pi connecting (xi,yp) and (xi,y j) in Gxi

p
since Gxi

p is Hamilton-connected. Let P′′2 = (x1,yp)(xm,yp) ∪ Cm[(xm,yp),(xm,y1)] ∪ (xm,y1)(xm−1,yp) ∪
Cm−1[(xm−1,yp),(xm−1,y1)]∪·· ·∪Ci+1[(xi+1,yp),(xi+1,y1)]∪ (xi+1,y1)(xi,yp)∪Pi[(xi,yp),v].

Let P′ = P′1∪P′2 or P′ = P′1∪P′′2 . Then we obtain the desired result. 2

Corollary 2. If Gm and Gp are hamiltonian-connected, then Gm ∗Gp is also hamiltonian-connected.

Corollary 3. If Gm and Gp are hamiltonian, then,
(i)c(Gm ∗Gp)≥ mp− p;
(ii)There exists a hamiltonian path in Gm ∗Gp.

Proof. Since Gm is Hamiltonian, suppose Hamiltonian-cycle C′ = x1x2 . . .xmx1. Since Gp is Hamiltonian, sup-
pose Hamiltonian-cycle C′′ = y1y2 . . .ypy1.

(i) We obtain a cycle C as follows: Choosing any vertex, say, (x1,y1), in V (Gx1
p ). Taking the endvertex,

say, (x2,y1), of cross edge (x1,y1)(x2,y1) and have a hamiltonian-cycle C2 passing (x2,y1) in Gx2
p . Suppose

the last vertex is (x2,yp) in C2. Taking the endvertex, say, (x3,y1), of cross edge (x2,yp)(x3,y1) and have a
hamiltonian-cycle C3 passing (x3,y1) in Gx3

p . The last vertex is (x3,yp) in C3, · · · , and so on, until taking the
endvertex, say, (xm,y1), of cross edge (xm,y1)(xm−1,yp) and have a hamiltonian-cycle Cm passing (xm,y1) in
Gxm

p . The last vertex is (xm,yp) in Cm. Taking the endvertex, say, (x1,y j), of cross edge (xm,yp)(x1,y j) and have
a hamiltonian-cycle C1 passing (x1,y j) in Gx1

p . So the length of ((x1,y j),(x1,y1))-path in Gx1
p is at least b p

2 c, but
if (x1,y j) = (x1,y1), then (i) holds.

(ii) We obtain a Hamiltonian path as follows: Choosing any vertex, say, (x1,y1), in V (Gx1
p ), and have a

hamiltonian-cycle C1 passing (x1,y1) in Gx1
p . The last vertex is (x1,yp) in C1. Taking the endvertex, say, (x2,y1),

of cross edge (x1,yp)(x2,y1) and have a hamiltonian-cycle C2 passing (x2,y1) in Gx2
p . The last vertex is (x2,yp)

in C2. Taking the endvertex, say, (x3,y1), of cross edge (x2,yp)(x3,y1) and have a hamiltonian-cycle C3 passing
(x3,y1) in Gx3

p . The last vertex is (x3,yp) in C3, · · · , and so on, until taking the endvertex, say, (xm,y1), of cross
edge (xm,y1)(xm−1,yp) and have a hamiltonian-cycle Cm passing (xm,y1) in Gxm

p . The last vertex is (xm,yp) in
Cm. Then we obtain hamiltonian-path ((x1,y1),(xm,yp))-path. 2

Corollary 4. If there exists hamiltonian path in Gm, Gp is hamiltonian, then there exists a hamiltonian path in
Gm ∗Gp

Fi denote the sets of faulty elements in Gxi
p , 1 ≤ i ≤ m. F0 denotes the set of faulty edges in cross edge-

set. |Fi| = fi, 0 ≤ i ≤ m. We denote by f x1
v , f x2

v , · · · , f xm
v the number of faulty vertices in Gx1

p ,G
x2
p , · · · ,G

xm
P ,

respectively, and by fv the number of faulty vertices in Gm ∗Gp, so that fv = f x1
v + f x2

v + · · ·+ f xm
v . Note that the

length of a hamiltonian path in Gm ∗Gp−F is mp− fv−1.

Theorem 5. Let Gm have a hamiltonian-path, Gp is f−fault hamiltonian-connected and f +1−fault hamilto-
nian, p≥ 3 f +6, then,

(a) for any f ≥ 1, Gm ∗Gp is f +2−fault hamiltonian, and
(b) for f = 0, Gm ∗Gp with 2 faulty elements has a hamiltonian cycle unless one faulty element is contained

in Gxi
p and the other faulty element is contained in Gx j

p , i 6= j, 1≤ i, j ≤ m.

