

Applied Mathematics and Nonlinear Sciences

Perturbation analysis of a matrix differential equation $\dot{x}=A B x$

M. Isabel García-Planas, Tetiana Klymchuk !
Departament de Matemàtiques, Universitat Politécnica de Catalunya, Barcelona, SPAIN

Submission Info
Communicated by Juan L.G. Guirao Received 9th November 2017 Accepted 2nd April 2018
Available online 2nd April 2018

Abstract

Two complex matrix pairs (A, B) and $\left(A^{\prime}, B^{\prime}\right)$ are contragrediently equivalent if there are nonsingular S and R such that $\left(A^{\prime}, B^{\prime}\right)=\left(S^{-1} A R, R^{-1} B S\right)$. M.I. García-Planas and V.V. Sergeichuk (1999) constructed a miniversal deformation of a canonical pair (A, B) for contragredient equivalence; that is, a simple normal form to which all matrix pairs $(A+\widetilde{A}, B+\widetilde{B})$ close to (A, B) can be reduced by contragredient equivalence transformations that smoothly depend on the entries of \widetilde{A} and \widetilde{B}. Each perturbation $(\widetilde{A}, \widetilde{B})$ of (A, B) defines the first order induced perturbation $A \widetilde{B}+\widetilde{A} B$ of the matrix $A B$, which is the first order summand in the product $(A+\widetilde{A})(B+\widetilde{B})=A B+A \widetilde{B}+\widetilde{A} B+\widetilde{A} \widetilde{B}$. We find all canonical matrix pairs (A, B), for which the first order induced perturbations $A \widetilde{B}+\widetilde{A} B$ are nonzero for all nonzero perturbations in the normal form of García-Planas and Sergeichuk. This problem arises in the theory of matrix differential equations $\dot{x}=C x$, whose product of two matrices: $C=A B$; using the substitution $x=S y$, one can reduce C by similarity transformations $S^{-1} C S$ and (A, B) by contragredient equivalence transformations $\left(S^{-1} A R, R^{-1} B S\right)$.

Keywords: Contragredient equivalence; Miniversal deformation; Perturbation.
AMS 2010 codes: 15A21; 93D13

1 Introduction

We study a matrix differential equation $\dot{x}=A B x$, whose matrix is a product of an $m \times n$ complex matrix A and an $n \times m$ complex matrix B. It is equivalent to $\dot{y}=S^{-1} A R R^{-1} B S y$, in which S and R are nonsingular matrices and $x=S y$. Thus, we can reduce (A, B) by transformations of contragredient equivalence

$$
\begin{equation*}
(A, B) \mapsto\left(S^{-1} A R, R^{-1} B S\right), \quad S \text { and } R \text { are nonsingular. } \tag{1}
\end{equation*}
$$

The canonical form of (A, B) with respect to these transformations was obtained by Dobrovol'skaya and Ponomarev [3] and, independently, by Horn and Merino [5]:
each pair (A, B) is contragrediently equivalent to a direct sum, uniquely determined up to
permutation of summands, of pairs of the types $\left(I_{r}, J_{r}(\lambda)\right),\left(J_{r}(0), I_{r}\right),\left(F_{r}, G_{r}\right),\left(G_{r}, F_{r}\right)$,

[^0]in which $r=1,2, \ldots$,
\[

J_{r}(\lambda):=\left[$$
\begin{array}{cccc}
\lambda & 1 & & 0 \\
& \lambda & \ddots & \\
& \ddots & 1 \\
0 & & & \lambda
\end{array}
$$\right] \quad(\lambda \in \mathbb{C}), \quad F_{r}:=\left[$$
\begin{array}{lll}
0 & & 0 \\
1 & \ddots & \\
& \ddots & 0 \\
0 & & 1
\end{array}
$$\right], \quad G_{r}:=\left[$$
\begin{array}{cccc}
1 & 0 & & 0 \\
& \ddots & \ddots & \\
0 & & 0 & 1
\end{array}
$$\right]
\]

are $r \times r, r \times(r-1),(r-1) \times r$ matrices, and

$$
\left(A_{1}, B_{1}\right) \oplus\left(A_{2}, B_{2}\right):=\left(A_{1} \oplus A_{2}, B_{1} \oplus B_{2}\right) .
$$

Note that $\left(F_{1}, G_{1}\right)=\left(0_{10}, 0_{10}\right)$; we denote by $0_{m n}$ the zero matrix of size $m \times n$, where $m, n \in\{0,1,2, \ldots\}$. All matrices that we consider are complex matrices. All matrix pairs that we consider are counter pairs: a matrix pair (A, B) is a counter pair if A and B^{T} have the same size.

A notion of miniversal deformation was introduced by Arnold [1, 2]. He constructed a miniversal deformation of a Jordan matrix J; i.e., a simple normal form to which all matrices $J+E$ close to J can be reduced by similarity transformations that smoothly depend on the entries of E. García-Planas and Sergeichuk [4] constructed a miniversal deformation of a canonical pair (2) for contragredient equivalence (1).

For a counter matrix pair (A, B), we consider all matrix pairs $(A+\widetilde{A}, B+\widetilde{B})$ that are sufficiently close to (A, B). The pair $(\widetilde{A}, \widetilde{B})$ is called a perturbation of (A, B). Each perturbation $(\widetilde{A}, \widetilde{B})$ of (A, B) defines the induced perturbation $A \widetilde{B}+\widetilde{A} B+\widetilde{A} \widetilde{B}$ of the matrix $A B$ that is obtained as follows:

$$
(A+\widetilde{A})(B+\widetilde{B})=A B+A \widetilde{B}+\widetilde{A} B+\widetilde{A} \widetilde{B}
$$

Since \widetilde{A} and \widetilde{B} are small, their product $\widetilde{A} \widetilde{B}$ is "very small"; we ignore it and consider only first order induced perturbations $A \widetilde{B}+\widetilde{A} B$ of $A B$.

In this paper, we describe all canonical matrix pairs (A, B) of the form (2), for which the first order induced perturbations $A \widetilde{B}+\widetilde{A} B$ are nonzero for all miniversal perturbations $(\widetilde{A}, \widetilde{B}) \neq 0$ in the normal form defined in [4].

Note that $z=A B x$ can be considered as the superposition of the systems $y=B x$ and $z=A y$:

$$
x \longrightarrow \square \xrightarrow{y} \rightarrow A \quad \text { implies } \quad x \longrightarrow \square A B
$$

2 Miniversal deformations of counter matrix pairs

In this section, we recall the miniversal deformations of canonical pairs (2) for contragredient equivalence constructed by García-Planas and Sergeichuk [4].

Let

$$
\begin{equation*}
(A, B)=(I, C) \oplus \bigoplus_{j=1}^{t_{1}}\left(I_{r_{1 j}}, J_{r_{1 j}}\right) \oplus \bigoplus_{j=1}^{t_{2}}\left(J_{r_{2}}, I_{r_{2 j}}\right) \oplus \bigoplus_{j=1}^{t_{3}}\left(F_{r_{3 j}}, G_{r_{3 j}}\right) \oplus \bigoplus_{j=1}^{t_{4}}\left(G_{r_{4 j}}, F_{r_{4 j}}\right) \tag{3}
\end{equation*}
$$

be a canonical pair for contragredient equivalence, in which

$$
C:=\bigoplus_{i=1}^{t} \Phi\left(\lambda_{i}\right), \quad \Phi\left(\lambda_{i}\right):=J_{m_{i 1}}\left(\lambda_{i}\right) \oplus \cdots \oplus J_{m_{k_{i}}}\left(\lambda_{i}\right) \quad \text { with } \lambda_{i} \neq \lambda_{j} \text { if } i \neq j
$$