Proof. (a) Suppose C = x1x2 · · ·xm is hamiltonian-path in Gm. Assuming the number of faulty elements |F | ≤
f +2, we will construct a cycle of length `, `= mp− fv, in Gm ∗Gp−F .
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Case 1. fi ≤ f , 0≤ i≤m. Taking two adjacent vertices u,v∈V (Gx1
p −F1). Since Gp is f−fault hamiltonian-

connected, there exists hamiltonian uv-path, say, P1, in Gx1
p −F1. We first claim that there exist an edge (x,y) on

P1 such that all of x̄,(x, x̄), ȳ, and (y, ȳ) do not belong to F , where x̄, ȳ ∈ Gx2
p , (x, x̄), (y, ȳ) are two cross edges.

Since there are p− f x1
v −1 candidate edges on P1 and at most f +2 faulty elements can “block” the candidates,

at most two candidates per one faulty element. By assumption p≥ 3 f +6, and the claim is proved. The path P12
can be obtained by merging P1 and a hamiltonian-path P2 in Gx2

p −F2 between x̄, ȳ with the edges (x, x̄), (y, ȳ), of
course the edge (x,y) is discarded. Similarly, there exist an edge (x′,y′) on P2 such that all of x̄′,(x′, x̄′), ȳ′, and
(y′, ȳ′) do not belong to F , where x̄′, ȳ′ ∈ Gx3

p , (x′, x̄′), (y′, ȳ′) are two cross edges. The path P123 can be obtained
by merging P12 and a hamiltonian-path P3 in Gx3

p −F3 between x̄′, ȳ′ with the edges (x′, x̄′), (y′, ȳ′), of course the
edge (x′,y′) is discarded, and so on, at least we obtain the hamiltonian-path P12···m in Gm ∗GP−F . Therefore
P12···m∪uv is hamiltonian-cycle in Gm ∗GP−F .

Case 2. There exists some i, j such that fi = f +1, f j = 1. Then ft = 0, 0≤ t ≤ m, t 6= i, j. Since f ≥ 1.
Subcase 2.1. i = 0. Taking two adjacent vertices u,v ∈ V (Gx1

p −F1). Since Gp is f−fault hamiltonian-
connected, there exists hamiltonian uv-path, say, P1, in Gx1

p −F1. Similar to Case 1, it follows that Gm ∗Gp is
f +2−fault hamiltonian.

Subcase 2.2. i = 1. Since Gp is f +1−fault hamiltonian, Taking hamiltonian cycle in Gx1
P −F1. Similar to

Case 1, it follows that Gm ∗Gp is f +2−fault hamiltonian.
Subcase 2.3. i 6= 1,0. Since Gp is f + 1−fault hamiltonian, Taking hamiltonian cycle Ci in Gxi

P −Fi. Since
fi = f + 1, f j = 1. Then ft = 0, 0 ≤ t ≤ m, t 6= i, j, then there exist two adjacent edges (x,y),(y,z) on Ci such
that all of x̄,(x, x̄), ȳ, and (y, ȳ) , z′, and (z,z′), and (y,y′) do not belong to F , where x̄, ȳ ∈ Gxi+1

p ,and y′,z′ ∈ Gxi−1
p ,

(x, x̄), (y, ȳ), (y,y′), (z,z′) are cross edges. Similar to Case 1, Gxi−1
p has hamiltonian path Pi−1 connecting the

vertex y′,z′ and Gxi+1
p has hamiltonian path Pi+1 connecting the vertex ȳ, x̄. We obtain a cycle C(i−1)i(i+1) by

merging Ci and hamiltonian path Pi−1,Pi+1 with the edges (x, x̄), (y, ȳ),(z,z′), (y,y′), of course the edges (x,y)
and (y,z) are discarded. Taking an edge α,β in Pi−1 and Pi+1, respectively. Similar to Case 1, at least we obtain
cycle C12···m, then Gm ∗Gp is f +2−fault hamiltonian.

Case 3. There exists some fi such that fi = f +2. Then f j = 0, 0≤ j ≤ m, j 6= i.
Subcase 3.1. i = 0. Taking two adjacent vertices u,v ∈ V (Gx1

p −F1). Since Gp is f−fault hamiltonian-
connected, there exists hamiltonian uv-path, say, P1, in Gx1

p −F1. Since p≥ 3 f +6, then there exist an edge (x,y)
on P1 such that all of x̄,(x, x̄), ȳ, and (y, ȳ) do not belong to F , where x̄, ȳ ∈ Gx2

p , (x, x̄), (y, ȳ) are two cross edges.
Similar to Case 1, it follows that Gm ∗Gp is f +2−fault hamiltonian.