$m_{i 1} \geqslant m_{i 2} \geqslant \cdots \geqslant m_{i k_{i}}$, and $r_{i 1} \geqslant r_{i 2} \geqslant \cdots \geqslant r_{i_{i}}$.
For each matrix pair (A, B) of the form (3), we define the matrix pair

$$
\left.\left(I, \bigoplus_{i} \Phi\left(\lambda_{i}\right)+N\right)\right) \oplus\left(\left[\begin{array}{c|c|c}
\oplus_{j} I_{r_{1 j}} & 0 & 0 \tag{4}\\
\hline 0 & \oplus_{j} J_{r_{2 j}}(0)+N & N \\
\hline 0 & N & P_{3} N \\
\hline 0 & 0 & Q_{4}
\end{array}\right],\left[\begin{array}{cc|c|c}
\oplus_{j} J_{r_{1 j}}(0)+N & N & N \\
\hline N & \oplus_{j} I_{r_{2 j}} & 0 \\
\hline N & 0 & Q_{3} & 0 \\
\hline N & & N & P_{4}
\end{array}\right]\right)
$$

of the same size and of the same partition of the blocks, in which

$$
\begin{equation*}
N:=\left[H_{i j}\right] \tag{5}
\end{equation*}
$$

is a parameter block matrix with $p_{i} \times q_{j}$ blocks $H_{i j}$ of the form

$$
\begin{gather*}
H_{i j}:=\left[\begin{array}{cc}
* & \\
\vdots & 0 \\
* &
\end{array}\right] \text { if } p_{i} \leqslant q_{j}, \quad H_{i j:}=\left[\begin{array}{cc}
0 \\
* \cdots *
\end{array}\right] \text { if } p_{i}>q_{j} . \tag{6}\\
P_{l}:=\left[\begin{array}{cccc}
F_{r_{l 1}}+H & H & \cdots & H \\
& F_{r_{l 2}}+H & \ddots & \vdots \\
0 & & \ddots & H \\
0 & & F_{r_{l_{l}}}+H
\end{array}\right], \quad Q_{l}:=\left[\begin{array}{cccc}
G_{r_{l 1}} & & & 0 \\
H & G_{r_{l 2}} & \\
\vdots & \ddots & \ddots \\
H & \cdots & H & G_{r_{l_{l}}}
\end{array}\right] \quad(l=3,4), \tag{7}
\end{gather*}
$$

N and H are matrices of the form (5) and (6), and the stars denote independent parameters.
Theorem 1 (see [4]). Let (A, B) be the canonical pair (3). Then all matrix pairs $(A+\widetilde{A}, B+\widetilde{B})$ that are sufficiently close to (A, B) are simultaneously reduced by some transformation

$$
(A+\widetilde{A}, B+\widetilde{B}) \mapsto\left(S^{-1}(A+\widetilde{A}) R, R^{-1}(B+\widetilde{B}) S\right)
$$

in which S and R are matrix functions that depend holomorphically on the entries of \widetilde{A} and $\widetilde{B}, S(0)=I$, and $R(0)=I$, to the form (4), whose stars are replaced by complex numbers that depend holomorphically on the entries of \widetilde{A} and \widetilde{B}. The number of stars is minimal that can be achieved by such transformations.

3 Main theorem

Each matrix pair $(A+\widetilde{A}, B+\widetilde{B})$ of the form (4), in which the stars are complex numbers, we call a miniversal normal pair and $(\widetilde{A}, \widetilde{B})$ a miniversal perturbation of (A, B).

The following theorem is the main result of the paper.
Theorem 2. Let (A, B) be a canonical pair (2). The following two conditions are equivalent:
(a) $A \widetilde{B}+\widetilde{A} B \neq 0$ for all nonzero miniversal perturbations (\tilde{A}, \tilde{B}).
(b) (A, B) does not contain
(i) $\left(I_{r}, J_{r}(0)\right) \oplus\left(J_{r}(0), I_{r}\right)$ for each r,
(ii) $\left(F_{1}, G_{1}\right) \oplus\left(G_{2}, F_{2}\right)$, and
(iii) $\left(F_{m}, G_{m}\right) \oplus\left(G_{m}, F_{m}\right)$ for each m.

Proof. (a) $\Longrightarrow(\mathrm{b})$. Let (A, B) be a canonical pair (2). We should prove that if (A, B) contains a pair of type (i), (ii), or (iii), then $A \widetilde{B}+\widetilde{A} B=0$ for some miniversal perturbation $(\widetilde{A}, \widetilde{B}) \neq(0,0)$. It is sufficient to prove this statement for (A, B) of types (i)-(iii).

Case 1: $(A, B)=\left(I_{r}, J_{r}(0)\right) \oplus\left(J_{r}(0), I_{r}\right)$ for some r. We should prove that there exists a nonzero miniversal perturbation $(\widetilde{A}, \widetilde{B})$ such that $A \widetilde{B}+\widetilde{A} B=0$.

If $r=1$, then

$$
(A, B)=\left(I_{1}, J_{1}(0)\right) \oplus\left(J_{1}(0), I_{1}\right)=\left(\left[\begin{array}{l|l}
1 & 0 \\
\hline 0 & 0
\end{array}\right],\left[\begin{array}{l|l}
0 & 0 \\
\hline 0 & 1
\end{array}\right]\right)
$$

Its miniversal deformation (4) has the form

$$
\left(\left[\begin{array}{c|c}
1 & 0 \\
\hline 0 & \varepsilon
\end{array}\right],\left[\begin{array}{c|c}
\lambda & \mu \\
\hline \delta & 1
\end{array}\right]\right)
$$

in which $\varepsilon, \lambda, \mu$ and δ are independent parameters. We have that

$$
A \widetilde{B}+\widetilde{A} B=\left[\begin{array}{c|c}
0 & 0 \\
\hline 0 & \varepsilon
\end{array}\right]+\left[\begin{array}{c|c}
\lambda & \mu \\
\hline 0 & 0
\end{array}\right]=\left[\begin{array}{c|c}
\lambda & \mu \\
\hline 0 & \varepsilon
\end{array}\right]
$$

Choosing $\varepsilon=\mu=\lambda=0$ and $\delta \neq 0$, we get $\widetilde{A} B+\widetilde{B} A=0$.
If $r=2$, then $(A, B)=\left(I_{2}, J_{2}(0)\right) \oplus\left(J_{2}(0), I_{2}\right)$ and

$$
(A+\widetilde{A}, B+\widetilde{B})=\left(\left[\begin{array}{cc|cc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 \\
0 & 0 & \varepsilon_{7} & \varepsilon_{8}
\end{array}\right],\left[\begin{array}{cc|cc}
0 & 1 & 0 & 0 \\
\varepsilon_{1} & \varepsilon_{2} & \varepsilon_{3} & \varepsilon_{4} \\
\hline \varepsilon_{5} & 0 & 1 & 0 \\
\varepsilon_{6} & 0 & 0 & 1
\end{array}\right]\right)
$$

We get

$$
A \widetilde{B}+\widetilde{A} B=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\varepsilon_{1} & \varepsilon_{2} & \varepsilon_{3} & \varepsilon_{4} \\
\varepsilon_{6} & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]+\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \varepsilon_{7} & \varepsilon_{8}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\varepsilon_{1} & \varepsilon_{2} & \varepsilon_{3} & \varepsilon_{4} \\
\varepsilon_{6} & 0 & 0 & 0 \\
0 & 0 & \varepsilon_{7} & \varepsilon_{8}
\end{array}\right]
$$

Choosing $\varepsilon_{5} \neq 0$ and $\varepsilon_{i}=0$ if $i \neq 5$, we get $A \widetilde{B}+\widetilde{A} B=0$.
If r is arbitrary, then $(A, B)=\left(I_{r}, J_{r}(0)\right) \oplus\left(J_{r}(0), I_{r}\right)$ and its miniversal deformation has the form
in which all $\alpha_{i}, \beta_{i}, \varepsilon_{i}$ are independent parameters. Taking all parameters zero except for $\beta_{1} \neq 0$, we get that $A \widetilde{B}+\widetilde{A} B=0$.