Subcase 3.2. i = 1. Since Gp is f + 1−fault hamiltonian, we select an arbitrary faulty element α in Gx1
p .

Regarding α as a virtual fault-free element. Taking hamiltonian cycle C1 in Gx1
P −F1. If α is a faulty vertex

on C1, let x and y be two vertices on C1 next to α; else if C1 passes through the faulty edge α , let x and y be
the endvertices of α . The cycle C12 is obtained by merging C1−α and a hamiltonian-path in Gx2

P joining x̄ and
ȳ with cross edges (x, x̄),(y, ȳ), where x̄, ȳ ∈ V (Gx2

p ). Similar to Case 1, it follows that Gm ∗Gp is f + 2−fault
hamiltonian.

Subcase 3.3. i 6= 1,0. Since Gp is f + 1−fault hamiltonian, we select an arbitrary faulty element α in Gxi
p .

Regarding α as a virtual fault-free element. Taking hamiltonian cycle Ci in Gx1
P −Fi. If α is a faulty vertex on

Ci, let x and y be two vertices on Ci next to α; else if Ci passes through the faulty edge α , let x and y be the
endvertices of α . Let z be the vertices on Ci next to y. The cycle C(i−1)i(i+1) is obtained by merging Ci−α

and a hamiltonian-path in Gxi+1
P joining x̄ and ȳ and a hamiltonian-path in Gxi−1

P joining z′ and y′ with cross
edges (z,z′),(y,y′),(x, x̄),(y, ȳ), where z′,y′ ∈ V (Gxi−1

p ) and x̄, ȳ ∈ V (Gxi+1
p ). Similar to Subcase 2.3, it follows

that Gm ∗Gp is f +2−fault hamiltonian.
(b) If f = 0. Since Gp is 0−fault hamiltonian-connected and 1−fault hamiltonian, we have similar proof

subcase 3.2 by regarding a faulty element as virtual faulty-free element if the two faulty elements is contained
in subgraph Gxi

p . This completes the proof. 2

Corollary 6. Let Gm = K2 , Gp is f−fault hamiltonian-connected and f + 1−fault hamiltonian, p ≥ 3 f + 6,
then,
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(a) for any f ≥ 1, K2 ∗Gp is f +2−fault hamiltonian.
(b) for f = 0, K2 ∗Gp with 2 faulty elements has a hamiltonian cycle unless one faulty element is contained

in Gx1
p and the other faulty element is contained in Gx2

p .

Theorem 7. Let Gm have a hamiltonian-path, Gp is f−fault q−panconnected and f + 1-fault hamiltonian,
p≥ 2q+ f +2, q≥ 2 f +5, then,

(a) for any f ≥ 2, Gm ∗Gp is f +1−fault q+m−panconnected,
(b) for f = 1, Gm ∗Gp with 2 faulty elements has a path of every length q+m or more joining s and t unless

s and t are contain in the same subgraph Gxi
p and their neighbors are the faulty element in Gx j

p , i 6= j,
(c) for f = 0, Gm ∗Gp with 1 faulty element has a path of every length q+m or more joining s and t unless

s and t are contained in the same subgraph Gxi
p and one of their neighbors is the faulty element in Gx j

p , i 6= j.

Proof.
(a) Suppose P= x1x2 · · ·xm is a hamiltonian-path of Gm. Assuming the number of faulty elements |F | ≤ f +1,

we will construct a path of every length `, q+m≤ `≤ mp− fv−1, in Gm ∗Gp−F joining any pair of vertices
s and t.

Case 1. fi ≤ f , 0≤ i≤ m.
Subcase 1.1. When both s, t is contained in Gx1

p . There exists a path P1 of length `1 in Gx1
p joining s and t for

every q≤ `1 ≤ p− f x1
v −1. We are to construct a longer path P12 that passes through vertices in Gx1

p and Gx2
p . We

first claim that there exist one edge (x,y), on P1 such that all of x̄,(x, x̄), ȳ, and (y, ȳ), do not belong to F , where
x̄, ȳ ∈ Gx2

p , (x, x̄), (y, ȳ) are two cross edges. Since there are `1 candidate edges on P1 and at most f + 1 faulty
elements can "block" the candidates, at most two candidates per one faulty element. By assumption q≥ 2 f +5,
and the claim is proved. The path P12 can be obtained by merging P1 and a path P2 in Gx2