Case 2: $(A, B)=\left(F_{1}, G_{1}\right) \oplus\left(G_{2}, F_{2}\right)$. Then

$$
(A+\widetilde{A}, B+\widetilde{B})=\left(\left[\begin{array}{ll}
\varepsilon & \delta \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
\lambda & \mu
\end{array}\right]\right)
$$

in which $\varepsilon, \delta, \lambda$ and μ are independent parameters. We get

$$
A \widetilde{B}+\widetilde{A} B=\left[\begin{array}{cc}
0 & \varepsilon \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
\lambda & \mu
\end{array}\right]=\left[\begin{array}{cc}
0 & \varepsilon \\
\lambda & \mu
\end{array}\right]
$$

Taking all parameters zero except for $\delta \neq 0$, we get that $A \widetilde{B}+\widetilde{A} B=0$.
Case 3: $(A, B)=\left(F_{m}, G_{m}\right) \oplus\left(G_{m}, F_{m}\right)$ for some m.

If $m=1$, then $(A, B)=\left(F_{1}, G_{1}\right) \oplus\left(G_{1}, F_{1}\right)=(0,0)$. For each perturbation $(\widetilde{A}, \widetilde{B}) \neq(0,0)$, we get $A \widetilde{B}+\widetilde{A} B=$ 0.

If $m=2$, then the miniversal deformation (4) of (A, B) is

$$
(A+\widetilde{A}, B+\widetilde{B})=\left(\left[\begin{array}{c|cc}
1 & \alpha & 0 \\
\varepsilon & \beta & 0 \\
\hline 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cc|c}
0 & 1 & 0 \\
\hline 0 & 0 & 1 \\
\lambda & \mu & \delta
\end{array}\right]\right)
$$

in which $\varepsilon, \alpha, \beta, \lambda, \mu$ and δ are independent parameters. We obtain

$$
A \widetilde{B}+\widetilde{A} B=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
\lambda & \mu & \delta
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & \varepsilon & \beta \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & \varepsilon & \beta \\
\lambda & \mu & \delta
\end{array}\right]
$$

Choosing all parameters zero except for $\alpha \neq 0$, we get $A \widetilde{B}+\widetilde{A} B=0$.
If r is arbitrary, then the miniversal deformation (4) of (A, B) has the form

$$
\left(\left[\begin{array}{ccc|cccc}
1 & & 0 & \varepsilon_{r} & & & \\
& \ddots & & \vdots & & 0 \\
0 & & 1 & \varepsilon_{2 r-2} & & & \\
\varepsilon_{1} & \ldots & \varepsilon_{r-1} & \varepsilon_{2 r-1} & & & \\
\hline & & & 0 & 1 & & 0 \\
& 0 & & & \ddots & \ddots & \\
& & & 0 & & 0 & 1
\end{array}\right],\left[\begin{array}{cccc|cccc}
0 & 1 & & 0 & & & \\
& \ddots & \ddots & & & 0 & \\
0 & & 0 & 1 & & & \\
\hline & & & 1 & & 0 \\
& & 0 & & & \ddots & \\
& & & 0 & & 1 \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{r} & \alpha_{r+1} & \ldots & \alpha_{2 r-1}
\end{array}\right]\right)
$$

in which all α_{i} and ε_{j} are independent parameters. Since the r th row of B is zero, a parameter $\varepsilon_{2 r-2}$ does not appear in $\widetilde{A} B$, and so in $A \widetilde{B}+\widetilde{A} B$ too. Choosing all parameters zeros except for $\varepsilon_{2 r-2} \neq 0$, we get $A \widetilde{B}+\widetilde{A} B=0$.
$(\mathrm{b}) \Longrightarrow(\mathrm{a})$. Let us prove that if there exists a nonzero miniversal perturbation (\tilde{A}, \tilde{B}) such that $A \widetilde{B}+\widetilde{A} B=0$, then (A, B) contains $\left(I_{r}, J_{r}(0)\right) \oplus\left(J_{r}(0), I_{r}\right)$ for some r, or $\left(F_{1}, G_{1}\right) \oplus\left(G_{2}, F_{2}\right)$, or $\left(F_{m}, G_{m}\right) \oplus\left(G_{m}, F_{m}\right)$ for some m.

Since the deformation (4) is the direct sum of

$$
\left(I, \bigoplus_{i}\left(\Phi\left(\lambda_{i}\right)+N\right)\right) \quad \text { and } \quad\left(\left[\begin{array}{c|c|c}
\oplus_{j} I_{r_{1 j}} & 0 & 0 \\
\hline 0 & \oplus_{j} J_{r_{2 j}}(0)+N & N \\
\hline 0 & N & P_{3} \\
\hline 0 & 0 & Q_{4}
\end{array}\right],\left[\begin{array}{c|c|c}
\oplus_{j} J_{r_{1 j}}(0)+N & N & N \\
\hline N & \oplus_{j} I_{r_{2 j}} & 0 \\
\hline N & 0 & Q_{3} \\
\hline N & N & P_{4}
\end{array}\right]\right)
$$

it is sufficient to consider (A, B) equals

$$
\begin{equation*}
\left(I, \bigoplus_{i}\left(\Phi\left(\lambda_{i}\right)\right)\right) \quad \text { or } \quad \bigoplus_{j=1}^{t_{1}}\left(I_{r_{1 j}}, J_{r_{1 j}}\right) \oplus \bigoplus_{j=1}^{t_{2}}\left(J_{r_{2 j}}, I_{r_{2 j}}\right) \oplus \bigoplus_{j=1}^{t_{3}}\left(F_{r_{3 j}}, G_{r_{3 j}}\right) \oplus \bigoplus_{j=1}^{t_{4}}\left(G_{r_{4 j}}, F_{r_{4 j}}\right) \tag{8}
\end{equation*}
$$

Let first $(A, B)=\left(I, \bigoplus_{i}\left(\Phi\left(\lambda_{i}\right)\right)\right)$. Then

$$
(A+\widetilde{A}, B+\widetilde{B})=\left(\left[\begin{array}{c|c|c}
\oplus_{j} I_{r_{1 j}} & 0 & 0 \\
\hline 0 & \ddots & 0 \\
\hline 0 & 0 & \oplus_{j} I_{r_{l j}}
\end{array}\right],\left[\begin{array}{c|c|c}
\oplus_{j} J_{r_{1 j}}\left(\lambda_{1}\right)+N & 0 & 0 \\
\hline 0 & \ddots & 0 \\
\hline 0 & 0 & \oplus_{j} J_{r_{l j}}\left(\lambda_{l}\right)+N
\end{array}\right]\right)
$$

If

$$
\widetilde{A} B+\widetilde{A} B=\left[\begin{array}{c|c|c}
N & 0 & 0 \\
\hline 0 & \ddots & 0 \\
\hline 0 & 0 & N
\end{array}\right]=0,
$$

in which all N have independent parameters, then all N are zero, and so $(\widetilde{A}, \widetilde{B})=(0,0)$.
It remains to consider (A, B) equaling the second pair in (8). Write the matrices (7) as follows:

$$
\begin{aligned}
& P_{l}=\bar{P}_{l}+\underline{P}_{l}, \quad Q_{l}=\bar{Q}_{l}+\underline{Q}_{l}, \quad \text { in which } l=3,4, \\
& \bar{P}_{l}=\left[\begin{array}{cccc}
F_{r_{l 1}} & 0 & \cdots & 0 \\
& F_{r_{l 2}} & \ddots & \vdots \\
& & \ddots & 0 \\
0 & & & F_{r_{l_{l}}}
\end{array}\right], \quad \underline{P}_{l}=\left[\begin{array}{cccc}
H_{r_{l 1}} & H & \cdots & H \\
& H_{r_{l 2}} & \ddots & \vdots \\
& & \ddots & H \\
0 & & & H_{r_{t l_{l}}}
\end{array}\right], \\
& \bar{Q}_{l}=\left[\begin{array}{cccc}
G_{r_{l 1}} & & & 0 \\
0 & G_{r_{12}} & & \\
\vdots & \ddots & \ddots & \\
0 & \cdots & 0 & G_{r_{l_{l}}}
\end{array}\right], \\
& \underline{Q}_{l}=\left[\begin{array}{cccc}
0_{r_{11}} & & & 0 \\
H & 0_{r_{12}} & & \\
\vdots & \ddots & \ddots & \\
H & \cdots & H & 0_{r_{l_{l}}}
\end{array}\right],
\end{aligned}
$$

N and H are matrices of the form (5) and (6), and the stars denote independent parameters.
Write

$$
\begin{equation*}
J_{1}:=\oplus_{j} J_{r_{1 j}}(0), \quad J_{2}:=\oplus_{j} J_{r_{2 j}}(0) \tag{9}
\end{equation*}
$$

Then

$$
\begin{array}{ll}
A=\left[\begin{array}{c|c|cc}
I & 0 & 0 & 0 \\
\hline 0 & J_{2} & 0 & 0 \\
\hline 0 & 0 & \bar{P}_{3} & 0 \\
0 & 0 & 0 & \bar{Q}_{4}
\end{array}\right], & \widetilde{A}=\left[\begin{array}{c|c|c|cc}
0 & 0 & 0 & 0 \\
\hline 0 & N & N & N \\
\hline 0 & N & \underline{P}_{3} & N \\
0 & N & 0 & Q_{4}
\end{array}\right], \\
B=\left[\begin{array}{c|c|cc}
J_{1} & 0 & 0 & 0 \\
\hline 0 & I & 0 & 0 \\
\hline 0 & 0 & \bar{Q}_{3} & 0 \\
0 & 0 & 0 & \bar{P}_{4}
\end{array}\right], & \widetilde{B}=\left[\begin{array}{c|c|c|cc}
N & N & N & N \\
\hline N & 0 & 0 & 0 \\
\hline N & 0 & Q_{3} & 0 \\
N & 0 & N & \underline{P}_{4}
\end{array}\right], \\
A \widetilde{B}=\left[\begin{array}{c|c|cc}
N & N & N & N \\
\hline J_{2} N & 0 & 0 & 0 \\
\hline \bar{P}_{3} N & 0 & \bar{P}_{3} Q_{3} & 0 \\
\bar{Q}_{4} N & 0 & \bar{Q}_{4} N & \bar{Q}_{4} \underline{P}_{4}
\end{array}\right], & \widetilde{A} B=\left[\begin{array}{c|c|cc}
0 & 0 & 0 & 0 \\
\hline 0 & N & N \bar{Q}_{3} & N \bar{P}_{4} \\
\hline 0 & N & \underline{P}_{3} \bar{Q}_{3} & N_{3} \\
0 & N & 0 & \underline{Q}_{4} \bar{P}_{4}
\end{array}\right],
\end{array}
$$

in which we denote by N blocks of the form (5). All blocks denoted by N have distinct sets of independent parameters and may have distinct sizes.