p −F2 between x̄, ȳ
with the edges (x, x̄), (y, ȳ), of course the edge (x,y) is discarded. Let `2 be the length of P2, the length `12 of
P12 can be anything in the range 2q+1≤ `12 ≤ `1 + `2 +1≤ 2p− f x1

v − f x2
v −1. Since p≥ 2q+ f +2, f xi

v ≤ f ,
we have 2q+ 1 ≤ p− f x1

v − 1. So there exist path connecting the vertex s and t such that the length of path
can be anything in the range [q,2p− f x1

v − f x2
v − 1]. Similarly, we claim that there exist one edge (u,v), on P2

such that all of ū,(u, ū), v̄, and (v, v̄), do not belong to F , where ū, v̄ ∈ Gx3
p , (u, ū), (v, v̄) are two cross edges. The

path P123 can be obtained by merging P12 and a path P3 in Gx3
p −F3 between ū, v̄ with the edges (u, ū), (v, v̄), of

course the edge (u,v) is discarded. Let `3 be the length of p3, the length `123 of P123 can be anything in the range
3q+2≤ `123≤ `12+`3+1≤ 3p− f x1

v − f x2
v − f x3

v −1. Since p≥ 2q+ f +2, f xi
v ≤ f , we have 2q+1≤ p− f x1

v −1
and 3q+2≤ 2p− f x1

v − f x2
v −1, and so on, at least the path P12···m, and q≤ `12···m ≤ mp− fv−1.

Subcase 1.2. When both s, t is contained in Gxi
p , i 6= 1. We first claim that there exist two edges (x,y),(u,v)

on Pi such that all of x̄,(x, x̄), ȳ, and (y, ȳ), ū,(u, ū), v̄, and (v, v̄) do not belong to F , where x̄, ȳ∈Gxi+1
p , ū, v̄∈Gxi−1

p ,
and (x, x̄), (y, ȳ), (u, ū), (v, v̄) are four cross edges. Since there are `1 candidate edges on P1 and at most f + 1
faulty elements can "block" the candidates, at most two candidates per one faulty element. By assumption
q≥ 2 f +5, and the claim is proved. The path P(i−1)i(i+1) can be obtained by merging Pi and two paths Pi−1, Pi+1
in Gxi−1

p −Fi−1, Gxi+1
p −Fi+1, respectively, between ū, v̄ with the edges (u, ū), (v, v̄), and x̄, ȳ with the edges (x, x̄),

(y, ȳ), of course the edge (u,v), (x,y) is discarded. Similar to Subcase 1.1, it follows that the path P12···m, and
q≤ `12···m ≤ mp− fv−1.

Subcase 1.3. When s is in Gxi
p , t is in Gx j

p , i 6= j. Since G is f−fault hamiltonian-connected, then f ≤
δ (G)−3, where δ (G) is the minimum degree of G, then there exist one adjacent vertex s′ ∈ Gxi

p of s such that
the cross edges sequence T /∈ F , where T = s′(xi+1,yi+1), (xi+1,yi+1)(xi+2,yi+2),· · · , (x j−1,y j−1)(x j,y j), where
(xi+1,yi+1) ∈ Gxi+1

p , (xi+2,yi+2) ∈ Gxi+2
p , (x j−1,y j−1) ∈ Gx j−1

p , (x j,y j) ∈ Gx j
p . There exists a path P1 of length `1

in Gx j
p joining t and (x j,y j) for every q ≤ `1 ≤ p− f x j

v − 1. Hence a path P′1 joining s and t can be obtained
by merging P1 and the cross edges sequence T with the length `′1 of path P1 for every integer in the range
q+ j− i+1≤ `′1 ≤ p− f x j

v + j− i−1. Similarly to Subcase 1.2, it follows that the result completes.
Case 2. There exists some fi such that fi = f + 1. Then f j = 0, 1 ≤ j ≤ m, j 6= i. Since f ≥ 2. Similar to

case 1, it follows that the result completes.
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It immediately follows from Case 1, where the assumption f ≥ 2 is never used, that f = 0,1, Gm ∗Gp with
f +1 faulty elements has a path of every length q+m or more joining s and t unless s and t are contained in the
same subgraph Gxi

p and one of their neighbors is the faulty element in Gx j
p , i 6= j. Thus, the proof of (c) is done.

we testify the case (b), note that Gp is 1-fault q-panconnected. This completes the proof.
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