Since $\widetilde{A} B$ and $A \widetilde{B}$ have independent parameters for each (A, B), we should prove that $\widetilde{A} B \neq 0$ for all $\widetilde{A} \neq 0$ and $\widetilde{B} A \neq 0$ for all $\widetilde{B} \neq 0$. Thus, we should prove that

$$
\begin{equation*}
J_{2} N, \quad N \bar{P}_{4}, \quad \bar{P}_{3} N, \quad N \bar{Q}_{3}, \quad \bar{Q}_{4} N \tag{10}
\end{equation*}
$$

are nonzero if the corresponding parameter blocks N are nonzero.

Let us consider the first matrix in (10):

$$
J_{2} N=\left[\begin{array}{lllll}
J_{r_{1}} & & & & 0 \\
& J_{r_{2}} & & \\
& & \ddots & \\
0 & & & J_{r_{n}}
\end{array}\right]\left[\begin{array}{ccccc}
H_{r_{1}} & & & 0 \\
& H_{r_{2}} & & \\
& & \ddots & \\
0 & & & H_{r_{n}}
\end{array}\right]=\left[\begin{array}{ccc}
0 \\
\varepsilon_{11} & \ldots & \varepsilon_{1 m_{1}} \\
0 & \ldots & 0
\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{ccc}
0 \\
\varepsilon_{n 1} & \ldots & \varepsilon_{n m_{n}} \\
0 & \ldots & 0
\end{array}\right]
$$

in which all $\varepsilon_{i j}$ are independent parameters and $r_{1} \leqslant r_{2} \leqslant \cdots \leqslant r_{n}$. Clearly, $J_{2} N \neq 0$ if at least one $\varepsilon_{i j} \neq 0$.
Let us consider the second matrix in (10):

$$
\left.\left.N \bar{P}_{4}=\left[\begin{array}{cccc}
H_{r_{1}} & & & 0 \\
& H_{r_{2}} & & \\
& & \ddots & \\
0 & & & H_{r_{n}}
\end{array}\right]\left[\begin{array}{cccc}
F_{r_{1}} & & & 0 \\
& F_{r_{2}} & & \\
& & \ddots & \\
0 & & & F_{r_{n}}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\varepsilon_{11} \ldots
\end{array}\right] \varepsilon_{1 m_{1}}\right] \oplus \cdots \oplus\left[\begin{array}{c}
0 \\
\varepsilon_{n 1} \ldots
\end{array}\right] \varepsilon_{n m_{n}} .\right]
$$

in which all ε_{j} are independent parameters and $r_{1} \geqslant r_{2} \geqslant \cdots \geqslant r_{n}$. Clearly, $N \bar{P}_{4} \neq 0$ if at least one $\varepsilon_{i j} \neq 0$.
The matrices $\bar{P}_{3} N, \bar{Q}_{4} N, N \bar{Q}_{3}$, and $\bar{Q}_{4} N$ in (10) are considered analogously.

References

[1] Arnold, V. I. (1971), On matrices depending on parameters, Russian Math. Surveys 26, pp. 29-43, doi 10.1070/RM1971v026n02ABEH003827
[2] Arnold, V. I. (1988), Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, doi 10.1007/978-1-4612-1037-5
[3] Dobrovol'skaya, N. M. and Ponomarev, V. A. (1965), A pair of counter-operators (in Russian), Uspehi Mat. Nauk 20, pp. 80-86, doi 10.1070/RM2006v061n04ABEH004354
[4] Garcia-Planas, M. I. and Sergeichuk, V. V. (1999), Simplest miniversal deformations of matrices, matrix pencils, and contragredient matrix pencils, Linear Algebra Appl. 302/303, pp. 45-61, doi 10.1016/S0024-3795(99)00015-4
[5] Horn, R. A. and Merino, D. I. (1995), Contragredient equivalence: A canonical form and some applications, Linear Algebra Appl. 214, pp. 43-92, doi 10.1016/0024-3795(93)00056-6

[^0]: ${ }^{\dagger}$ Corresponding author.
 Email address: tetiana.klymchuk@upc.edu

